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Abstract—In this article, we propose a multilayer Ka/Q-
band satellite–terrestrial integrated network for the Internet
of Remote Things (IoRT) to achieve a high transmission rate
with communication robustness in dynamic network environ-
ments. Under this architecture, we investigate how to jointly
manage the offloading path selection and resource allocation
to offload computation-intensive and delay-sensitive tasks in the
IoRT. Considering continuous low earth orbit (LEO) satellite
movements and Markovian rainfall changes, the computation
offloading problem is described as a Markov decision process
(MDP) formulation with the objective of maximizing the number
of offloaded tasks with satisfied delay requirements and min-
imizing the power consumption of the LEO satellites. A deep
reinforcement learning (DRL) approach is leveraged to make
optimal decisions by taking account of dynamic queues of IoRT
devices, channel conditions that vary with rainfall intensities and
satellite positions, and computing capabilities of ground stations.
Extensive simulations are conducted to validate the effectiveness
and superiority of our proposed scheme.

Index Terms—Computation offloading, deep reinforcement
learning (DRL), Internet of Remote Things (IoRT), multiband
satellites, resource management.

I. INTRODUCTION

THE PAST few years have witnessed the development
and advancement of the Internet of Things (IoT), which

accommodates enormous mobile users and devices to be
interconnected for information sharing [1]. To describe the
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situation where intelligent objects are located in remote areas
or scattered in a wide geographical area, the concept of the
Internet of Remote Things (IoRT) is emerging [2]. The IoRT
is generally used to support monitoring and sensing services
that terrestrial networks may not provide in deserted, for-
est, and oceanic areas, where the conventional communication
infrastructures are inaccessible due to extreme geographi-
cal conditions and labor-intensive construction costs. In such
cases, using satellite networks with high-performance back-
haul links to support IoRT service deliveries is one of the
promising and effective solutions [3], [4].

Depending on the orbital heights, satellites are divided
into three categories: 1) geostationary earth orbit (GEO);
2) medium earth orbit (MEO); and 3) low earth orbit (LEO)
satellites. Each GEO satellite has a fixed position and covers
almost half of the earth, supporting a stable regional commu-
nication. Compared with GEO satellites, MEO and LEO satel-
lites have lower link delays and more available orbits [5]. In
recent years, with the development of low-launching-cost LEO
satellites, satellite companies, such as SpaceX and OneWeb [6]
plan to launch thousands of LEO satellites operating over
high-frequency bands, aiming to deploy an ultradense constel-
lation to provide low-delay and high-capacity communication
services for ground users.

In recent years, emergency management has become one of
the essential applications of IoRT due to frequent natural dis-
asters [7]. In such a disaster scenario, IoRT devices not only
provide data collection services but also need to analyze the
collected data to make rapid and intelligent disaster rescue
decisions such as human body detection in ruins [8]. These
decisions usually use deep learning to achieve image process-
ing and video recognition [9]. However, IoRT devices cannot
locally process these computation-intensive and time-sensitive
tasks due to the limited computing and energy resources.
Therefore, the computation tasks need to be transmitted
through satellites to ground stations with abundant comput-
ing capabilities for processing. Since LEO satellites provide
large-scale coverage and low-latency data transmission, com-
putation offloading in IoRT can be effectively assisted by LEO
satellite communications [10], [11]. In such a process, the
transmission efficiency of satellite communications has a sig-
nificant impact on the performance of computation offloading.
Currently, Ka-band is usually used in satellite transmission
to support high data-rate delivery [12]. With the continuous
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occupancy of the Ka-band, the residual available Ka-band
resources are gradually shrunk. Therefore, the Q-band starts
to be exploited for more available bandwidth resources [13].
Hence, Starlink makes efforts in launching Q-band satellites in
350-km orbits [14]. Nevertheless, the higher frequency band
is affected by more rain attenuation, which reduces the trans-
mission rate [15]. Most of the existing works [16]–[19] have
assumed the same portion of frequency bands to be used by
satellite communications for data or computation offloading.
However, using only Ka- or Q-band will cause the problems
mentioned above due to their frequency band characteris-
tics. Moreover, using the same portion of frequency bands
in multilayer LEO networks leads to interlayer co-channel
interference [20].

In this article, to address the above problems, we propose a
multilayer Ka/Q-band satellite–terrestrial integrated network for
the IoRT computation offloading. In this architecture, the LEO
satellite network consists of Ka-band satellites at a lower alti-
tude and Q-band satellites at a higher altitude. Each IoRT device
offloads its computation tasks via a Ka- or Q-band LEO satellite,
which forwards the tasks to a ground station for processing.
However, new challenges emerge in the design of the computa-
tion offloading. On the one hand, the available radio-spectrum
resources and rain attenuation of the different frequency bands
need to be considered comprehensively under different rain-
fall intensities. Especially, when the rainfall intensity at each
device’s location changes independently and dynamically, it
is complicated to select a reasonable frequency band for each
device to improve the overall transmission performance. On the
other hand, the movements of LEO satellites affect the distance-
related attenuation and change the available offloading paths for
the IoRT devices. Therefore, the channel conditions and associ-
ated ground stations may change during the offloading of a single
task, which makes the delay analysis intractable. Furthermore,
due to the limited energy resources of satellites [19], the power
consumption in satellite transmission needs to be considered
during the computation offloading.

As is known, deep reinforcement learning (DRL) can
be exploited to quickly solve task scheduling and resource
management problems [21], [22]. Considering the dynamic
network environment caused by the continuous satellite
movements and the Markovian rainfall changes, we inves-
tigate how to develop a DRL solution to jointly manage
the offloading path selection and resource allocation in the
multilayer Ka/Q-band satellite–terrestrial integrated networks.
Specifically, the main contributions of this article are summa-
rized as follows.

1) We propose a multilayer Ka/Q-band satellite–terrestrial
network to increase radio transmission resources and
ensure communication robustness in different rain-
fall intensities for IoRT devices. Under this architec-
ture, the dynamic computation offloading problem is
studied.

2) We formulate the computation offloading optimization
problem to maximize the number of offloaded tasks with
satisfied delay performance and minimize the power
consumption of satellites. Then, we transform the for-
mulated problem into a Markov decision process (MDP)

to capture the continuous satellite movements and the
Markovian rainfall changes.

3) To effectively solve the transformed MDP problem
with a large state space, a DRL algorithm based on a
deep double Q network (D3QN) is proposed to make
optimal decisions, including offloading path selection
and resource allocation.

4) Based on computer simulation results, the performance
of our proposed D3QN-based computation offload-
ing scheme significantly outperforms the benchmark
schemes. We also find that the combined usage of Ka-
and Q-bands improves the performance under different
rainfall intensities.

The remainder of this article is organized as follows. In
Section II, we introduce the recent related works. Afterward,
the system model of the IoRT computation offloading in
multilayer Ka/Q-band satellite–terrestrial networks is elabo-
rated in Section III. In Section IV, we formulate a joint
optimization problem to solve the offloading path selection
and resource allocation problem, and transform it into an MDP.
We propose a D3QN-based algorithm in Section V to solve the
MDP problem. Simulation results are presented in Section VI,
and finally, we conclude this work in Section VII.

II. RELATED WORK

Computation offloading is effective in helping process
tasks generated from energy- and computing-constrained IoT
devices [23]. In an IoRT scenario, satellite communication
is a promising way for task offloading and attracts signifi-
cant attention from the industry and academia. By using the
computing capabilities of LEO satellites, the energy-efficient
mobile-edge computing (MEC) for satellite–terrestrial IoT is
studied in [24], in which tasks from IoT devices are offloaded
to satellites for edge computing. Tang et al. [25] presented
a computing framework considering the LEO–MEC server
and remote cloud server. Based on the proposed framework,
offloading decisions are jointly optimized to minimize the
total energy consumption of ground users under the con-
straints of coverage time and computing capability of LEO
satellites. Wang et al. [26] considered a joint computation
offloading and resource allocation problem in LEO satellite
edge computing systems. Optimization algorithms based on
the game theory and Lagrange multiplier method are proposed
to solve the mixed-integer nonlinear programming problem.
Cheng et al. [27] studied a joint computation offloading
and resource allocation problem for space-air-ground inte-
grated networks (SAGINs). Moreover, a DRL-based offloading
method is proposed to allocate multidimensional SAGIN
resources and learn dynamic network conditions.

Improving the satellite communication efficiency plays
a vital role in ensuring the performance of computation
offloading, and there are many related studies. In [16], an
energy-efficient data collection problem considering time-
varying uplinks in LEO satellite assisted IoT is proposed
and solved by Lyapunov optimization theory. Ji et al. [17]
investigated a joint power and bandwidth allocation problem
in a multiuser satellite downlink system based on the rain
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attenuation prediction. The influence of rainfall on the X-,
Ka- and Q-bands in a downlink satellite system is discussed,
and a beam controlling method is proposed to maximize site
diversity gain [18]. In [19], a power allocation problem is
investigated to extend the lifetime of the LEO satellite bat-
tery by sharing the workload of satellites, and a Q-learning
approach is proposed to solve this problem. Most existing
works focus on improving the wireless transmission efficiency
in a single-layer LEO satellite network. To further enhance the
capacity to meet the ever-increasing demand for data trans-
mission, a multilayer LEO network is a potential solution
and starts to draw attention from researchers. For instance,
with the expansion of the scale of LEO satellite constella-
tion, terrestrial networks are integrated with ultradense LEO
satellite networks [20]. Considering the interlayer interference,
a proper channel access mechanism is needed to achieve
efficient data offloading. Furthermore, GEO satellites can be
leveraged with a LEO satellite network to extend the com-
munication coverage. A software-defined satellite–terrestrial
network with control modules on GEO/MEO satellites is
proposed, upon which a joint networking, computing, and
caching resource orchestration problem is tackled using a deep
Q-learning approach [28].

The existing proposals on improving the transmission effi-
ciency in the multilayer LEO satellite networks mainly focus
on using the Ka-band. However, the combined usage of Ka-
and Q-bands can potentially increase the available radio-
spectrum resources and ensure communication robustness in
different rainfall intensities. Further studies of computation
offloading on a multilayer LEO satellite network is required for
joint path selection and resource allocation, especially regard-
ing the combined usage of different frequency bands and in
presence of changing rainfall intensities.

III. SYSTEM MODEL

In this section, a multilayer Ka/Q-band satellite–terrestrial
network is presented. Then, we propose an IoRT computation
offloading framework, including the offloading path selection,
communication model, task queue model, and task delay coun-
ters. The definitions of main notations used in this article are
summarized in Table I.

A. Network Scenario

As shown in Fig. 1, we consider a multilayer Ka/Q-band
satellite–terrestrial network, where IoRT devices can offload
their computation tasks to ground stations via LEO satellites.
To enhance the backhaul capacity, a multilayer LEO satellite
network is considered to provide multiple satellites covering
remote areas simultaneously, thereby ensuring seamless cover-
age and offering additional communication resources for IoRT
devices. Meanwhile, both the Ka- and Q-band are utilized by
the LEO satellite network to maintain the channel’s robustness
under rainfall dynamics.

IoRT devices can access the computing resources placed
at the server in the ground stations through either Ka-band
satellites or Q-band satellites. According to the current satellite
configurations, we assume each satellite is equipped with a

TABLE I
LIST OF NOTATIONS

Fig. 1. Illustration of the multilayer Ka/Q-band satellite–terrestrial network.

transparent repeater with no onboard storage and processing
capacity. Therefore, each IoRT device uploads computation
tasks to the LEO satellites, and then each satellite directly
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forwards the tasks to the selected ground station according to
the wireless channel conditions and the computing capacity of
ground stations. To achieve high utilization of resources and
meet QoS requirements, a software-defined network (SDN)
and network function virtualization (NFV)-enabled controller
is installed at a GEO satellite to centrally and dynamically
make the computation offloading decisions over its coverage
area. By collecting information about the task queues, rainfall
intensities, and satellite positions, the controller can adjust the
offloading path and allocate resources to each IoRT device.

B. Offloading Path Selection Model

Without loss of generality, a 3-D Euclidean coordinate is
adopted to describe the location of IoRT devices, satellites,
and ground stations. A set of IoRT devices is randomly
distributed on the ground. Denote the set of IoRT devices
as N = {1, 2, . . . ,N}, and the set of ground stations as
M = {1, 2, . . . ,M}. The location of IoRT device n ∈ N
is denoted as Ln = (xn, yn, 0), where xn and yn are the
horizontal plane coordinates of IoRT device n. Computation
tasks generated by IoRT devices are offloaded through satel-
lite links to ground stations, instead of being processed locally
due to device computing and energy limitations in remote
areas. Therefore, tasks are continuously generated and enter
task queues of IoRT devices, waiting to be offloaded to com-
puting servers deployed at ground stations. Similar to IoRT
devices, the location of ground station m ∈ M is denoted by
Lm = (xm, ym, 0). The computing servers of ground stations
receive the offloaded tasks and add them to their correspond-
ing processing queues. The LEO satellite system consists of
Ka-band satellites with an altitude of HKa km and Q-band
satellites with an altitude of HQ km (HQ < HKa). At the same
slot, we set V LEO satellites serving the IoRT devices. Let
V = {1, 2, . . . ,V} denote the set of LEO satellites, where
VKa = {1, 2, . . . , ψ} (ψ < V) is the set of Ka-band satellites
and VQ = {ψ+1, . . . ,V} is the set of Q-band satellites. Index
ψ is used to distinguish these two kinds of satellites. The posi-
tion of satellite v ∈ V is denoted by Lv = (xv, yv,Hv), where
xv and yv are the horizontal plane coordinates of satellite v,
and Hv is the altitude of satellite v. The system operates in
a time-slotted fashion, and the time slot length and the time
slot index are, respectively, denoted by τ and t. The locations
of IoRT devices and ground stations are fixed, while the posi-
tions of satellites are fixed in each time slot for simplicity of
analysis but vary among different time slots. Each satellite is
assumed to be connected to multiple ground stations for the
computation load balancing among ground stations.

In each time slot, a task offloading path is configured for
each IoRT device, where satellite v for task transmission and
ground station m for task processing are determined. The path
of IoRT device n is denoted by pn = (v,m). The element
bn,v,m(t) = 1 indicates that IoRT device n is associated with
satellite v and ground station m in time slot t, and bn,v,m(t) = 0
otherwise. If bn,v,m(t) = 1, the location relationship satisfies

‖Lv(t)− Ln(t)‖2 ≤ Ov ∧ ‖Lv(t)− Lm(t)‖2 ≤ Ov

∀bn,v,m(t) = 1 (1)

where Ov is the coverage radius of satellite v. It should be
noted that the current LEO satellite constellation guarantees
seamless coverage of the ground. When a satellite v′ moves
to a position where it cannot cover any IoRT devices, V will
remove satellite v′ and join a newly arrived satellite in the same
altitude to keep the number of available satellites unchanged.

C. Communication Model

1) Uplink Channel Model: The magnitude of the uplink
channel gain between IoRT device n and satellite v in time
slot t is given by [29]

hn,v(t) =
√

GN
n,vGV

n,v

Lf
n,v(t)L

p
n,v(t)

(2)

where GN
n,v and GV

n,v are the IoRT device transmitting antenna
gain and the satellite receiving antenna gain, respectively,
Lf

n,v(t) is the free-space path loss, and Lp
n,v(t) is the rain atten-

uation. The antenna gains can be calculated as follows [30]:

GN
n,v = φ

(
π fn,v�n

c

)2

and GV
n,v = φ

(
π fn,v�v

c

)2

(3)

where φ is the efficiency of antenna, � is the diameter of
antenna with a circular aperture or reflector, c is the speed of
light, and fn,v is the communications center frequency (in Hz)
of uplinks.

The free-space path loss Lf
n,v(t) in time slot t is given by

Lf
n,v(t) =

(
4πσn,v(t)

λn,v

)2

(4)

where λn,v = c/fn,v, and σn,v(t) is the slant range (in km) in
time slot t.

The transmission attenuation at t due to rain, Lp
n,v(t), is

affected by carrier frequency, elevation angle, altitude above
the sea level, and rainfall intensity. It is expressed as [31]

Lp
n,v(t) = σ e

n,v(t)γv(t) (5)

where σ e
n,v(t) (in km) is the effective path length of the wave

in rain in time slot t, and γv(t)(dB/km) is the attenuation per
kilometer in time slot t. The value of γv(t) depends on the
frequency and rain intensity 
n(t) (mm/h), and is calculated
as [32]

γv(t) = ρv ·
n(t)
ηv (6)

where ρv and ηv are the frequency-dependent coefficients.
According to the Shannon formula, the achievable uplink

data rate, Rn,v(t), (in bps) from IoRT device n to satellite v in
time slot t is given by

Rn,v(t) = Wn,v(t) log2

(
1 + Pn(t)

[
hn,v(t)

]2
Wn,v(t)Nu

)
(7)

where Wn,v(t) is the bandwidth that satellite v allocates to
device n, Pn(t) is the transmission power of device n, and Nu

is received noise power at the satellite.
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2) Downlink Channel Model: Similar to the uplink channel
model, the magnitude of the downlink channel gain between
satellite v and ground station m in time slot t is

hv,m(t) =
√

GV
v,mGM

v,m

Lf
v,m(t)L

p
v,m(t)

(8)

where GV
v,m and GM

v,m are the satellite transmitting antenna
gain and the ground station receiving antenna gain, respec-
tively, Lf

v,m(t) is the free-space path loss, and Lp
v,m(t) is the

rain attenuation.
Due to the transparent relay by satellites, the total noise

power of the downlink, Nv,m, includes the noise power of
uplink passing through the transparent repeater, given by

Nv,m = NuGon[hv,m(t)
]2 + Nd (9)

where Gon is the gain of the onboard transparent repeater,
and Nd is the transmission background noise power between
satellite v and ground station m.

Thus, the achievable downlink data rate Rv,m(t) (in bps) in
time slot t is given by

Rv,m(t) = Wv,m(t) log2

(
1 + Pv,m(t)

[
hv,m(t)

]2
Wv,m(t)Nv,m

)
(10)

where Wv,m(t) is the bandwidth that satellite v allocates to
ground station m, and Pv,m(t) is the transmission power of
satellite v to ground station m.

3) Rain Intensity: The variation of rain intensity over time
is modeled as a Markov process. The probability density func-
tion of rain intensity events at a point describes how rain
intensity 
(t) evolves from time t0 to t, t > t0, and is
characterized by parameters 
m, σln
, and γ , given by [33]

p(
(t)|
(t0)) =
(

1

2πσ 2
ln
(t)

) 1
2

× exp

[
− (ln
(t)− ln
m(t))2

2σ 2
ln
(t)

]
(11)

where t = t − t0 and 
m(t) is the mean rain rate observed
at the location. In (11), the time-dependent mean, 
m(t),
and standard deviation, σln
(t), are given by


m(t) = 
(1−exp(−γt))
m 


exp(−γt)
0 ,
0 ≡ 
(t0) (12)

and

σln
(t) = σln

√

1 − exp(−2γt). (13)

D. Task Queue Model

1) Task Queue of IoRT Devices: Due to the movement of
satellites, the ground stations that the IoRT device can con-
nect to may change. Because the correlation between task
data affects the result of processing, when a task does not
complete the transmission and cannot connect to the current
chosen station in the next slot, the task must wait for the next
time when it can connect to this ground station. This leads
to longer waiting delays. Consequently, we assume that each
task can be divided into η subtasks, which can be offloaded

to different ground stations for processing. The task is com-
pleted when all subtasks are finished, and the size of each
subtask is denoted by Z in bits. After completing the offload-
ing path selection and bandwidth allocation, the IoRT devices
start to offload the computation tasks. At time slot t, the
number of subtasks that IoRT device n is able to offload is
an(t) = min(Rn,v(t)τ/Z,Bn(t)), where Bn(t) is the number of
tasks in the queue of device n. The transmission of tasks in
the queue and the generation of new tasks jointly decide queue
update, expressed as

Bn(t + 1) = min
{
Bn(t)− an(t)+ ηY(t),Bmax} (14)

where Yn(t) is a Bernoulli random variable, indicating Y(t) =
1 when a new task is generated at device n in time slot t, and
Y(t) = 0 otherwise. Bmax is the maximum queue length.

Then, we calculate the number of transmitted tasks In(t) of
IoRT device n in time slot t. According to the queue length,
three cases need to be considered: 1) the queue is empty
(case 1: Bn(t) = 0); 2) the head-of-line task has not been
partially transmitted (case 2: Bn(t) 
= 0 and Bn(t) mod η = 0);
and 3) the head-of-line task has been partially transmitted
(case 3: Bn(t) 
= 0 and Bn(t) mod η 
= 0) at the beginning of
the slot t. When the queue is empty, In(t) is 0. For case 2,
the number of transmitted tasks is �an(t)/η�. For case 3,
�(an(t)− Bn(t) mod η)/η� tasks are completely transmitted
after the transmission of the head-of-line task, and In(t) is
0 when the head-of-line task is not completely transmitted in
this slot. For the above three cases, In(t) is given by

In(t) =
⌊

an(t)− Bn(t) mod η

η

⌋
+
⌈

Bn(t) mod η

η

⌉
(15)

where “mod” is the remainder operation, �·� is the floor
function, and ·� is the ceiling function.

2) Task Queue of Ground Stations: Each ground station is
equipped with a buffer containing received tasks waiting to be
processed, and it is assumed that the buffer size is infinite. At
the beginning of time slot t, ground station m(t) will receive
am subtasks from the satellites, given by

am(t) =
∑
n∈N

∑
v∈V

an(t)bn,v,m(t) ∀m ∈ M. (16)

The buffer occupancy of ground station m at slot t + 1 is
calculated as

Bm(t + 1) = max{Bm(t)+ am(t)− Cm, 0} (17)

where Cm is the computing capacity of ground station m,
which represents the number of subtasks can be handled by
the server of the ground station m at each slot.

E. Delay Counter of IoRT Devices

Computation offloading is delay sensitive. As mentioned,
using the computation offloading technology, the total delay
of each task depends on the delay of subtasks. For each
subtask, the total delay is composed of the waiting delay
in the IoRT device’s queue, the transmission delay, and the
processing delay in the ground station. However, the stochas-
tic task arrivals and dynamic variations of wireless channel
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capacity pose technical challenges in per-task delay modeling.
Fortunately, the correlation between two consecutive tasks in
the same device provides a way to determine the delays more
effectively [34]. Suppose that two counters are created for the
head-of-line task of device n: waiting counter �n to present
the number of slots between the task arrival time slot and the
current slot, and latest delay counter Un to present the delay
of its subtask that returns the result at the latest. Since the
size of computation results is usually much smaller than the
size of input task data, the return transmission delay can be
negligible.

1) Waiting Counter: The waiting counter �n records how
long the head-of-line task has been waiting. The correlation
between two consecutive tasks is used to estimate the waiting
time of all tasks in the queue [34]. We suppose that task k of
IoRT device n arriving at TA

k is ready to be transmitted at TR
k ,

and all its subtasks are transmitted at TE
k . The waiting delay

of this task is dk = TE
k − TA

k .
Each task queue conforms to the first-in–first-out (FIFO)

rule. For consecutive tasks k and k+1 in the current queue, task
k + 1 starts to be transmitted only after task k is transmitted.
The arrival epoch of task k + 1 is TA

k+1 = TA
k +k,k+1, where

k,k+1 is the interval between the arrival time slots of the two
tasks. The epoch when task k is completely transmitted is the
time that task k+1 is ready to be transmitted, i.e., TS

k+1 = TE
k .

Hence, we have

dk+1 = TE
k+1 − TA

k+1

= TE
k+1 − TR

k+1 + TR
k+1 − TA

k+1

= TE
k+1 − TR

k+1 + TE
k −

(
TA

k +k,k+1

)
= TE

k+1 − TR
k+1 + Dk −k,k+1. (18)

Task arrivals at each device is modeled as a stationary
Bernoulli stochastic process, with the expectation of interval
between two consecutive tasks E(k,k+1) = . Consequently,
the expectation of delay for task k +1 under TR

k+1 and TE
k+1 is

E
(
dk+1|TR

k+1,TE
k+1

) = TE
k+1 − TR

k+1 + E
(
dk|TR

k ,TE
k

)−.

(19)

The expected waiting time before a task is transmit-
ted depends on the expected delay of the previous task
E(dk|TR

k ,TE
k ) and interval expectation . Therefore, we set

one waiting counter �n for each IoRT device to record the
expected delay of the current head-of-line task conditioned on
the transmission epochs of previously tasks. Once the head-
of-line task is completely transmitted, the waiting counter is
reset to E(dk|TR

k ,TE
k ) −  for the next task. When there are

still tasks completely transmitted except for the head-of-line
task in time slot t, for task k0 ∈ [k + 1, k + In(t)− 1], all the
subtasks are transmitted in one time slot, i.e., TE

k0
− TR

k0
= 0.

Therefore, for the head-of-line task k + In(t) in the next time
slot, the waiting counter is reset to E(dk|TR

k ,TE
k ) − In(t).

If no task is completely transmitted in this slot, the waiting
counter increases by 1.

The update of the waiting counter is given by

�n(t + 1) =
{
�n(t)+ 1, In(t) = 0
�n(t)− In(t), otherwise

(20)

where the first subequation indicates that the delay is increased
by one for each slot time when the task is being transmit-
ted; the second subequation indicates that a new task of IoRT
device n is scheduled at the end of time slot t and its delay
counter is initialized as �n(t) − In(t). The waiting counter
may be negative due to the estimated error between the true
sampling interval of two consecutive tasks and their expecta-
tions. However, this potential negative value can be averaged
out in a long run [34].

2) Latest Delay Counter: Waiting counter �n represents
the waiting time of the head-of-line task in the queue. When
calculating the overall delay of an offloaded task, it is also
necessary to know the processing delay in the ground station.
At time slot t, the average processing time of the subtasks
offloaded to the ground station m is

Dm(t) = Bm(t)+ (1 + am)/2

Cm
. (21)

The arrival of a task means that its subtasks arrive at the
same time, thus the waiting counter of subtasks is equal to
that of the task they belong to. For the subtask transmitted to
ground station m at time slot t, the total delay of the subtask
is dsub = �n(t)+ Dm(t).

Because the delay of each task depends on the delay of
the subtask that returns the result at the latest, we use the
latest delay counter Un(t) to represent the maximum delay of
the subtasks from the head-of-line task. Once the head-of-line
task is completely transmitted, Un(t) is the delay of the head-
of-line task from its arrival to the processing completion, and
is reset to 0 for the next task. The update of the latest delay
counter Un(t) is given by

Un(t + 1) =
{

max(Un(t), �n(t)+ Dm(t)), In(t) = 0
0, otherwise

(22)

where the first subequation indicates the maximum delay of
the computed subtask when the task is being transmitted; the
second subequation indicates that, when no task is partially
transmitted at the end of time slot t, the delay of the head-of-
line task is reset to 0.

When In(t) = 0, no task is completely transmitted in time
slot t, so the delay Dn,i(t) will not be calculated and recorded.
When In(t) (> 0) tasks of device n are completely offloaded
to the ground station and processed, the total delay of task
i ∈ In(t) = {0, 1, . . . , In(t)− 1} is

Dn,i(t) =
{

max(Un(t), �n(t)+ Dm(t)), i = 0
�n(t)− i+ Dm(t), otherwise

(23)

where the first subequation represents the delay of the head-
of-line task; the second subequation represents the delay of
other tasks that are completely offloaded in this time slot.

IV. PROBLEM FORMULATION AND TRANSFORMATION

A. Problem Statement

We formulate our IoRT computation offloading problem
in the multilayer Ka/Q-band satellite–terrestrial network. The
objective is to optimize the obtained average reward of whole
computation offloading systems. Through observation, each
IoRT device or ground station estimates the rain intensity at its
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location. Meanwhile, each device reports the states of its task
queue and delay counters to the controller, and each ground
station reports its task queue state. Based on the global-state
information, which includes task generation states of IoRT
devices, communication channel states, and computing queue
states of ground stations, the controller makes the offload-
ing path selection and resource allocation decisions. In other
words, the controller determines which satellite and ground
station that the device should connect to and allocates the
bandwidth, which decides how many tasks each IoRT device
should offload to the ground station. Given the offloading deci-
sion, the computation tasks of IoRT devices are executed by
the ground stations with computing capability, and immediate
reward is obtained.

In the following, we formulate the computation offload-
ing problem as an optimization problem. Then, to capture
the network dynamics and the relationship between the state
and policy, we further describe the formulated optimization
problem as an MDP formulation, where decisions are used
to formalize the sequential offloading decision making in the
considered network environment.

B. Problem Formulation

We aim to maximize the number of offloaded tasks while
meeting delay requirements and to minimize the power con-
sumption of the LEO satellites simultaneously

Maximize:
∑
t∈T

∑
n∈N

∑
v∈V

∑
m∈M

(
Fn(t)− αPv,m(t)

)
(24)

Subject to:
∑
v∈V

∑
m∈M

bn,v,m(t) ≤ 1 ∀n ∈ N (25)

∑
n∈N

Rn,v(t)bn,v,m(t) ≤ Rv,m(t) ∀v ∈ V,m ∈ M

(26)∑
n∈N

∑
m∈M

Wn,v(t)bn,v,m(t) ≤ W∗
v ∀v ∈ V (27)

∑
n∈N

∑
m∈M

Wv,m(t)bn,v,m(t) ≤ W∗
v ∀v ∈ V (28)

∑
n∈N

∑
m∈M

Pv,m(t)bn,v,m(t) ≤ P∗
v ∀v ∈ V (29)

bn,v,m(t) ∈ {0, 1} ∀n ∈ N , v ∈ V,m ∈ M (30)

‖Lv(t)− Ln‖2 ≤ Ov ∧ ‖Lv(t)− Lm‖2 ≤ Ov

∀bn,v,m(t) = 1 (31)

where Fn(t) is the number of offloaded tasks with satisfied
delay, and α is a weight parameter to balance the tradeoff
between the power consumption and delay of the task com-
pletion. Constraint (25) represents that one device can connect
only one satellite at time slot t. At each time slot, the amount
of all uplink data and the amount of all downlink data at
one satellite must satisfy the flow balance constraints in (26).
Equations (27) and (28) are bandwidth constraints, (29) is
power constraint of satellites, and (31) represents geograph-
ical constraints between the satellite and an IoRT device (or
ground station).

C. Problem Transformation With Markov-Based Model

To capture the continuous satellite movements and the
Markovian rainfall changes, we leverage an MDP framework
to model the complex interactions among queueing, transmis-
sion, and computing processes in the IoRT system. In the
MDP formulation, decisions are used to formalize the sequen-
tial decision making in a static or dynamic environment [35].
In addition, the environment is entirely observable, that is,
any observation made at any time is sufficient for making the
optimal decision. Basically, an MDP is defined by a tuple
of state space S, decision space A, state transition probabil-
ity function P := S × A × S → P, and reward function
R := S × A → R. We leverage the MDP method to formulate
the IoRT computation offloading problem in the multilayer
Ka/Q-band satellite–terrestrial network.

1) Environment State: As discussed, each IoRT device,
satellite and ground station periodically send the collected
information to the controller in GEO satellite. By collecting
such information, the agent (i.e., the controller) can obtain the
environment state. The composite environment state s(t) ∈ S
at time slot t, is described as

s(t) = [
n(t),
m(t),Bn(t), �n(t),

Un(t),Bm(t),Lv(t)] ∀n ∈ N ∀m ∈ M,∀v ∈ V .
(32)

The environment state includes rain intensity of IoRT
devices 
n(t), rain intensity of ground stations 
m(t), task
queue length of IoRT devices Bn(t), task queue length of
ground stations Bm(t), waiting delay counter of IoRT devices
�n(t), latest delay counter of IoRT devices Un(t), and position
of satellites, Lv(t).

2) Action: Based on the observed environment state s(t) ∈
S, the controller makes computation offloading decisions
according to policy π . Denote the action space as A. Then,
action a(t) ∈ A taken by the IoRT devices and LEO satellites
at time slot t is given by

a(t) = [
pn(t),Wn,v(t),Wv,m(t)

]
∀m ∈ M ∀n ∈ N ∀v ∈ V . (33)

The action includes offloading path selection for IoRT
devices pn(t), bandwidth allocated to IoRT devices Wn,v(t),
and bandwidth allocated to ground stations Wv,m(t).

3) Reward: The controller takes action a(t) based on
observed environment state s(t), and then the environment
returns an immediate reward r(t) to the controller. Policy π
includes the offloading path selection and the resource alloca-
tion. Based on the received reward, the controller updates π
until the learning algorithm converges in the learning stage.
As indicated in (24), the delay requirement and power con-
sumption should be simultaneously satisfied to guarantee the
performance of computation offloading. Thus, to maximize the
number of offloaded tasks with satisfied delay performance and
to minimize the power consumption of the LEO satellites at
time slot t, we define the following two reward elements:

rd(t) =
∑
n∈N

∑
i∈In(t)

log2

(
Dmax + β

Dn,i(t − 1)+ β

)
(34)
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rp(t) =
∑
v∈V

∑
m∈M

log2

(
Pmax + μ

Pv,m(t − 1)+ μ

)
(35)

where rd(t) ≥ 0 when the delay requirement is satisfied, and
rp(t) ≥ 0 when the power constraint is satisfied; otherwise,
negative rd(t) and rp(t) are obtained. The total reward is

r(t) = rd(t)+ αrp(t). (36)

The main goal of the controller is to make the optimal
offloading decision to maximize its average reward in the
satellite system according to the rain intensity state, task
queue state, delay counter state, and satellite position state.
Accordingly, the objective of MDP formulation is to maximize
the expected sum of rewards

R(π) = lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

r(t)

]
(37)

where E[ ·] is the expected reward of the controller in the long
run.

V. DRL-BASED SOLUTION

In this section, a DRL-based algorithm is designed to solve
the formulated MDP problem. First, the basic framework of
the DRL is introduced. Then, the details of leveraging the
D3QN approach to solve the proposed optimization problem
are presented.

A. Algorithm Design

In the preceding MDP formulation, the controller learns pol-
icy π : S → A which maximizes the long-term reward R. A
common method to obtain approximate solutions to problems
with continuous states and actions is to quantify the state and
action space and then use finite-state dynamic programming
(DP) techniques. In our stochastic network environment, the
formulated MDP problem has a large dimensional space, while
DP has the curse of dimensionality. Therefore, in view of the
unknown dynamic satellite network environment, we adopt the
model-free DRL learning optimal decision approach [36], [37]
to solve the problem.

In an unknown stochastic environment, by using the rein-
forcement learning (RL) method, the optimal policy π∗ is
obtained to maximize the long-term reward for the controller.
For policy π : s(t) → a(t), the value of state s(t) can be
expressed as

V(s(t), π) = Ea(t)∼π(s(t))[Q(s(t), a(t), π)] (38)

where (s(t), a(t)) is the state–action-value function under
policy π and is defined as

Q(s(t), a(t), π) = Eπ [r(t)|s(t), a(t)]. (39)

Based on the Bellman equation, the Q-value function can
be computed recursively by

Q(s(t), a(t), π)

= Es(t+1)[r(t)+ Q(s(t + 1), a(t + 1), π)|s(t), a(t)]. (40)

The optimal policy π∗ corresponding to the policy of
action selection gives maximum Q∗(s(t), a(t)) for state

s(t): π∗(s(t)) = arg maxa(t) Q∗(s(t), a(t)). Therefore, the
optimal policy π∗ can be obtained from the following optimal
Bellman equation:

Q∗(s(t), a(t))

= Es(t+1)
[
r(t)+ γ max Q∗(s(t + 1), a(t + 1))|s(t), a(t)

]
.

(41)

To solve the optimal Bellman equation, Q-learning is a
widely used traditional RL method. However, Q-learning
has the curse of dimensionality and cannot solve complex
problems with a large multidimensional discrete or continu-
ous state–action space. By combining RL with deep neural
networks (DNNs), DQN is proposed to overcome the curse
of dimensionality. In DQN, a parameterized version of the
Q-value function is used for approximation Q(s(t), a(t); θ) ≈
Q∗(s(t), a(t)).

The DQN utilizes a target network alongside an online
network to stabilize the overall network performance. The two
neural networks are the same, except that the target network
with parameters θ− is copied from the online network with
parameters θ every τ− step. Therefore, parameters of the
online network are updated at each time step, and parame-
ters of the target network are updated in every τ− steps from
the online network and then remain unchanged in all other
steps.

In one-step learning, parameters θ are updated by iteratively
minimizing a sequence of loss functions. The ith loss function
is defined as

Li(θi) = Es(t),a(t),r(t),s(t+1)

[(
yDQN

i − Q(s(t), a(t); θi)
)2
]
(42)

where yDQN
i is the target of the Q-value function and is

defined as

yDQN
i = r(t)+ γ max

a(t+1)∈A
Q
(
s(t + 1), a(t + 1); θ−

i

)
. (43)

To stabilize the learning, experience tuples
[s(t), a(t), r(t), s(t + 1)] are collected and stored in a
replay memory. During the training process, the experience
of minibatch is randomly sampled and input into the network.

Although DQN can speed up the convergence of the learn-
ing process, it is easily overestimated because the same values
are used to select and evaluate actions. Therefore, by decou-
pling the selection and evaluation of the target Q value, the
double DQN (DDQN) algorithm is further proposed to alle-
viate this problem. The DDQN is realized by replacing the
target yDQN

i by the following target yDDQN
i :

yDDQN
i (θi) = r(t)

+ Q

(
s(t + 1), arg max

a(t+1)∈A
Q(s(t + 1), a(t + 1); θi); θ−

i

)
.

(44)

Two DQN networks θ and θ− are learned in DDQN. For each
update, DDQN uses one of the DQN networks to determine
the policy and uses the other to determine its value.

Authorized licensed use limited to: Memorial University. Downloaded on July 25,2022 at 01:25:35 UTC from IEEE Xplore.  Restrictions apply. 



12064 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

Fig. 2. RL with D3QN strategy.

Furthermore, to achieve better strategy evaluation, we intro-
duce a dueling structure based on the DDQN algorithm in
our work. In the original DQN, we only update the Q value
observed during training. This leads to a slower learning rate
because we do not yet learn the Q value of the action that
has not been taken. The duel structure separates the state
value and the action advantage value into two streams, one
stream outputs scalar state value V(s(t)), and the other stream
outputs advantage vector A(s(t), a(t)) whose dimension is
equal to the number of actions. Then, by combining V(s(t))
and A(s(t), a(t)), the Q-value function Q(s(t), a(t)) can be
estimated as follows:

Q(s(t), a(t)) = V(s(t))

+
⎛
⎝A(s(t), a(t))− 1

|A|
∑

a(t)∈A
A(s(t), a(t + 1))

⎞
⎠

(45)

where |A| is the size of action space. Dueling DDQN (D3QN)
subtracts the average of the advantage value to help the
network separate the advantage value and the state value,
thereby effectively reducing the overestimation and improving
the performance of DDQN.

In this study, we develop a DRL offloading algorithm based
on D3QN to solve the proposed MDP formulation presented
in Section IV. In the D3QN-based strategy, by combining the
DDQN and the dueling structure, the approximating function
can be trained, and the Q value of each action at each state
can be calculated. The optimal offloading policy can then be
obtained by selecting the action with the maximal Q value.
The procedure of the D3QN-based strategy is shown in Fig. 2.
Specifically, the controller acts as the decision agent and aims
to make the optimal decision to maximize the average reward
of the considered system while meeting the delay require-
ments of IoRT devices. The decision includes the offloading
path selection decision and the resource allocation decision.

The reward consists of power consumption and the delay
requirement.

DRL algorithms usually have very high time complexity
and space complexity [38]. Therefore, it is impractical to con-
duct neural network training directly on the GEO satellite
with limited computing resources. To solve this challenge,
the proposed D3QN-based offloading and resource allocation
algorithm can be placed on the ground station connected to
the GEO satellite for offline training [39]. The detailed proce-
dure of the proposed D3QN-based algorithm is presented in
Algorithm 1. Specifically, transition samples are first collected
by the GEO satellite from the running system. Then, GEO
satellite transmits these samples to the ground station, and the
ground station stores them into a replay buffer for learning.
The offline training procedure starts with randomly initializ-
ing D3QN and copying the weights of D3QN to its target
network. For each training episode, the global network state is
initialized. The controller collects the global-state information,
consisting of positions of the satellites, the rain intensity and
data queue state of IoRT devices, the rain intensity and data
queue state of ground stations, and the delay counter state.
Each episode includes T time slots (steps). In each time slot, an
action (including path selection action and bandwidth alloca-
tion action) is selected to provide offloading services for each
IoRT device based on the current global-state information.
During the learning process, the ε-greedy policy is adopted
to select actions from the estimated Q-value, Q(s(t), a(t)). In
ε-greedy policy, the controller has a probability of 1 − ε to
choose best action a∗ and a probability of ε to randomly select
the action. After selecting the action, immediate reward r(t) is
obtained, and the next state s(t+1) can be observed. Then, the
current state and action along with the next state and obtained
reward are stored into the replay memory as a four-tuple
[s(t), a(t), r(t), s(t + 1)]. The D3QN is trained by randomly
sampling a minibatch from the replay memory. The weight
parameter for training D3QN is updated using (44). The target
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Algorithm 1: Dueling DDQN-Based Offloading
Algorithm for IoRT Satellite Networks

Input: replay memory size Dr, minibatch size Db,
greedy ε, pre-train episodes episode, pre-train
steps step, learning rate ς and discount factor γ .

1 Initialize replay memory D;
2 � Data Collection
3 The controller deployed on the GEO satellite collects

desirable information from the running system and
transmits the information to the ground satation;

4 Pre-process and store the transition samples into the
replay buffer D;

5 � Offline Training
6 The ground station initializes parameters θ with random

values;
7 Update the target network θ− with θ− = θ ;
8 for episode = 1, 2, . . . do
9 Initialize enviroment and receive initial state s(0);

10 for step = 1, 2, . . . ,T do
11 Select action a(t) with:

a(t) = ε − greedy(Q(s(t), a(t); θ));
12 Obtain the immediate reward r(t) according to

Eq. (36);
13 Observe the next state s(t + 1);
14 Store the tuple

< s(t), a(t), r(t)(s(t), a(t)), s(t + 1) > into reply
memory D;

15 Randomly sample a mini-batch of tuples from D;
16 Update the Q-network weights with θ by

minibatch gradient descent according to
Eq. (44);

17 Replace target parameters θ− = θ every τ− steps;

18 Update ε with ε = max(εmin, ε ∗ decay);

19 � Online Agent Plug
20 The ground station plugs the trained D3QN into the

controller in GEO satellite;
21 while Observed state s from the system do
22 Select the action a with the highest Q value:

a = arg maxa∈A Q(s, a; θ);
23 The controller sends the offloading command to LEO

satellites;
24 LEO satellites execute the action in the system;

Output: Q(·) with weight θ

network of D3QN is updated slowly, with a small target update
rate, τ−, as the control parameter. τ− is the number of steps
in each update cycle. Each episode ends when T time slots
are reached. The total episode reward is the accumulation
of immediate rewards of all time slots within the episode.
Through iterative training, the D3QN agent eventually learns
to obtain high rewards by making optimal offloading decisions.
After the offline training, the ground station directly applies
the proposed algorithm to the controller in the GEO satel-
lite, seamlessly monitoring the system state, making timely

decisions, executing actions, and further interacting with the
system.

B. Complexity and Convergence Analysis

We first provide the complexity analysis of the proposed
D3QN algorithm. Denote ω as the total number of training
iterations. The time complexity of the proposed Algorithm
1 is O(ω). For each training iteration, the computation effi-
ciency of the proposed algorithm can be calculated based on
the complexity for training the adopted neural network param-
eters. In calculating neural network parameters, the agent
(i.e., the controller) utilizes convolutional neural networks
(CNNs) to generate an action. Then, denote J as the num-
ber of convolutional layers, ne as the size of feature map,
nk as the size of kernel, and k as the number of filters.
According to [40], the time complexity for a convolution
layer is driven by Tc = O(∑J

j=1(ne)
2(nk)

2)kjkj−1). Moreover,
denoting cj as the number of neural units in fully connected
layer c, the time complexity for a fully connected layer is
Tf = O(∑J

j=1 cjcj−1). Therefore, the total time complexity of
Algorithm 1 is O(ω(Tc + Tf )).

DRL algorithms rely heavily on hyperparameters, such as
learning rate, discount rate, and the hidden layer structure.
Therefore, it is challenging to use analytical methods to ver-
ify the convergence of the proposed D3QN method. Currently,
most of the literature verifies the optimal configuration of
hyperparameters for a specific problem via trial and error.
Based on the experimental results, the optimality and conver-
gence are then further analyzed and proved. Therefore, similar
to [41], in this study, we limit the convergence analysis by
providing simulation results in Section VI. Through an appro-
priate hyperparameter setting, convergence can be achieved in
the proposed D3QN algorithm.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, extensive simulation results are presented to
evaluate the performance of our proposed D3QN-based IoRT
computation offloading scheme in the multilayer Ka/Q-band
satellite–terrestrial network.

A. Simulation Framework

Our simulations are conducted on a satellite assisted-IoRT
scenario which consists of eight IoRT devices, two ground sta-
tions, and four LEO satellites in two layers. In the simulations,
each time slot lasts 4 s.

The IoRT devices are distributed in an area of
(700 km, 100 km) and the two ground stations are distributed
in this area to serve the devices. For satellite parameter
settings, we use the Satellite Tool Kit and set the height of Ka-
band satellites at 700 km and Q-band satellites at 350 km [14],
the minimum elevation angle at 40◦. Due to the constraint of
the elevation angle, handover occurs when a satellite moves
out of the service range over time, and we set up four satel-
lites in service over this area at each slot. To ensure at
least one ground station for each satellite to serve the IoRT
devices, we set the distance between the Q-band satellites as
380 km and that between Ka-band satellites as 860 km. The
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uplink/downlink bandwidth of a Ka-band satellite is 1 MHz,
and that of a Q-band satellite is 1.5 MHz. The noise den-
sity for space-terrestrial communications is −174 dBm/Hz.
The rain attenuation coefficients ρ and η of Ka-band satel-
lites are 0.2588 and 0.9392, and those of Q-band are 0.6600
and 0.8084, respectively, [32]. The vertical equivalent path
length of rain is 4.5 km [30], [42]. The efficiency and diam-
eter of satellite antenna are 0.6 and 2 m, respectively, [30].
If not specified, the defaulted task arrival rate at each device
is set at 1/slot, the data size of each task is 3000 kB, and
each task can be divided into three subtasks of the same size.
The queue length of each device is 6, which means that up to
18 subtasks are in the queue simultaneously. The maximum
delay of each task is seven slots. The transmit power of each
IoRT device is set as 10 W, and the efficiency and diameter
of the IoRT device antenna are 0.55 and 1 m, respectively.
The defaulted computing capacity of each ground station is
12 tasks/τ . The efficiency and diameter of the ground station
antenna are 0.6 and 4 m, respectively. We set four levels of
rain intensity [0, 6, 12, 18] mm/h, and the default probability
of being sunny is 0.74.

The parameter settings for the experiment are set with
reference to [41]. For the proposed D3QN-based offloading
algorithm, the model is trained in iterations. The D3QN con-
sists of an input layer (50 neurons), three hidden layers (64, 32
and 32 neurons), and an output layer (|A| neuron). Here, |A|
denotes the number of possible actions of the controller. The
development environment of D3QN is built on the Tensorflow
framework [43]. The size of memory replay is 2 × 104, and
the minibatch sample size is 128. The value of ε is initialized
to 1 and decays with a rate of 0.95 per epoch until it reaches
0.1. The discount factor is set to 0.85, and the learning rate
is set to 0.0005. The rectified linear unit (ReLU) function is
adopted as the activation function of all hidden layers, and the
Adam optimizer is adopted in DNN training to minimize the
mean square error (MSE) loss. The performance results are
collected under the computation offloading policy after 2000
learning episodes, where each episode has 100 time slots. The
reward is accumulated in an episode. To ensure estimation
accuracy of the performance results, all numerical results are
obtained through multiple experiments.

In order to demonstrate the performance of our scheme, we
use the following benchmark algorithms.

1) DQN-Based Scheme: At each time slot, the GEO satel-
lite learns the offloading decision based on the DQN
method to maximize its long-term reward.

2) DDQN-Based Scheme: At each time slot, the GEO satel-
lite learns the offloading decision based on the DDQN
method to maximize its long-term reward.

To further explore the advantages of the combined usage
of Ka- and Q-bands, we consider the following alternative
satellite band setting scheme.

1) Q/Ka Scheme: The LEO satellite system consists of
Q-band satellites in 700 km and Ka-band satellites in
350 km. The bandwidth of each Q-band satellite and
Ka-band satellite is 1.5 and 1 MHz, respectively.

2) Q/Q Scheme: In the LEO satellite system, both layers of
satellites transmit data in the Q-band. Because of more

Fig. 3. Convergence performance of the proposed algorithm.

Fig. 4. Training process with different learning rate settings.

available resources in the Q-band, the bandwidth setting
of the Q/Q scheme is the same as that of our proposed
architecture. The bandwidth of each Q-band satellite is
1.5 MHz at 350 km and 1 MHz at 700 km.

3) Ka/Ka Scheme: In the LEO satellite system, both layers
of satellites transmit data in the Ka-band. Due to the
limited resources of the Ka-band, the satellites in differ-
ent layers share a bandwidth of 1 MHz. The bandwidth
of each Ka-band satellite is 0.5 MHz at 350 km and
0.5 MHz at 700 km.

To evaluate the effectiveness of the D3QN-based schedul-
ing scheme, we evaluate the performance of our proposed
algorithm and the benchmark schemes using the following
metrics.

1) The total reward, which is the sum of the system
reward obtained by computation offloading during the
simulation time.

2) The number of offloaded tasks with satisfied delay con-
straint, which is the number of tasks that meet the
delay requirements and are successfully offloaded to the
ground stations.

3) The power consumption, referring to the power
consumed by all LEO satellites when transmitting tasks
to ground stations.
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(a) (b) (c)

Fig. 5. Impact of the computing capacity on the computation offloading performance. (a) Total reward. (b) Number of tasks satisfied. (c) Power consumption.

(a) (b) (c)

Fig. 6. Impact of the data size on the computation offloading performance. (a) Total reward. (b) Number of tasks satisfied. (c) Power consumption.

B. Performance Analysis

Based on the parameter setting, we carry out simulations to
evaluate the D3QN-based computation offloading algorithm of
the proposed satellite-assisted IoRT. The simulations focus on
the performance in two aspects. We first test the performance
of the learning stage to learning the D3QN, DDQN, and DQN-
based model in terms of the average reward of all the IoRT
devices. Then, the learning models are tested under different
available resources and different environmental conditions to
measure the performance of the proposed scheme.

In Fig. 3, we study the convergence performance of the
proposed scheme compared with the DDQN and DQN-based
benchmark algorithms. The first few hundred sets are rela-
tively small and then tend to a relatively stable high value.
Once 20 000 experiences are saved in the replay memory
buffer, the learning phase of the three algorithms starts to
update the parameters of participants and critics. Therefore,
the total reward of each set fluctuates sharply at the begin-
ning of the learning phase and then increases with the gradual
optimization of the parameters. With the help of duel struc-
ture, the learning convergence speed of the scheduling scheme
based on D3QN is the fastest, reaching convergence in about
1200 sets. Our scheme can also get a better reward than the
benchmark scheme. In addition, compared with the scheme
based on DQN, the scheme based on DDQN has faster learning
speed and better practicability.

In Fig. 4, we study the effect of learning rate on algo-
rithm performance. With an increase of the learning rate,

the algorithm has a faster convergence speed. A low learn-
ing rate leads to a slow convergence speed, making the agent
unable to learn from experiences. However, fast convergence
may cause the agent to fall into the local optimum rather
than the global optimum. Therefore, when setting the learning
rate, it should not be too high or too low. In the follow-
ing simulation, we need to find the appropriate learning rate
for different resource and environment parameters to obtain
moderate convergence speed and good learning stability.

Next, we test the performance of different computation
offloading algorithms under different indicators to verify the
effectiveness of our proposed D3QN algorithm. In Fig. 5, we
evaluate the performance of different computation offloading
algorithms under different computing capabilities of ground
stations. For all schemes, the average reward of all IoRT
devices increases with the computing capacity and finally tends
to be stable. Compared with other benchmark schemes, the
proposed scheme always obtains higher rewards. Specifically,
when the processing performance of the ground station is
12 task/τ , the reward of the scheme is 27.1% and 77.7% higher
than that of the scheme based on DDQN and DQN, respec-
tively. In addition, with the increase of processing performance
at the ground station, both the average reward and the number
of tasks meeting the delay requirements increase. In contrast,
the average power consumption of satellites decreases.

In Fig. 6, we evaluate the performance of different
task scheduling schemes with different task packet sizes.
With the increase of task size, the average reward and
the number of tasks meeting delay requirements decrease,
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(a) (b) (c)

Fig. 7. Impact of the rainfall probability on the computation offloading performance. (a) Total reward. (b) Number of tasks satisfied. (c) Power consumption.

while the average power consumption increases. In addition,
our scheme achieves better performance than the benchmark
schemes. For example, when the packet size is 1100 kB,
the average reward of the proposed scheme is 40.7% and
99.3% higher than that of the DDQN and DQN-based scheme,
respectively.

For computation offloading, we compare the performance
of the proposed multilayer Ka/Q-band LEO satellite network
architecture with the Ka/Ka scheme, Q/Ka scheme, and Q/Q
scheme. Due to the difference of how Ka-band and Q-band
are affected by rainfall, we compare the performance under
different rainfall probability parameters. In Fig. 7, the rainfall
probability parameter varies among 0, 0.4, and 0.8. With the
parameter increases, the probability of high intensity rainfall
is greater. It can be seen that the performance of the Ka/Q
scheme is the best. The performance of the Q/Ka scheme
is slightly worse, but is similar to that of the Ka/Q. This is
because after the exchange between the orbital height of the
Q-band and the Ka-band satellites, the free-space path loss
of the Ka-band increases and that of the Q-band decreases.
Hence, the overall transmission rate decreases only by 2%
when there is no rain. Due to the limitation of available band-
width, the transmission rate of the Ka/Ka scheme is greatly
reduced and its performance is the worst. When there is no
rainfall, the performance of the Q/Q scheme is similar to that
of the Q/Ka due to the slight increase of free-space path loss.
When the rainfall increases, the performance of the Q-band
decreases sharply as compared with the Ka-band. As the rain-
fall intensity increases, the power consumption decreases with
the number of successfully transmitted subtasks. When the
rain intensity is 0, the power consumption is mainly affected
by the free-space path loss. When the rain intensity increases
and the number of successfully transmitted subtasks decreases,
the power consumption is also affected by the actual amount of
data transmitted. Therefore, the Ka/Q scheme balances avail-
able bandwidth, free-space path loss and rain attenuation, and
has the best performance among the four schemes.

To sum up, from the simulation results, the proposed scheme
can effectively achieve convergence through continuous train-
ing. Compared with the benchmark algorithms, the algorithm
based on D3QN has a faster convergence speed and better
practicability. In addition, under different parameter settings,
our scheme outperforms the benchmark scheme in terms of

reward, the number of tasks with satisfied delay constraints
and satellite power consumption. Compared with the other
schemes with different frequency band settings, the proposed
scheme adopts appropriate settings of two types of satellites,
which effectively improves the reward of the computation
offloading system.

VII. CONCLUSION

In this article, we considered a multilayer Ka/Q-band
satellite–terrestrial network to provide IoRT devices for more
available bandwidth resources and communication robust-
ness in different rainfall intensities. Under this scenario, we
formulated the dynamic computation offloading optimization
problem and transformed it into an MDP to maximize the num-
ber of offloaded tasks while meeting delay requirements and
minimize the power consumption of satellites. Then, to effi-
ciently solve the transformed MDP formulation, we developed
a D3QN-based offloading algorithm to find the solution. The
solution allows the controller deployed at the GEO satellite to
make optimal decisions, including the satellite/ground station
selection and bandwidth resource allocation based on channel
conditions, satellite positions, and ground station computa-
tion capabilities. Finally, we conducted extensive experiments
to validate the effectiveness and superiority of our proposed
offloading scheme.
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