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Abstract—Traffic state estimation (TSE) is an important aspect
of the Internet of Vehicles (IoV) for road path planning and
better driving experience. In IoV, with the support of edge
intelligence, real-time traffic data can be processed by edge
computing (EC) servers for informed decision-making. However,
collecting trajectory information from vehicles in a centralized
manner may increase transmission delay and cause driver
privacy leakage problems. In this paper, we firstly propose a
federated learning (FL) framework for TSE, named FedTSE,
with privacy preservation by jointly considering TSE accuracy,
model computation, and transmission cost. Then, a TSE model
is designed based on the long short-term memory (LSTM) as
the local training model for joint prediction of vehicular speed
and traffic flow. Considering the resource limitation of compu-
tation/communication, we further propose a deep reinforcement
learning (DRL)-based algorithm for model parameter upload-
ing/downloading decisions to improve the estimation accuracy
of local models and balance the tradeoff between computation
and communication cost. Simulation results show the proposed
FedTSE achieves a lower cost and higher prediction training
accuracy in TSE.

Index Terms—Traffic state estimation, long short-term mem-
ory, edge computing, federated learning, internet of vehicles.

I. INTRODUCTION

Traffic congestion is an inevitable problem in the process of
urbanization. Excessive traffic congestion leads to an increase
in automobile exhaust emissions and reduced traffic flowing
efficiency [1]. Accurate traffic state estimation (TSE) is nec-
essary to manage vehicular traffic and reduce congestion by
monitoring some key vehicle indicators (e.g., space speed).
The Internet of Vehicles (IoV) is foreseen to interconnect an
increasing number of vehicles with more stringent delay re-
quirements for data transmissions and processing. Connected
autonomous vehicles are a typical example, where real-time
TSE and decision-making are needed [2], [3]. The outcome
of TSE can affect the driving experience and even drivers’
safety of drivers in IoV.

TSE currently faces two major technical challenges. One is
the privacy leakage problem in vehicular traffic data collec-
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tion. Traffic data includes personal travel trajectory and driver
performance data, related to travel preferences and driving
habits. When transmitting those data to edge computing
(EC) servers or cloud servers directly, data security issues
are exposed. The other issue is the long service delay in
TSE, which is composed of computation and communication
delay [4]. Most existing works on TSE focus on improving
the traffic prediction accuracy with centralized control [5],
[6]. With the increase of network complexity and device
numbers, enhancing the utilization of both communication
and computing resources to reduce the cost with good service
performance (e.g., delay) is crucial.

In order to preserve the privacy of data, the federated
learning (FL) technology [7] emerges to allow clients to
share the parameters of the machine learning models without
transmitting the raw data. After introducing FL for distributed
training, the frequent exchange of parameters can improve
the model training accuracy but also consume substantial
communication and computation resources [8]. Thus, the
main cost in FL comes from the resource consumption in
model computation and parameter exchange. Balancing the
performance tradeoff between TSE accuracy and service per-
formance is a challenging research issue.

In this paper, we propose an FL framework for TSE,
called FedTSE in IoV with one EC and several road side
units (RSUs). In FedTSE, we train a lightweight local model
based on long short-term memory (LSTM) for TSE. All
local TSE models are developed with the assistance of an
EC server for parameter sharing under the proposed FedTSE
framework. Moreover, we investigate how to optimize the
parameter uploading/downloading decisions based on deep
reinforcement learning (DRL) to reduce the FedTSE training
cost under resource constraints. The main contributions of this
paper are summarized as follows:
• We propose the FedTSE framework for traffic state

estimation. In order to make the traffic estimation more
efficient and accurate, we adopt LSTM as the local
learning module for vehicular speed and traffic flow
prediction by capturing temporal information. Moreover,
we consider the influence of the actual training rounds
of each local model while aggregating parameters.

• We formulate a computation and communication re-
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source optimization problem for reducing transmission
and model computation cost. An asynchronous DRL
algorithm, asynchronous advantage actor-critic (A3C), is
employed to solve the problem with a better convergence
performance and of adapting to dynamic network envi-
ronment intelligently.

• We conduct simulations to evaluate the performance of
FedTSE in different communication modes. Results show
that our FedTSE achieves lower cost and higher accuracy,
compared with other baseline methods.

The remainder of this paper is organized as follows: In
Section II, we review the related works on FL and TSE. We
propose the FedTSE framework in Section III. In Section IV,
we formulate an optimization problem for FedTSE. Section
V presents the DRL algorithm to solve the problem. The
simulations of FedTSE are given in Section VI, followed by
the conclusions in Section VII.

II. RELATED WORK

In this section, we review some recent works related to TSE
and FL. Firstly, we introduce some popular TSE methods.
Then, we focus on the works of FL.
A. Traffic State Estimation

TSE is mostly based on historical information such as traffic
flow, speed and other road condition index [9], [10]. Currently,
most of the works only consider the estimation of flow or
speed. For speed estimation in traffic, Cui et al. [5] proposed
a Traffic Graph Convolutional LSTM model for traffic speed
prediction, considering spatiotemporal features of speed under
the traffic graph convolutional networks. Similarly, Cui et
al. [6] proposed a traffic state prediction algorithm based on
LSTM and Bidirectional LSTM (BiLSTM) with missing raw
data. Li et al. [11] proposed a spatial-Temporal fusion deep
learning approach for traffic flow prediction. However, all of
the above works lack the consideration of security in data
sharing under centralized processing.

B. Parameter Sharing in Federated Learning

There are fewer research works on parameter uploading
and downloading strategies. Parameter aggregation is usually
based on FedAVG [12], [13], whose principle is using the
weighted average method. In [14], the authors proposed a
temporally weighted aggregation federated learning approach.
Yuan et al. [15] integrated federated learning with a broad
learning system in IoV in order to improve the efficiency
and accuracy in data sharing and select clients according to
user spatial similarity. Wang et al. [16] proposed a novel FL
framework, which can achieve more efficient FL in multiple
edge nodes without sharing their raw private data. In FL, the
joining or exiting of nodes can also affect the performance
of federated learning. In [17], the authors proposed a secure
asynchronous FL algorithm for data sharing in IoV. This
algorithm can remove some nodes in FL if they make the
performance of FL worse. However, the parameter aggregation
strategy is relatively fixed in these references, and the influ-
ence of dynamic changes of the environment on parameter
aggregation is seldom considered.

III. SYSTEM MODEL
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Fig. 1. The system model of FedTSE in IoV.

In this section, we present the process of FL-driven TSE.
We first introduce how FL applied for TSE, and then introduce
how the communication process during FL in edge computing
driven IoV.

A. Federated Learning

Figure 1 shows the system model for TSE. In this scenario,
we assume traffic trajectory data is collected by different
RSUs [18]. The collected data may belong to different service
providers, so we adopt FL to solve the data islands. Thus, the
set of the model is defined as Ω = [Ω1,Ω2, ...,ΩN ], which
means there has N RSUs. The data sets of all RSUs are
defined as D = [D1,D2, ...,DN ]. In each Di, it includes two
parts: input Xi, and label Yi. In FL, the global model is set
in the EC server which has powerful computation resources.
In FL, the key is how to aggregate parameters effectively.
Generally, the weighted average method is used to aggregate
parameters. In view of the asynchronous nature of FL, the
training epochs eactuali of each RSU is not consistent, so we
need to assign the weight of the aggregation parameters to
capture the influence of the rounds on the aggregation effect:

W(e) =

N∑
i=1

size(Di)
size(D)

Wi(e) ∗ Exp(−(e− eactuali )), (1)

where W(e) is the set of the parameters of global model at
eth episode, and Wi(e) are the parameters of local model in
ith RSU. size(Di) means the size of the local raw data i, and
size(D) denotes the size of all raw data. Exp means natural
constant and Exp(−(e− eactuali )) = 1

Exp((e−eactual
i ))

. If e−
eactuali = 0, the value of 1

Exp((e−eactual
i ))

is one, which means
that RSU i has the highest degree of participation in FL, so
the temporal weight factor assigned is the largest. When the
RSU is hardly involved in FL, e− eactuali → +∞. Then, we
can get

lim
(e−eactual

i )→+∞

1

Exp((e− eactuali ))
= 0
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, which means the value of temporal weight factor is the
lowest. The parameters are updated by:

Wi(e+ 1) =W(e)− η ∂L(Di;W(e))

∂W(e)
, (2)

where (2) means the gradient-descent approach is applied for
training the model at each epoch and η is the learning rate.
B. Communications for Parameter Uploading/Downloading

In the FL environment, RSUs need to communicate with
the EC server when uploading or downloading parameters.
This process will consume communication resources. At the
same time, data processing and model training also require
computing resources on RSUs. Hence, it incurs some latency
in transmission and execution in one FL epoch.

At each episode e, RSUs have the possibility to upload
and download parameters. Thus, the uplink transmission rate
between RSU i and the EC server is:

Rupi (e) = Bupi (e)log2(1 +
P trn (e) · gn(e)

N0
), (3)

where Bupi (e) is the uplink bandwidth. The channel gain
gn(e) = dλi,ec(e) , where λ = −4 and di,ec is the distance
from RSU i to the EC server at time slot e. The transmission
power is given as P trn (e). The transmission latency is given:

Tupi (e) =
size(Wi(e))

Rupi (e)
. (4)

Similarly, we can derive the formula of the downlink
transmission rate between RSU i and the EC server is:

Rdowni (e) = Bdowni (e)log2(1 +
P trn (e) · gn(e)

N0
), (5)

where Bdowni (e) is the downlink bandwidth. The transmission
latency is given:

T downi (e) =
size(W(e))

Rdowni (e)
. (6)

IV. PROBLEM FORMULATION FOR FEDTSE

In this section, we adopt LSTM for local TSE. Furthermore,
we construct the optimization problem of jointly considering
computation and communication resources.
A. LSTM-based Model for Local Training

We use LSTM to capture the time correlation of vehicular
speed and traffic flow. The LSTM layer captures temporal
features of vehicular speed and traffic flow as follows:

[Ŷ f , Ŷ r] = LSTM([Xf , Xr]), (7)

where [Xf , Xr] means that we merge Xf and Xr as the
LSTM input. Ŷ f and Ŷ r represent the predicted traffic flow
and vehicular speed, respectively.

B. Cost Consumption in FedTSE

In FL, communication resources are consumed from band-
width, power, and other resources during transmission. Com-
puting resources are consumed mainly from local model
training. Hence, the total delay of parameters transmission
is given as:

T (e) =

N∑
i=1

{
αi(e)T

up
i (e) + βi(e)T

down
i (e)

}
, (8)

where αi(e), βi(e) are binary decision variables, which in-
dicate whether or not the local RSU chooses to parameter
upload/download.

In the life-cycle of FL-driven TSE, the total latency is given
as follows:

T =
1

E

E∑
e=1

N∑
i=1

{
αi(e)T

up
i (e) + βi(e)T

down
i (e)

}
. (9)

The computation delay caused by model training mainly
comes from the update of parameters. We assume fi is the
CPU frequency of local RSU and θ(e) is the calculation
density [19]. Therefore, the computation delay of dealing the
Wi is given as:

T exei (e) =
size(Wi(e))θ(e)

fi(e)
, (10)

where T exei (e) means the delay of process in training the
parameters of local model i.

According to the above analysis, the cost of TSE is mainly
the calculation cost of model training and the communication
cost of parameter upload/download. In order to maintain
the accuracy of the model in TSE, the calculation cost is
controlled by controlling the training rounds of the model.

In TSE, we use Mean Square Error (MSE) to evaluate accu-
racy, where MSEi(e) = 1

size(B)
∑size(B)
j=1 (yj −Ωi(xj ;Wi))

2

and yj is the true value from the min-batch during train-
ing. Problems P1 : 1

E

∑E
e=1

1
N

∑N
i=1

1
size(B)

∑size(B)
j=1 (yj −

Ωi(xj ;Wi))
2 + eactuali T exei (e) and P2 : T are sub-problems

of TSE, and we want TSE to keep the model accurate and
reduce the system cost, so we need to optimize computation
cost P1 and communication cost P2 together. Hence, our
multi-objective optimization function is given as:

P3 : min a1

{
1

E

E∑
e=1

1

N

N∑
i=1

1

size(B)

size(B)∑
j=1

(yj − Ωi(xj ;Wi))
2 + eactuali T exei (e)

+ a2T (11)

s.t. C1 : e, eactuali ≤ E (11a)
C2 : αi(e), βi(e) ∈ {0, 1} (11b)
C3 : P trn (e) ≤ Pmax(e), (11c)

C4 : Bdowni (e), Bupi (e) ≤ Bmax(e), (11d)
C5 : i ∈ N, (11e)

C6 : fi(e) ≤ fmax(e), θ(e) ≤ θmax(e) (11f)
C7 : ε ≤ ε. (11g)

In problem P3, the cost in IoV includes training cost and
transmission cost, thus we assign different price weights to
them and set a constraint: a1 + a2 = 1, where j ∈ B,
and B is the training batch randomly from Di. MSEi(e)
indicates that the value of TSE is more accurate, if MSEi(e)
is lower. Constraints C1 enforces the maximum training epoch
E. Constraint C2 enforces αi(e) and βi(e) in set of {0, 1}
by linking equation (9), where our goal is to select decisions
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to reduce the cost in FedTSE. Constraint C3 ensures the
transmission power P trn (e) between RSU and the EC server
are not greater than the maximum power Pmax(e). Constraint
C4 makes sure the channel bandwidth Bdowni (e) and Bupi (e)
between RSU and the EC server are not greater than the max-
imum bandwidth Bmax(e). Constraint C6 corresponds to the
maximum cpu frequency fmax(e) and maximum calculation
density θmax(e). Constraints C7 ensures the MSE must be
lower than ε.

V. PROPOSED SOLUTION

In this section, we will introduce how to optimize the
problem P3 to reduce the total cost in FedTSE based on
deep reinforcement learning (DRL) algorithm.

The problem P3 is a non-convex optimized problem, and
the resources of computation and communication also change
at each episode in FedTSE. Due to the dynamics of the en-
vironment, parameter upload and download decisions should
be adaptive. To this end, DRL can be employed to solve
this problem. In FedTSE, because distributed asynchronously
learning models in RSUs, we need to asynchronously deploy
DRL-based algorithm for learning the status. According to
this idea, we adopt the asynchronous advantage actor-critic
(A3C)-based [20] algorithm for solving problem P3. A3C
is an asynchronous DRL algorithm, which uses the method
of multi-threading, and carries on the interactive learning
with the environment in several threads at the same time.
Each thread collects the learning results and saves them in
a common place, namely experience pool. Based on the A3C
algorithm, we define the state and action of the environment
as follows:

S = (Pos, Pmax, Bmax, fmax, θmax),

A = (α, β).
(12)

Pos means the location of RSUs. Pmax and Bmax correspond
to the resources of computation, while fmax and θmax are for
the communication resources. Hence, we need to decide the
execution of actions A(e) according to the current state S(e).

We need to maximize the average reward R according to
the problem P3 as follows:

R = −

a1


1

E

E∑
e=1

1

N

N∑
i=1

1

size(B)

size(B)∑
j=1

(yj − Ωi(xj ;Wj))
2
+

e
actual
i T

exe
i (e)

}
+ a2T

}
.

(13)

The details of A3C-based solution for solving problem P3
are in Algorithm I. First, lines 1-2 represent the global model
at the EC server and local models in RSUs. Line 3 initial-
izes the experience pool Rep of the A3C-based algorithm.
Line 4 defines the life cycle of FedTSE, which is also the
training episodes of the A3C-based algorithm. Line 5 gets
the state S(e) of the current e. Line 6 indicates the A3C-
based algorithm to learn the model state and communication
state of IoV. Line 7 chooses the optimal action for each local
RSU. Line 8 indicates that each local model updates the model
parameters according to the assigned optimal decision. Line
9 shows that the EC server can aggregate parameters from
local RSUs. The last line means that the environment gets the

Algorithm 1: The A3C-based algorithm for solving
problem P3.

1 Initialize parameters [W1, ...,WN ] of all local models
[Ω1,Ω2, ...,ΩN ];

2 Initialize parameters W of global model in EC server;
3 Initialize replay memory Rep;
4 for episode e = 1, 2, ... do
5 Get the state S(e);
6 Call A3C-based Algorithm under multi-threading;
7 Get the αi(e), βi(e) according to the output of

A3C-based Algorithm for each local RSU;
8 Train each local model, LSTM with

uploading/downloading decision of parameters;
9 Aggregate parameters from each local model;

10 Get the R(e) and S ′(e) according to S(e) and

A(e); Put
{
S(e),A(e),R(e),S ′(e)

}
into the

Rep and feed it into the A3C-based Algorithm;
11 end

reward R(e) of the state S(e) and moves to the next state
S ′(e) according to the state S(e) and action A(e). Also, we
put

{
S(e),A(e),R(e),S ′(e)

}
into the experience pool Rep,

and then trains A3C-based algorithm in line 10.

VI. SIMULATION RESULTS

In this section, we adopt the England Freeway Dataset for
freeway TSE. Traffic states in this data set include traffic flow
and vehicular speed data from January 1, 2014 to December
31, 2014, and the time interval is 15 minutes. We use the data
in January and apply the weighted average method to fill miss-
ing values. In order to make the model converge faster during
the training process and to ensure the original distribution of
the data set, Z-score is used to standardize the data. Firstly, we
introduce the parameter settings in simulations. Then, we list
three communication modes of TSE. After that, we evaluate
the performance of the A3C algorithm for optimizing the
problem P3 in FedTSE.

A. Parameter Settings

TABLE I
PARAMETER LIST.

Parameter Description Ref. Value

θmax(e) Calculation density 800 ∼ 1000 cycle/bit
fmax(e) The maximum

frequency
0.6 ∗ 109 ∼ 109 Hz

N0 Noise power 10−13 W
Pmax(e) Maximum transmit

power
0.6 ∗ 103 ∼ 103 W

Bmax(e) Maximum transmit
bandwidth

0.12∗106 ∼ 0.18∗106

We take 80% of the data as training data and use one day’s
data as testing data. In the comparative analysis, we set the
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number of RSUs to 2, 4, 8, and 16, respectively. In our local
training LSTM model, we set the hidden neurons of LSTM
as 100. We use Pytorch in Intel (R) Core (TM) i5-10400F
CPU @ 2.9 GHz, 16GB memory for simulations. Finally, the
summary of the parameter list is shown in Table I.

0:00 7:30 15:00 22:30 6:00

11:15 11:55 12:35 13:15 13:55 14:35 15:15 15:55
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Fig. 2. Traffic flow estimation effect of different communication modes in
FedTSE.
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Fig. 3. Vehicular speed estimation effect of different communication modes
in FedTSE.

B. Performance Comparison

Firstly, we compare the prediction performance of different
communication methods for TSE in Figures 2-3. In FedTSE,
we use three communication modes and set 8 RSUs for TSE
as follows:
• FedTSE-Syn. It means that we use a synchronous com-

munication mode for TSE. In this mode, the number of
training epochs of each RSU is identical.

• FedTSE-Asyn. It means that we use an asynchronous
communication mode for TSE. In this mode, number of
training epochs of each RSU is different. Some RSUs
may have fewer training epochs and others may have
more training epochs.

• FedTSE-Asyn(Weight). It means that we use an asyn-
chronous communication mode for TSE and we also
consider the influence of training epochs on parameters.
The temporal weight factor assigned to RSUs with less
FL rounds will be small.

From Figure 2, we can see the peak values of traffic
flow are relatively large from 15:00 to 22:30. In FedTSE-
Syn, the performance of traffic flow estimation is better

than FedTSE-Asyn. The main reason is that there is no
temporal lag in parameter aggregation of the global model
from local models because of the same training epochs. But
in reality, communication is usually asynchronous. In FedTSE,
the influence of training epochs on parameter aggregation is
considered, and the temporal weight factor is added. The
results show that FedTSE-Asyn(Weight) can promote the
prediction performance of LSTM. The performance of speed
estimation under different communication modes is shown
in Figure 3. Because of the rapid instantaneous change of
vehicular speed, the time periodicity is not strong. But LSTM
can effectively mine the temporal correlation of speed. Under
three different communication modes, the velocity values
estimated by our FedTSE basically reflect the change of
the true speed. After introducing the temporal weight factor,
the estimation effect of FedTSE-Asyn(Weight) is improved
compared with FedTSE-Asyn and FedTSE-Syn, because it
can reduce the occurrence of unbalanced FL.

0 10 20 30 40 50

Episode

25

50

75

100

125

C
o
st

FedTSE-A3C(a1=0.5,a2=0.5)

FedTSE-A3C(a1=0.2,a2=0.8)

FedTSE-A3C(a1=0.6,a2=0.4)

FedTSE-A3C(a1=0.8,a2=0.2)

Fig. 4. The cost of different for combination of a1 and a2 in FedTSE-A3C.

We also discuss the real-time total cost caused by A3C
algorithm for solving resources problem P3 in Figures 4 - 6.
Figure 4 shows total cost in FedTSE during online training
A3C-based algorithm under the different combinations of a1
and a2. Although the values of a1 and a2 are different, the
value of cost converges with the increase of Episode. Under
the restriction condition a1 = 0.5, a2 = 0.5, the FedTSE cost
is worse than that in other conditions. This is because the
optimization efforts of subproblem P1 are the same as the
subproblem P2. In fact, the computing and communication
cost can not be the best at the same time. In FedTSE, most
of the cost is from model training. Thus, we improve the
optimization of computing resources under the restriction
condition a1 = 0.2, a2 = 0.8. Under this constraint, the cost
has a more significant convergence effect with the increase of
Episode in FedTSE.

Finally, we explore the cost and latency of FedTSE over
IoV. From Figure 5, we compare A3C-based algorithm with
the ε-greedy algorithm. In ε-greedy, we choose the strategy
with ε probability every time, and this method will gradually
select actions that makes the agent get the maximum reward
with a high probability. However, this algorithm lacks the
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(a) (b)

Fig. 5. (a) The comparisons of the different solutions for delay in FedTSE.
(b) The comparisons of the different solutions for cost in FedTSE.

(a) (b)

Fig. 6. (a) The computation cost of the different number of RSUs in FedTSE-
A3C. (b) The cost of the different number of RSUs in FedTSE-A3C.

consideration of the dynamic state of the environment. As
the A3C algorithm is asynchronous, it can be well combined
with FedTSE. Therefore, in the simulation process, we can
optimize problem P3 and reduce the cost of IoV greatly.
We also evaluate the performance of delay in FedTSE with
different methods. By analyzing Figure 6, we can see that the
cost of the system is mostly consumed in computing resources,
which is consistent with our hypothesis. The A3C algorithm
also can reduce the real-time average delay more than ε-
greedy. We propose to use an A3C-based algorithm to solve
problem P3, which will reduce the system delay gradually.

VII. CONCLUSION
In this paper, we have developed an FL framework for

privacy-preserved TSE by integrating LSTM and DRL for
optimizing resource consumption with high traffic prediction
accuracy. In the proposed framework, the LSTM-based local
training model captures temporal information and hidden
nexus between vehicular speed and traffic flow. In order to
reduce the training cost of FedTSE in IoV, we have established
an optimization problem to minimize the computation and
communication cost of FedTSE. An A3C learning algorithm is
employed to solve the problem to make parameter download-
ing/uploading decisions by adapting to the changing network
environment. Simulation results demonstrate that FedTSE
effectively reduces MSE value in prediction and the total
system cost. For our future work, we will discuss how to
use multi-source data to assess the accident risk in cities.
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