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Abstract—To pursue better predictive performance in deep
neural networks (DNNs), the size of learning models tends to
increase, resulting in high computational requirements and train-
ing latency. In this paper, we investigate the problem of device
placement to accelerate large-scale distributed DNN training. To
address the challenge of finding an effective scheme due to its
NP-hardness and the ever-increasing model size, we propose novel
operator fusion and co-location schemes to reduce the search space
while minimizing subsequent performance loss in training latency,
enabling efficient device placement. We evaluate the performance
of our design with real-world DNN benchmarks, and the results
show that, compared to state-of-the-art approaches, our design
achieves up to a 35% reduction in DNN training latency and an
order-of-magnitude improvement in placement search latency.

Index Terms—Distributed deep learning, device placement,
operator fusion, inter-operator parallelism.

I. INTRODUCTION

Deep neural network (DNN) models have experienced a
significant increase in size in recent years. For example, VGG16
[1] proposed in 2014 has more than 138 million parameters,
and LLAMA-3 [2] released in 2024 has an astonishing 405
billion parameters. Additionally, the number of training epochs
and the size of models are expected to grow further to pursue
better learning performance, resulting in significantly prolonged
training delays of days, weeks, or even months for large-scale
models. As modern DNN models grow in size, training on a
single device becomes impractical due to time and memory
constraints, necessitating distributed training across multiple
devices, including GPUs, CPUs, and tensor processing units.
Model parallelism [3], a common approach for distributed
training, partitions model parameters into disjoint subsets, with
each device processing a specific portion of the model. It can
be categorized into pipeline parallelism [4], tensor parallelism
[5], and inter-operator parallelism [6]. Pipeline parallelism
performs model partitioning at the layer level but cannot exploit
parallelization opportunities within individual layers due to
the sequential dependencies between DNN layers. In contrast,
tensor parallelism partitions individual operators across devices,
incurring communication overhead from data exchanges during
operator splitting and merging. Inter-operator parallelism bal-
ances parallelization opportunities and communication costs.
An operator, which is a mathematical computational unit,
performs tasks such as matrix multiplication.

In inter-operator parallelism, a DNN computation graph is
partitioned into disjoint subgraphs. Optimizing device place-
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Fig. 1. Each red-dashed ellipse in (a) represents a pair of parallelizable
operators. Multiple topological sorts in (b) are possible due to these paral-
lelizable operator pairs. In (c), red and blue nodes indicate tasks running on
GPU 1 and 2, respectively. We assume each cross-GPU communication takes
five microseconds. The number below each placement represents the training
latency under the optimal scheduling.

ment and operator scheduling minimizes training latency [7].
Placement establishes a one-to-one mapping between devices
and subgraphs, while scheduling defines the sequential ex-
ecution order of operators within each subgraph. An ef-
fective placement parallelizes operators that have no inter-
dependencies, enabling more tasks to be processed simultane-
ously. Similarly, efficient scheduling reduces device idle time
by minimizing delays in waiting for data from other devices.

A DNN computation graph can often be structured as a
directed acyclic graph (DAG), where each node represents an
operator, and each directed edge indicates data dependencies
between two operators. For a pair of operators with inter-
dependency, such as (A, B) in Fig. 1(a), the dependent op-
erator B cannot begin execution until operator A is completed.
Fig. 1(a) also uses red-dashed ellipses to indicate parallelizable
operator pairs with no directed path connecting them. For the
unique pairs of parallelizable operators, (B, C) and (C, D), the
first operator in each pair can execute either before or after the
second one, generating three feasible topological sorts, shown
in Fig. 1(b). Any valid scheduling aligns with a topological sort,
which defines a linear ordering of operators such that for every
directed edge from one operator to another, the former precedes
the latter in the ordering. The existence of a topological sort
is a necessary and sufficient condition for the graph to be



a DAG. Fig. 1(c) shows all balanced placement schemes on
two GPUs. The middle one in Fig. 1(c) illustrates the optimal
placement where the nodes in each parallelizable operator pair,
(B, C) and (C, D), are assigned to different GPUs to enable
parallel execution, achieving the shortest per-iteration training
latency of 25 µs. This example demonstrates that device
placement significantly affects distributed training performance.
Placement optimization can often be formulated as an integer
programming (IP) problem with NP-hard properties [7]. The
search space for an optimal device placement expands rapidly
with the scale of DNN models and the number of devices.

In this paper, we present novel operator fusion and co-
location schemes to reduce the search space significantly,
leading to an efficient inter-operator-level device placement.
Moreover, a profiler is designed to output the operator com-
puting delay and the memory cost, serving as input to the
IP problem to evaluate the performance of placement and
scheduling decisions1. Evaluation results on four real-world
DNN benchmarks show that our solution can achieve up
to a 35% reduction in per-iteration training latency and an
improvement of over 2,000 times in placement search latency.

II. RELATED WORK

Heuristic solutions: Existing graph partitioning tools, such
as Metis [8], divide computation graphs into load-balanced
subgraphs while minimizing cross-device data transmission.
Additionally, starting from a random solution, local search [8]
greedily improves the best single-operator placement reassign-
ment repeatedly until a local optimum is reached. In contrast,
Markov Chain Monte Carlo (MCMC) [5], [9] iteratively pro-
poses a new strategy by randomly changing the parallelization
configuration of an operator, rapidly exploring the search space.
These heuristic-based methods are efficient but lack worst-case
performance guarantees.
Learning-based solutions: Numerous learning-based strategies
are developed to improve device placement and scheduling.
For example, HeteroG [10] and TAG [11] utilize graph neural
networks (GNNs) to extract computation graph information
and produce generalizable device placement policies. However,
these methods require extensive training time for GNNs to
achieve decisions that outperform existing heuristics.
Solver-based solutions: Generally, solver-based solutions in-
troduce high latency when searching for optimal placements in
large-scale, NP-hard device placement problems. For example,
Pesto, proposed in [7], models device placement and scheduling
as an integer linear programming problem and applies a graph
coarsening technique to accelerate problem solving. However,
jointly solving device placement and scheduling problems in-
curs significant search latency, as both problems are NP-hard.
Additionally, aggressive batch merging reduces parallelization
opportunities and causes performance loss. In [8], Tarnawski
et al. formulate an integer programming (IP) problem for

1The implementation of our proposed solution is publicly available at
https://github.com/MUN-DML/QuickP for further reference and use.

placement search and enhance parallelism by introducing non-
contiguous cuts, which is effective for small-scale problems
without network heterogeneity.

In summary, heuristic schemes suffer from high performance
loss in preserving low training latency, while learning-based and
solver-based schemes face high computational complexity.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Deep Learning Clusters

We consider a homogeneous scenario where each server is
equipped with k identical GPUs2 for distributed DNN training.
The computing delay of each operator is uniform across all
GPUs. Because different learning tasks may have varying
resource and security requirements, which can cause significant
and unpredictable performance degradation when running in
parallel [12], we assume that each GPU can be assigned to
only one learning task at any given time. Then, the computing
system scales from individual servers to clusters. Servers are
interconnected via electrical packet switches arranged in a
multi-tier Fat-Tree network topology [13], a hierarchical and
scalable network structure consisting of three layers of Ether-
net switches, widely used in modern data centers and high-
performance computing (HPC) environments.

We consider a Fat-Tree topology that provides equal band-
width across all links connecting servers, enabling all servers to
communicate at the full bandwidth of ben. Within each server,
the GPUs are connected via NVLink, enabling direct and high-
speed connections between GPUs with a bandwidth of bnv . In
modern HPC clusters, each server is equipped with multiple
network interface cards (NICs), each supporting various ports.
Since modern NICs support full-duplex capability and each port
bandwidth is independent, multiple data transfers can occur
simultaneously, reducing GPU idle time (caused by waiting for
dependencies) and increasing overall training throughput.

B. Distributed Deep Learning and Device Placement

Computation graph: The DNN computation graph is modeled
as a DAG, denoted as G = (V,E), where each node i ∈ V
represents an operator (e.g., convolution) with an associated
computing delay pi and memory cost mi. A directed edge
(i, j) ∈ E indicates that the operator j requires the output
of i for processing, with a transmission tensor size of ti,j .
Device topology: A directed graph T = (D,L) represents the
device topology, where each device d ∈ D is a GPU with
maximum memory capacity Md, and each edge (d, e) ∈ L is
a communication link from d to e with bandwidth bd,e.
Distributed deep learning: In inter-operator parallelism, oper-
ators are distributed across devices. Each device processes its
assigned operators on a mini-batch in parallel with others.
Placement: Based on the input computation graph G and
device topology T , we define a placement strategy P as P =
{(gd, d) | d ∈ D, gd ∈ G} where each pair (gd, d) represents
a unique one-to-one mapping between each GPU d ∈ D and a

2“GPU” and “device” are used interchangeably throughout the rest of the
paper.



corresponding subgraph gd ∈ G, with G representing the set of
all disjoint subgraphs of G after partition.

After the profiler calculates the computing delay pi and mem-
ory consumption mi for each operator i ∈ V , we formulate the
device placement search as an IP problem, where A is the finish
time of the last completed operator, that is, maxi∈V fi. By
solving (P1), we aim to find an optimal placement strategy P∗

to minimize the per-iteration latency A for a given computation
graph G and device topology T . We utilize Kahn’s algorithm
[14] to obtain a topological sort of the computation graph G.
The algorithm produces an ordered list TP = (i1, i2, . . . , in),
where {i1, i2, . . . , in} = V . A topological order tpi is assigned
to each operator i ∈ V , where tpi corresponds to the index of
operator i in TP . O = {(i, j) | tpi < tpj , i, j ∈ V } lists
all unique operator pairs (i, j) where the first operator i has a
lower topological order than the second operator j, such that
tpi < tpj . This avoids considering repeated operator pairs and
maintains valid scheduling within each subgraph gd ∈ G. The
mathematical formulation of (P1) is shown below.

(P1): Min
{xi,d}

A = max
i∈V

fi

s.t.
xi,d ∈ {0, 1}, ∀i ∈ V, ∀d ∈ D, (1)

Md ≥
∑
i∈V

mi · xi,d, ∀d ∈ D, (2)∑
d∈D

xi,d = 1, ∀i ∈ V, (3)

si + pi = fi, ∀i ∈ V, (4)
fi ≤ sj , if ti,j = 0,

fi +
∑

d,e∈D
d̸=e

xi,d · xj,e · ti,j
bd,e

≤ sj , else, ∀(i, j) ∈ E, (5)

fi ≤ sj +Q · (2− xi,d − xj,d),

∀(i, j) ∈ O, ∀d ∈ D, pi > 0, pj > 0. (6)

In (P1), xi,d in constraint (1) is a binary variable that denotes
the mapping between operator i and device d. Specifically,
xi,d = 1 if operator i is allocated to device d, and xi,d = 0
otherwise. Constraint (2) limits the total memory of assigned
operators to the device’s memory capacity Md of device d.
Constraint (3) ensures each operator is allocated to one device,
forming a many-to-one mapping between operators and devices.
Constraint (4) indicates that for any operator i, its complete
time fi is the sum of its start time si and its computing delay pi.
The profiler evaluates the computing delay pi for each operator
i. In a homogeneous GPU environment, the computing delay of
each operator remains uniform across all devices. Constraint (5)
maintains the global data dependency, ensuring that if there is
an edge (i, j) ∈ E, operator j starts execution only after oper-
ator i is completed and the corresponding tensor transmission
is received. This transmission may incur communication costs,
which are calculated based on three possible scenarios:

• For PlaceHolder operators, the output tensor size ti,j
is zero, eliminating communication costs regardless of the
placement of the operators i and j.
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Fig. 2. Our solution consists of a profiler to evaluate the computing and
memory costs of operators, along with an IP model that employs operator
fusion and co-location schemes for efficient placement.

• If both operators i and j are placed on the same device,
there is no communication cost. In this case, fi ≤ sj .

• If operators i and j are placed on different devices (i.e.,
d ̸= e), the cost is equal to the transmission tensor size
ti,j divided by the bandwidth bd,e of the corresponding
communication link, considering network heterogeneity.

The constraint (6) indicates that for each unique operator pair
(i, j) ∈ O, the operator j can only be executed after i is
completed if they are on the same device. This same-device
condition is formulated as Q · (2− xi,d − xj,d) = 0, where Q
is a sufficiently large constant. This constraint enforces non-
overlapping computing periods and valid scheduling, comply-
ing with the topological sort, on each device. Furthermore, the
conditions pi > 0 and pj > 0 simplify the model, as operators
like Reshape, ReadVariable, and Cast in a TensorFlow
graph incur zero computing delay. If either operator i or j has
zero computing delay, their computing periods do not overlap.

IV. SOLUTION DESIGN

Since finding the optimal parallelization strategy alone is
an NP-complete problem [5], and considering that network
heterogeneity further complicates this problem, finding an
optimal solution to the device placement problem (P1) within
polynomial time is infeasible. Typically, the placement search
latency of commercial solvers increases exponentially with the
problem size. Therefore, we propose novel operator fusion and
co-location schemes to reduce the search space of (P1) while
minimizing the subsequent performance loss in training latency,
significantly decreasing placement search latency. Fig. 2 shows
the workflow of our proposed solution framework.

A. Parallelizable Operator Pairs

Definition 1. In a DAG G = (V,E), an operator pair (i, j),
where i, j ∈ V , is parallelizable if there is no i⇝ j or j ⇝ i
where ⇝ represents a directed path between two operators.

To minimize the number of operator pairs involved in the IP,
we only consider parallelizable operator pairs. The topological
sort rule states that if there is a directed path i⇝ j, the operator
i must appear before j in the topological sort for any DAG.
Thus, we exclude any operator pair connected by a directed
path, reducing the computational complexity of the constraint
(6), as the constraint (5) guarantees the global data dependency.

B. Operator Fusion

The DNN computing graph generated by TensorFlow often
includes thousands or even tens of thousands of operators. We
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Fig. 3. The red-dashed ellipse represents a pair of parallelizable operators.
Merging an edge where the source node’s out-degree and the destination node’s
in-degree are both at least two reduces parallelization opportunities.

aim to fuse operators to reduce their number, accelerating the
placement search process. One challenge of operator fusion is
to prevent cycle creation, as it violates the rules of a DAG. In
a DAG G = (V,E), the operation that merges operator j into
i for each edge (i, j) ∈ E preserves acyclicity if and only if
there exists exactly one internally vertex-disjoint path from i
to j in G. This result is formally established in Pesto [7].

Theorem 1. Assume a homogeneous environment where each
device has sufficient memory and every operator incurs the
same computing delay across all devices in a DAG G. If there
are no parallelizable operator pairs, the optimal placement is
to assign all i ∈ V to one device, given that any edge cut
(i, j) ∈ EC incurs a communication cost cij ≥ 0. Here,
EC = {(i, j) ∈ E | (i, j) /∈

⋃
gd∈G E(gd)} indicates the set

of all edge cuts during the graph partition, where E(gd) is the
set of edges of subgraph gd ∈ G.

Proof. In a DAG G = (V,E) without any parallelizable
operator pairs, there exists either a directed path i ⇝ j or
j ⇝ i for each operator pair (i, j),∀i, j ∈ V . Thus, there is only
one topological sort for G, indicating one possible sequential
execution order {i1, . . . in} among all i ∈ V , where |V | = n.
Assuming the optimal placement does not assign all nodes to
the same device, EC is non-empty, and the training latency
equals

∑
i∈V pi+

∑
(i,j)∈EC cij . However, the training latency

is
∑

i∈V pi if all operators are on the same device, leading to
the minimum training latency and concluding the proof.

Theorem 2. In a DAG G = (V,E), if an edge (i, j) ∈ E
creates a cycle after fusion, both the out-degree of the source
node i and the in-degree of the target node j are at least two.

Proof. For an edge (i, j) ∈ E, if the fusion of j into i creates
a cycle, there must be two or more internally vertex-disjoint
paths from i to j before the fusion. However, if the out-degree
of i or the in-degree of j is one, the edge (i, j) is the only path
from i to j, and no cycle can be created.

Although operator fusion reduces the number of operators,
it also limits opportunities for parallelization. Since it changes
the graph structure, all parallelizable pairs involving the merged
node become unavailable. Thus, to minimize the performance
loss caused by operator fusion, we design Algorithm 1 to

Algorithm 1 Operator fusion
Input: Edge (i, j); computation graph G; merging threshold α;
Output: Boolean indicating if j will merge into i;

1: if G.out degree(i) ≥ 2 ∧G.in degree(j) ≥ 2 then
2: return False
3: end if
4: if G.out degree(i) = 1 ∧G.in degree(j) = 1 then
5: return True
6: end if
7: if (pi ≤ α ∧G.out degree(i) = 1) ∨
8: (pj ≤ α ∧G.in degree(j) = 1) then
9: return True

10: end if
11: return False
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Fig. 4. Each red-dashed ellipse represents a pair of parallelizable operators.
(a) and (c) show that fusing an edge may cause significant performance loss
if the destination operator’s in-degree or the source operator’s out-degree is at
least two, even if the operator has low computing delay.

determine whether operator j should fuse into i for each edge
(i, j) ∈ E, based on the following conditions.

• According to Theorem 2, the out-degree of operator i
and the in-degree of operator j both being at least two
is a necessary condition for the merge of edge (i, j)
to create a cycle. Moreover, as shown in Fig. 3(d), the
fusion of operator C into operator B forms a straight line,
eliminating all parallelization opportunities. Additionally,
edges (C, B) and (C, D) are removed while a new edge (B,
D) is generated, causing high fusion runtime. Therefore,
skipping the fusion of such edges prevents cycle creation,
reduces fusion runtime, and preserves low training latency.

• In Fig. 1(a), edge (B, D) forms a straight line-like structure
because the out-degree of operator B and the in-degree of
operator D are both one. By Theorem 1, operators B and
D are not parallelizable, since the straight-line path B → D
has only one possible topological sort. However, because
B retains parallelization opportunities with C upon fusion,
D can be fused into B without performance degradation.

• The analysis of the profiling results shows that the major-
ity of computing demand comes from a few operators,
consistent with the findings of Pesto [7]. We define α



as the merging threshold that balances placement search
latency and training latency. As α increases, search latency
decreases, while training latency increases. To minimize
performance degradation, an edge (i, j) can be fused if
the computing delay of j is below α and its in-degree is
one, or if the computing delay of i is below α and its
out-degree is one, as shown in Fig. 4(b) and Fig. 4(d).

C. Operator Co-location
When operator fusion reduces the number of operators,

applying operator co-location constraints further narrows the
search space. Unlike fusion, operator co-location does not alter
graph structure or generate cycles. We implement critical path-
based heuristics (7) to calculate the rank ri of each operator
i ∈ V . The calculation follows a reverse topological sort, where
ri indicates the cumulative computing and communication cost
of the longest path starting from operator i, given by

ri = pi + max
j∈succ(i)

(rj +
ti,j
b
), b =

{
bnv, if |D| ≤ k,
ben, else. (7)

Then, each operator i with more than one immediate successor
co-places with the immediate successor j with the highest
combined cost of rj and the corresponding communication cost,
that is, maxj∈succ(i)(rj +

ti,j
ben

), where succ(i) represents the
set of immediate successors of operator i. Afterward, the edge
(i, j) is added to the edge set N .

After iterating through all operators i with more than one
immediate successor, that is, |succ(i)| > 1, all edges (i, j) ∈ N
form a subgraph of the computation graph G. This subgraph
consists of a set of weakly connected components (WCCs),
denoted as W . The operators in each WCC constitute a co-
location group U ∈ W , indicating that all the operators i ∈ U
are assigned to the same device. Additionally, each operator
belongs to at most one co-location group U ∈ W .
IP reformulation: After applying operator co-location con-
straints, the reformulated IP with a significantly reduced search
space is presented in (P2).

(P2): Min
{xi,d},{yU,d}

A = max
i∈V

fi

s.t.
Constraints (1), (2), (4),
yU,d ∈ {0, 1}, ∀U ∈ W, ∀d ∈ D, (8)∑
d∈D

yU,d = 1, ∀U ∈ W, (9)

xi,d = yU,d, ∀d ∈ D, ∀U ∈ W, ∀i ∈ U, (10)∑
d∈D

xi,d = 1, i /∈
⋃

U∈W

U, (11)
fi ≤ sj , if ti,j = 0 ∨ (∃U ∈ W, {i, j} ⊆ U),

fi +
∑

d,e∈D
d ̸=e

xi,d · xj,e · ti,j
bd,e

≤ sj , else, ∀(i, j) ∈ E,

(12){
fi ≤ sj , if ∃U ∈ W, {i, j} ⊆ U,
fi ≤ sj +Q·(2−xi,d−xj,d), ∀d ∈ D, else, ∀(i, j) ∈ R,

(13)

where yU,d represents co-location group-device mapping indi-
cators, and constraint (9) enforces a many-to-one relationship
between groups and devices. If a group U is placed on a device,
all operators i ∈ U are assigned to this device accordingly,
as in the constraint (10). The many-to-one operator-to-device
mapping applies only to ungrouped operators to reduce the
complexity, as specified in the constraint (11). The operator
i is ungrouped if it is not co-located with any other operator,
that is, i /∈

⋃
U∈W U . Unlike constraint (5), constraint (12)

specifies that operators in the same group U do not incur
communication costs because they are on the same device.
R = {(i, j) ∈ O | i ̸⇝ j, pi > 0, pj > 0} represents all
parallelizable operator pairs in G. By restricting the constraint
(13) to R, its complexity is significantly reduced. For any two
operators (i, j) belonging to the same group U , operators i
and j are executed sequentially, even if (i, j) is an element
of the set of parallelizable operator pairs R. Their execution
order is determined by the relative order of tpi and tpj in
the topological sort TP , such that tpi < tpj =⇒ fi <
sj , ∀{i, j} ⊆ U, ∀U ∈ W . Consequently, within each group
U , the relative execution order of operators i ∈ U follows an
increasing sequence based on their topological order tpi, thus
further reducing computational complexity.

The commercial solver, i.e., Gurobi, optimizes the IP (P2),
producing device placement and scheduling. Then, the per-
iteration training latency is obtained.

V. PERFORMANCE EVALUATION

A. Implementation

The proposed solution is implemented using TensorFlow
2.16 [15]. The tf.function decorator is applied to convert
graphs from the model training iteration, since TensorFlow
stores DNNs as DAGs. During training, the graph API is
used to trace and extract the computation graph, which is then
modeled using NetworkX [16]. Each node is annotated with the
operator name, inputs, and outputs, while each directed edge
is labeled with the transmitted tensor size. During profiling,
we train the DNN model for 50 iterations, excluding the
first five warm-up ones. Given that large-scale DNN training
requires over 100,000 iterations and multiple epochs, this incurs
a profiling overhead of less than 0.1% [7]. The TensorFlow
profiler calculates the computing delay and memory cost of the
operators, which serve as input to the IP model implemented
by the commercial solver Gurobi [17].

B. DNN Models and Datasets

We train image classifiers, including AlexNet [18] and
VGG16 [1], using the CIFAR-10 [19] dataset of ten image
classes with a batch size of 512. For natural language process-
ing (NLP) models, including BERT [20] and FNet [21], we use
IMDB reviews of two classes from the TensorFlow dataset with
a batch size of 16. Each input is padded to a length of 128 to
ensure uniform text length.



TABLE I
AVERAGE PLACEMENT SEARCH LATENCY COMPARISON IN SECONDS

# of # Operator Solver Runtime of Metis
Model Operators of Fusion Our Solution (All

(Pre → Post WCC Algo. Two Four Six # of
Fusion) Groups Runtime GPUs GPUs GPUs GPUs)

AlexNet 1, 624 → 264 47 0.1 1.3 4.2 12.0 0.2
VGG-16 3, 598 → 509 124 0.1 0.5 1.9 3.7 0.6
FNet 7, 145 → 1081 242 0.3 3.2 5.2 16.2 1.6
BERT 12, 566 → 2048 429 1.0 2.5 7.1 18.9 4.2

C. Experimental Setup

We conduct profiling on the NVIDIA RTX-3070 GPU. We
assume a cluster where each server is equipped with two GPUs
connected via NVLink with a bandwidth of 50 GB/s, while
servers communicate over Ethernet at 20 GB/s. The merging
threshold, α, for each model is set to the 90th percentile of
nonzero operator computing delays, sorted in ascending order.
The IP optimizer, Gurobi, operates on an Intel Core i7-12700K
CPU and outputs the placement once it guarantees a solution
within 5% of the optimum. For each model, the optimization
process is executed 20 times using the same number of devices.
Then, we average the placement search latency and expected
training latency.

D. Baseline

Metis [8]: Metis is a publicly available graph partitioning
tool. We use computing delay as the operator weight and
output tensor size as the edge weight. Metis balances the sum
of operator weights across subgraphs while minimizing the
total edge cut weight, ensuring load balancing and reducing
communication costs.
MCMC [5], [9]: MCMC maintains a current placement strat-
egy and iteratively proposes a new one by randomly changing
the assigned device of an operator. The new strategy replaces
the current one if it has a lower cost evaluation from the cost
model, rapidly exploring the large search space.

Given a consistent computation graph and device topology,
each baseline strategy determines a device placement, which we
evaluate using the list scheduling scheme from HeteroG [10].

E. Result Analysis

Placement search latency: Table I compares the placement
search latency of our solution with other baseline strategies.
In our solution, the placement search latency scales with the
number of devices but does not necessarily increase with the
number of operators. This behavior arises because the solver
runtime is primarily influenced by the number of parallelizable
operator pairs and the manually configured fusion threshold α.
This threshold reduces the number of parallelizable operator
pairs in R to varying degrees, influenced by the different
distributions of operator computing delays between models.
Additionally, the number of pairs of parallelizable operator
(i, j) ∈ R that lose parallelization opportunities when grouped
within the same WCC such that ∃U ∈ W, {i, j} ⊆ U varies
depending on the model. In contrast, the placement search
latency of Metis remains constant across different GPU counts,
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Fig. 5. This figure compares normalized training latency and placement search
latency across different step numbers when training various DNN models on
two GPUs. Line charts correspond to the normalized training latency of each
strategy, while bars denote the placement search latency of MCMC.
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Fig. 6. This figure shows a comparison of per-iteration training latency on a
logarithmic scale across all strategies. The number above each column indicates
the performance improvement of our solution over the best alternative strategy.
MCMC per-iteration training latency is recorded after 25,000 steps.



as it relies on multilevel coarsening to perform the initial K-way
cut on a small graph.

In Fig. 5, MCMC performance in achieving low training
latency improves with the number of steps, but shows diminish-
ing returns over time. Although MCMC is effective on models
with small search spaces, the time and number of steps to find
an optimal placement grow exponentially as the search space
expands. When training AlexNet, MCMC requires 50 minutes
to achieve a similar performance to our solution. In contrast,
MCMC fails to find an effective placement with performance
comparable to our design for FNet and BERT, even after 12
and 30 hours, respectively.
Per-iteration training latency: The simulation results in Fig. 6
for four DNN models show that our solution consistently
outperforms all baseline strategies and achieves up to a 35%
reduction in training latency when training across various GPU
numbers. In contrast, Metis considers only load balancing and
communication cost minimization without accounting for par-
allelization opportunities. As the number of devices increases,
subgraphs on different devices tend to develop stronger inter-
dependencies, leading to device idle time while waiting for
cross-device dependencies and ultimately limiting scalability.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigate the problem of device placement
to accelerate large-scale distributed DNN training, tackling
the challenges of NP-hardness and increasing DNN model
sizes. Specifically, we present a novel approach that leverages
operator fusion and co-location to reduce the search space
and minimize subsequent performance loss in training latency,
enabling efficient inter-operator-level device placement. Our
method merges operators without inter-parallelization opportu-
nities and co-locates those contributing to the highest cumula-
tive computing and communication costs. Simulation results on
real-world DNN benchmarks show that our solution achieves
up to a 35% reduction in per-iteration training latency and an
improvement of more than 2,000 times in search latency.

In future work, this approach can be adapted to a hetero-
geneous environment where each operator experiences varying
computing delays on different devices. Furthermore, we plan
to extend our solution to support data and tensor parallelism
by duplicating or splitting operators.
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