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Abstract—Decentralized approaches are inspired by the self-organizing principles observed in natural and social systems. These
methods offer a scalable and resilient framework for collaborative learning. Decentralized federated learning (DFL) uses these
principles to avoid the dependency on a central controller. However, a key challenge arises from data heterogeneity. This often leads to
catastrophic forgetting, where the model significantly loses its ability to remember and use previously learned information. This loss of
knowledge can reduce the reliability of DFL in critical applications, such as autonomous systems, financial services, energy
management, and transportation networks. To tackle these challenges, in this paper, we investigate how data distribution affects DFL
performance, with a focus on how bias propagates across nodes. We also explore how local model learning rates affect the trade-off
between learning stability and convergence speed. At the same time, we evaluate the performance drops at individual nodes.
Furthermore, to improve connectivity and speed up knowledge sharing, we propose adding a limited number of teleportation links,
which aim to reduce the average distance between pairs of nodes. Extensive experimental results demonstrate the effectiveness of this
strategy, showing reduced catastrophic forgetting, faster convergence, and improved resilience across various scenarios.

Index Terms—Decentralized federated learning, network topology, connectivity, teleportation links

1 INTRODUCTION

Complex natural systems, such as flocks of birds [1], ant
colonies [2], neural networks in the brain [3], and ecosys-
tems [4], operate efficiently without centralized control.
These systems are decentralized, adaptive, and capable of
achieving global objectives through simple local interac-
tions [5], [6]. For example, in a flock of birds, there is no
single leader; instead, each bird follows a set of simple rules
based on its neighbors: collision avoidance to steer away
from crowding local flockmates, velocity matching to at-
tempt to match speed and direction with nearby flockmates,
and flock centering to attempt to stay close to nearby flock-
mates. This local coordination allows the flock to move as a
unified entity, achieving a global objective without central-
ized control. This directly parallels the way decentralized
learning models operate. Just as natural systems achieve
global coordination through local interactions, decentralized
learning offers a compelling paradigm for modern machine
learning, especially for scaling algorithms to manage large
datasets distributed across many devices [7], [8]. In these
systems, local model updates and peer-to-peer data sharing
among devices enable a global objective to be achieved
without a central server [9]. Furthermore, this paradigm en-
hances data privacy in sensitive domains, such as healthcare
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and finance, while improving model robustness in dynamic
environments [10], [11], [12].

The demand for decentralized collaboration is contin-
ually growing in domains such as smart cities [13], [14],
autonomous systems [15], [16], and personalized health-
care [17], [18], [19]. These applications require solutions
emphasizing privacy, scalability, and resilience, thereby
enabling adaptation to complex and dynamic situations.
Federated learning (FL) has emerged as a key solution
for privacy-preserving and collaborative learning in data-
driven systems [20], [21]. FL enables multiple parties to
collaboratively train models without sharing sensitive data,
thereby facilitating secure and efficient learning across de-
centralized networks [22]. However, its reliance on a cen-
tral server introduces several limitations, including poten-
tial performance bottlenecks, single points of failure, and
scalability challenges [23]. Decentralized federated learning
(DFL) fundamentally addresses this core architectural limi-
tation by eliminating the central server altogether. Through
peer-to-peer collaboration, DFL bypasses the need for a
central orchestrator, thereby enhancing both scalability and
resilience [24], [25].

Despite its promise, DFL faces a major challenge: data
heterogeneity. In real-world decentralized systems, the data
across nodes is typically non-independent and identically
distributed (non-i.i.d.) [26], [27]. This non-i.i.d. nature com-
plicates the training process and directly leads to a critical is-
sue known as catastrophic forgetting. In this phenomenon, a
model trained on data from one node catastrophically over-
writes previously learned knowledge when subsequently
exposed to disparate data from another node [28]. This
phenomenon makes it difficult for the system to synthe-
size knowledge across all participating nodes, posing a
significant challenge to achieving coherent and effective
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decentralized learning.

To address the challenge of catastrophic forgetting and
slow information propagation within decentralized learning
environments, we propose the strategic implementation of
teleportation links. These links emulate the efficient long-
range connections observed in natural systems. By design,
they shorten communication paths, accelerate information
flow, and enhance knowledge retention across nodes. These
teleportation links draw inspiration from the efficiency of
small-world networks. In these networks, a small num-
ber of long-range links or “shortcuts” dramatically reduce
the average path length between any two nodes, thereby
promoting efficient information flow [29], [30], [31]. For
instance, social networks rapidly disseminate information
through a few key connections that bridge distant communi-
ties [32], [33]. Similarly, metabolic networks optimize chem-
ical reactions by using short pathways to connect otherwise
distant metabolites [34], [35]. Pollinator networks improve
resource distribution in ecosystems by connecting other-
wise isolated plant species [36], [37]. By emulating these
natural connectivity patterns, our proposed teleportation
links provide logical shortcuts that directly connect distant
nodes, bypassing multiple intermediate network segments.
This mechanism significantly enhances overall network effi-
ciency and learning effectiveness in a manner analogous to
these real-world systems. Operating at the transport layer,
teleportation links provide logical shortcuts that directly
connect distant nodes, thereby bypassing intermediate net-
work segments. In this work, we employ a genetic algorithm
(GA) to strategically place teleportation links that minimize
communication paths and enhance information flow across
the network [38].

Our main contributions are as follows: (1) To address the
challenge of data heterogeneity and its role in catastrophic
forgetting, we investigate how varying data distributions
affect the stability and efficiency of DFL, focusing on the
propagation of biases across interconnected nodes. (2) To
mitigate the negative impact of heterogeneous data and
enhance convergence, we explore how local learning rates
influence overall system performance, focusing on their
effect on stability and efficiency, especially the performance
drops observed at certain nodes. (3) To overcome the limi-
tations of poor network connectivity and slow information
flow, we introduce a method for incorporating a minimal
number of teleportation links to enhance network connec-
tivity, demonstrating how this strategic addition accelerates
convergence without compromising system reliability.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 details the methodology
for mitigating DFL catastrophic forgetting via optimized
teleportation links. Section 4 evaluates the performance of
our proposed method. In Section 5, we present concluding
remarks and future research.

2 RELATED WORK

This section reviews key literature relevant to our research
concerning teleportation links in DFL. We begin by examin-
ing the persistent challenge of catastrophic forgetting, which
refers to the tendency of local models to adapt to new
knowledge while forgetting previously learned information.

2

We then discuss the critical role of network topology in DFL,
reviewing various network architectures and optimization
methods. We conclude by identifying a gap between these
two areas and motivating the need for topological solutions
that can simultaneously mitigate catastrophic forgetting and
promote fast, stable convergence.

2.1 Catastrophic Forgetting in Learning Systems

The phenomenon of catastrophic forgetting was first identi-
fied in 1989 [39]. It refers to a critical challenge in machine
learning models, particularly neural networks. Such models
exhibit a significant decline in performance concerning pre-
viously learned tasks after training on new tasks [40]. This
degradation occurs primarily because new training updates
the model weights that were optimized for earlier tasks [41],
[42].

In centralized learning, several strategies address catas-
trophic forgetting. Regularization-based methods, such
as elastic weight consolidation [43] and synaptic intelli-
gence [44], add penalty terms to protect important weights.
Replay-based methods, including experience replay [45]
and generative replay [46], mix stored or generated past
data with new training data. Architectural methods, like
progressive neural networks [47] and dynamic expandable
networks [48], adapt model structure to retain previously
learned knowledge.

While these strategies are effective in centralized set-
tings, federated learning presents unique characteristics. Its
decentralized data distribution and communication con-
straints introduce complexities that necessitate specialized
approaches. GradMA addresses this by using gradient
memory on both server and client sides to stabilize up-
dates [49]. FedReg introduces pseudo-data to regularize
local training and preserve past performance [50]. The feder-
ated global twin generator trains privacy-preserving genera-
tive models on the server to produce synthetic data covering
all class labels, helping clients retain old knowledge while
learning new tasks [51].

In DFL, the absence of a central server and the reliance
on peer-to-peer communication make catastrophic forget-
ting more difficult to address. One approach uses mutual
knowledge transfer among nodes, which avoids simple
model averaging and improves knowledge retention [52].
Despite recent advances, catastrophic forgetting remains a
core challenge in DFL, largely due to limited and uneven
knowledge exchange across nodes. This issue is closely tied
to the network topology, which determines how information
propagates, how quickly models converge, and how stable
the learning process is. Therefore, understanding and op-
timizing network topology is essential for developing DFL
systems that achieve fast, stable convergence and effectively
mitigate catastrophic forgetting.

2.2 Network Topology Design in Decentralized Feder-
ated Learning

In DFL, network topology plays a crucial role by shaping
the dynamics of information exchange between nodes. Such
dynamics subsequently impact convergence speed, train-
ing stability, and the magnitude of catastrophic forgetting.
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TABLE 1: Summary of Methods Addressing Catastrophic Forgetting and Topology Design in DFL.

Method Characteristics

Limitations

Elastic Weight Consolidation [43]
Synaptic Intelligence [44]
Experience Replay [45]

Generative Replay [46]

Progressive Neural Networks [47]
Dynamic Expandable Networks [48]
GradMA [49]

FedReg [50]

Twin Generator [51]

Mutual Knowledge Transfer [52]
Fully Connected Topology [10]

Ring Topology [53]

Hypercube [54]

Tree/Hierarchical [55]

Clustered Networks [56]

Expander Graphs [57]

Edge Augmentation [58]
Energy-Aware Topology [59]
Greedy/Dynamic Topology [60], [61]
Teleportation Links (Ours)

Layered node hierarchy.

Sparse but well-connected.

Adapts to device resources.

Regularization to preserve important weights.
Tracks weight importance during training.
Replays stored past data with new tasks.
Generates pseudo-data to mimic old tasks.
Adds subnetworks for new tasks.

Adds task-specific components.

Gradient memory on server and clients.
Pseudo-data for regularization.
Server-generated synthetic data.
Peer-to-peer knowledge transfer.

Full communication among nodes.
Neighbor-based communication.

Connects similar nodes in high dimensions.

Small-world/scale-free graphs.

Adds links to boost convergence.
Optimizes algebraic connectivity.

Adds long-range links for knowledge reinforcement.

Requires task identity; limited for DFL.
Centralized setting; limited DFL applicability.
Conflicts with FL privacy.

High overhead; generator training complexity.
Poor scalability.

Increases model size and complexity.
Requires coordination and storage.

Depends on data quality.

Training cost; privacy risk.

Sensitive to network structure.

Poor scalability.

Slow convergence.

Grows complex with dimension.

Fragile under failure.

Hub overload risk.

Hard to design.

Ignores catastraphic forgetting.

May neglect learning goals.

Requires real-time resource information.
Requires careful design balance.

Given this significant impact, researchers have investigated
various network architectures suitable for DFL.

Several foundational graph structures have been ex-
plored as potential network topologies. In a fully connected
topology, each node communicates with all others, enabling
maximum information exchange and redundancy [10].
However, its communication cost grows quadratically with
network size, limiting scalability. In contrast, a ring topology
connects each node to two neighbors, reducing per-node
communication while supporting continuous information
flow [53].

Specialized topologies like the hypercube offer a balance
between connectivity and node degree. Each node repre-
sents a corner of an n-dimensional hypercube and connects
to its immediate neighbors. When combined with data-
similarity-based neighbor selection, this structure helps mit-
igate data heterogeneity and speeds up training [54]. Tree
and hierarchical topologies also play a key role. While often
used in hierarchical federated learning with intermediate
servers, decentralized versions can support layered commu-
nication in DFL [55].

Several foundational graph structures such as Erd&s-
R’enyi, small-world, and scale-free have been evaluated
for decentralized training. The study in [56] found that
clustered networks are generally more effective, with small-
world graphs converging faster in small-scale settings and
scale-free networks performing better at large scale. While
scale-free structures benefit from hierarchy, they also in-
troduce node load imbalance and vulnerability to failures.
Expander graphs have shown strong potential, offering
sparse yet highly connected topologies. DFL systems using
d-regular expanders achieve faster convergence and greater
resilience than rings or Erdés-R’enyi graphs, with lower
communication costs [57].

In dynamic DFL environments, static topologies often
result in slow convergence due to inefficient peer-to-peer
connections. To address this issue, prior work [58] proposes
an efficient algorithm to accelerate DFL by strategically
introducing a limited number of additional edges. This work
establishes a crucial link between the convergence rate and

the second smallest eigenvalue of the Laplacian matrix of
the graph, thereby providing a theoretical basis for such
augmentations. Energy efficiency is another critical concern;
thus, an energy-aware topology optimization algorithm pro-
posed in [59] aims to maximize algebraic connectivity while
adhering to energy and communication constraints.

Furthermore, the dynamic nature of network bandwidth
and heterogeneous device capacities necessitates adaptive
topologies. Greedy algorithms in [60], [61] reconstruct net-
work structures based on node resources, enabling respon-
siveness to changing conditions. To further improve effi-
ciency, dynamic link management adjusts connections based
on latency, and [62] proposes pruning redundant links to
form sparser, low-latency topologies.

2.3 Motivation for Teleportation Links in DFL

Mitigating catastrophic forgetting and ensuring stable con-
vergence remain key challenges in DFL. Existing approaches
to address forgetting mainly focus on algorithmic changes
or data-level interventions. Although these methods pro-
vide partial solutions, they often overlook the influence of
network topology in facilitating knowledge retention and
transfer. In contrast, recent work on topology optimization,
such as strategic edge additions [58], has shown improve-
ments in convergence speed. However, such techniques
typically do not target catastrophic forgetting. This reveals a
gap and motivates the need for topological enhancements
that can support both faster convergence and long-term
knowledge preservation through teleportation links in DFL.

Our work on teleportation links addresses this identified
gap. We propose a method that strategically introduces
long-range connections to facilitate efficient information
flow across the network. These links are primarily de-
signed to mitigate catastrophic forgetting by enhancing the
propagation and reinforcement of learned knowledge. By
promoting a more consistent global understanding across
nodes, teleportation links also contribute to faster and more
stable convergence. A summary of existing methods, along
with their key characteristics and limitations, is provided in
Table 1.
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3 MITIGATING CATASTROPHIC FORGETTING IN
DFL THROUGH TELEPORTATION LINKS

Catastrophic forgetting presents significant challenges in
DFL, as it undermines the accumulation of global knowl-
edge and reduces overall effectiveness. The fundamental
problem stems from poor connectivity and inefficient com-
munication across the network. These limitations, particu-
larly when combined with non-i.i.d. data and decentralized
updates, lead to delays and inconsistencies in information
exchange. Consequently, learning becomes isolated, models
struggle to generalize effectively, and the integration of
knowledge across nodes is impaired.

3.1 Impact of Network Connectivity on Catastrophic
Forgetting

Poor connectivity and inefficient communication contribute
to catastrophic forgetting through several mechanisms.
First, local specialization can occur when nodes train ex-
clusively on their local datasets, a scenario especially com-
mon in non-ii.d. settings. Such specialization can cause
models to overfit to local data, preventing them from gen-
eralizing well across diverse data distributions. Second,
delayed updates occur when distant nodes are unable to
exchange information efficiently, which can lead to inconsis-
tencies and knowledge gaps throughout the network. Third,
conflicting updates, especially those originating from non-
iid. datasets, can further destabilize the global model by
introducing incompatible parameter changes. Collectively,
these disruptions degrade the performance of the model,
destabilize parameters, and slow global convergence. This
situation forces the network into frequent and inefficient
relearning cycles, which in turn increase training time and
reduce learning efficiency.

3.2 Connectivity Metrics for DFL Networks

Strong network connectivity enables timely and consistent
knowledge exchange, thereby lowering the risk that out-
dated updates will lead to catastrophic forgetting. When
nodes are well connected, the global model can integrate
information more efficiently, which reduces inconsistencies
and enhances stability. Several graph metrics can be em-
ployed to assess and enhance network connectivity. For
instance, the clustering coefficient indicates the extent to
which nodes form local clusters, while the k-core number
reveals resilient subnetworks composed of highly intercon-
nected nodes [29], [63], [64]. The average pairwise distance,
on the other hand, measures the efficiency of global in-
formation flow across the network [65], [66]. While each
of these metrics reflects a different aspect of the network
structure, some are more suited to specific types of analysis.
In this work, we focus on the average pairwise distance as
the primary metric for evaluating and optimizing global
communication efficiency. This metric is chosen because it
directly quantifies how information propagates across the
entire network. The average pairwise distance is computed
as the mean of the shortest path lengths among all pairs
of nodes in a connected, undirected graph G = (V, E)
with n nodes. Let d; ; denote the shortest distance between

4

nodes v; and v;. Then, the average pairwise distance, (d), is

calculated as:
Z dij. (1)

1<i<j<n

2
D=

A smaller value of (d) signifies potentially faster informa-
tion propagation throughout the network, thus indicating
better global communication efficiency.

3.3 Enhancing Connectivity with Teleportation Links

Global efficiency and rapid knowledge dissemination are
key objectives in DFL. Minimizing the average pairwise
distance across the network is crucial for achieving these
objectives, as shorter distances facilitate faster integration of
updates and accelerate convergence. To significantly reduce
this average pairwise distance and thereby enhance network
connectivity, we propose the strategic addition of teleporta-
tion links. These links act as logical shortcuts, creating direct,
near-instant communication paths between selected pairs
of nodes, regardless of their separation in the underlying
physical network. Thus, this approach effectively alleviates
bottlenecks in connectivity.

Identifying the optimal set of teleportation links from all
possible combinations presents a combinatorially complex
search problem. The quantity of potential new links in a
network of N nodes can be very large, as it is determined
by the N(N — 1)/2 total possible pairs minus the number
of links already present. Exhaustively evaluating all subsets
of these potential links is computationally infeasible for
networks of non-trivial size.

3.4 Optimizing Teleportation Link Placement using a
Genetic Algorithm

To address this challenge, we employ a genetic algo-
rithm [67], [68], [69]. The genetic algorithm was chosen for
its advantages over heuristic and deterministic approaches.
Heuristics, such as linking nodes with the highest degree
or betweenness, are fast but limited to local improvements
and perform poorly on complex, non-linear problems. De-
terministic methods, like integer linear programming or
convex optimization, can yield exact solutions but require
strong assumptions and become intractable for large net-
works. In contrast, GA searches the global solution space,
avoids local optima, and offers interpretability by show-
ing how link placements evolve over generations. Because
of these strengths, GA is a robust and suitable method
for optimizing teleportation link placement. The algorithm
evaluates node pairs to identify configurations that enhance
connectivity by minimizing the average pairwise distance
across the network in DFL. The GA process for optimizing
the placement of teleportation links involves several key
elements:

Chromosome Representation

Each potential solution, representing a specific set of tele-
portation links, is encoded as an individual, also termed a
chromosome. Potential sets of teleportation links (pairs of
nodes) are represented as binary configurations within the
GA. We represent this using a binary string of length L,

Authorized licensed use limited to: University of Calgary. Downloaded on October 26,2025 at 21:01:34 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2025.3611109

where L denotes the total number of potential teleportation
links in the network (e.g., pairs of nodes that are not directly
connected).

e Chromosome (C): A chromosome C is a binary vec-
tor C' = [917923 v ng}'

o Gene (g;): Each element g; in the chromosome is a
gene, where g; € {0,1}.

e Active Link: If g; = 1, the i-th potential link is
selected as an active teleportation link. To enforce a
limit on the number of added links, we restrict the
total count of “1”s in each individual to the total
number of teleportation links.

e Inactive Link: If g; = 0, the i-th potential link is not
selected.

For example, if there are L = 500 potential locations
where teleportation links could be added, each chromosome
would be a binary string of length 500.

Population Initialization

The genetic algorithm starts by generating an initial popu-
lation, denoted as P, consisting of M chromosomes (indi-
viduals). This population is typically created randomly to
ensure a diverse set of starting solutions:

Py={C1,Cs,...,Cyp}. 2

Fitness Evaluation

To minimize the average pairwise distance (d), the fitness
function f(C') evaluates each chromosome C;, which rep-
resents a configuration of added teleportation links. Since
the GA is designed to minimize the objective function f(C'),
this fitness value is set directly as the calculated (d) for the
network configuration represented by the chromosome. The
search process, therefore, favors configurations that result in
lower (d) values.

The evaluation process for a given chromosome C; in-
volves the following steps:

1) The set of active teleportation links encoded by
chromosome C; is temporarily added to the base
network graph G, thereby creating an augmented
graph G'.

2) The average pairwise distance, denoted as (d) ¢, is
then calculated for the augmented graph G'.

3) The fitness f(C;) is defined as the computed aver-
age pairwise distance. Since the GA aims to min-
imize this value, the fitness directly reflects the
optimization objective:

f(C) =(d)e - ®3)

Consequently, the selection mechanism of the GA favors
chromosomes that yield lower fitness values f(C};). In other
words, it prioritizes configurations C; that result in smaller
average pairwise distances (d)¢, thereby guiding the evo-
lutionary search toward solutions that effectively enhance
network connectivity by minimizing (d).

Genetic Operators

Following the selection process, the genetic algorithm ap-
plies evolutionary operations to generate the next gener-
ation of solutions. Through iterative operations such as
crossover and mutation, the algorithm refines the popula-
tion of potential solutions.

e Mutation: This operator introduces variation by dis-
abling one existing teleportation link and enabling a
new one when mutation occurs. Each individual has
a small mutation probability p,,. Specifically, when
mutation is triggered, we randomly select a bit set to
1 and change it to 0 to deactivate that link; then we
randomly select a bit set to 0 and change it to 1 to ac-
tivate a different link. This process maintains genetic
diversity, explores new regions of the solution space,
and prevents premature convergence to suboptimal
solutions.

e Crossover: This operator combines genetic material
from two parent chromosomes to generate new off-
spring. We implement a single-point crossover strat-
egy, where a random point is selected along the
chromosome, and segments beyond this point are
exchanged between the two parents. After generat-
ing each offspring, we verify that the total number
of teleportation links (bits set to 1) still matches the
required constraint; if the count does not match,
the offspring is discarded and we move on. This
check ensures that all offspring remain valid and
that the algorithm continues exploiting high-quality
solutions without violating the link-count constraint.

Selection

Parents for the subsequent generation are selected based on
their fitness values. Individuals that achieve lower average
pairwise distances are assigned higher selection probabili-
ties and are more likely to contribute to the next generation.
Roulette wheel selection is employed for this selection pro-
cess.

In roulette wheel selection, the probability p; of selecting
a particular chromosome C} is proportional to its fitness
score. This probability is typically calculated as::

p; = fsel(cj) )
T falCr)

Here, M is the total number of individuals in the popu-
lation and fsi(C;) is the fitness value of chromosome j,
transformed specifically for the selection process.

When the GA aims to minimize an objective function,
such as f(C;) = (d)¢, the standard roulette wheel se-
lection requires a transformation of f(C;). The selection
fitness fs(C};) used in the formula must be positive and
defined such that higher values indicate better solutions,
which correspond to smaller values of (d)¢-. For instance, if
f(C;) > 0, the selection fitness fse1(C;) can be computed as
fset(C5) = 1/f(C};). This transformation ensures that indi-
viduals with lower original f(C;) values, which represent
better solutions in a minimization problem, are more likely
to be selected.

4)
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graph

(a) Cycle graph (b) Ring of
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Fig. 1: Three representative network structures with 20
nodes illustrating different topologies.

Creating the Next Generation and Elitism

The offspring generated through crossover and mutation
form the basis of the subsequent generation. We also employ
an elitism strategy, where a small number of the best-fitting
individuals (e.g., the top 5) from the current generation are
carried over directly to the next generation. This practice
ensures that high-quality solutions are preserved and not
lost during the evolutionary process.

Termination Criteria

The evolutionary process includes evaluation, selection,
crossover, and mutation. It terminates when a predefined
condition is met, such as reaching a maximum number
of generations or observing no significant improvement in
fitness over several consecutive generations. The chromo-
some that exhibits the best fitness score upon termination
is considered the near-optimal set of teleportation links
identified by the GA.

Ultimately, the evolutionary search identifies strategic
placements for teleportation links that enhance global net-
work connectivity and accelerate information exchange in
DFL systems.

4 EXPERIMENTAL EVALUATION

In this section, we assess the effectiveness of the proposed
method on the MNIST dataset [70], a widely used bench-
mark for multi-class image classification. We selected this
dataset for two key reasons. First, the relative simplicity
allows our evaluation to focus clearly on the impact of the
method. It avoids confounding factors often present in more
complex datasets. Second, the widespread use of MNIST as
a standard benchmark facilitates comparison with existing
work and provides a fundamental performance baseline.
We begin by examining the stability and efficiency of DFL
in the absence of teleportation links, focusing on how bias
propagates through the network and comparing the trade-
off between ”“learning fast” and “learning well.” This base-
line evaluation serves as a reference for assessing the impact
of teleportation in later experiments. Next, we demonstrate
how teleportation links are added across various topologies
to minimize average pair-wise distance. Following on this,
we evaluate how the addition of teleportation links affects
performance, focusing on improvements in average test
accuracy and convergence speed. We then further assess the
impact of this link placement strategy within larger DFL
networks.

4.1 Experimental Settings
Network Structure

We conduct experiments on networks of two different sizes:
100 nodes and 1,000 nodes. For each size, we evaluate three
representative topologies:

o Cycle: Fig. 1 panel (a) shows a topology where each
node connects to exactly two neighbors and forms a
closed loop [71], [72].

o Ring of Cliques: Fig. 1 panel (b) shows small fully
connected groups called cliques linked together in
a ring. Each clique connects to its two adjacent
cliques [73]:

- For 100 nodes: 25 cliques of 4 nodes each.
—  For 1000 nodes: 250 cliques of 4 nodes each.

o Sphere: Fig. 1 panel (c) shows nodes placed as uni-
formly as possible on the surface of a sphere using
the Fibonacci lattice method [74].

Data Setup

We use the MNIST dataset, distributed in a strongly non-
ii.d. manner across nodes in both network sizes [75].

o Partitioning: Data is sorted by digit label and split
into 200 segments, each containing 300 samples.

e 100-node setup: Each node is randomly assigned
two distinct segments, leading most nodes to contain
samples from only two digit classes.

e 1,000-node setup: Each node receives data from at
most two digit classes, maintaining non-i.i.d. condi-
tions.

Model and Training Parameters

e Model: Multilayer perceptron.

o Total Parameters: 199,210.

e Architecture: Two hidden layers with 200 units each;
ReLU activation [76].

e Optimizer: Stochastic gradient descent.

e Learning Rates: 0.1 for initial exploration and 0.01
for stable convergence.

e Local Batch Size: 10.

Genetic Algorithm Parameters

We use a genetic algorithm to optimize teleportation link
placement, with the following configuration:

o Population Size: 50 individuals.
e Generations: 100 iterations.
e Mutation Rate: 0.2.

Computational Environment

o Software: PyTorch.
e Hardware: Intel Xeon Gold 6530 CPU, 512 GB RAM,
Nvidia RTX 6000 GPU.
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Fig. 3: Local data distribution of nodes 54-70 in the MNIST
dataset, where each node holds samples of up to two digit
classes. For example, node 55 holds digits 1 and 9.

4.2 Stability and efficiency in DFL

The overall stability and efficiency of DFL systems are
strongly affected by both the distribution of data across
nodes and the learning rate used for local model training.
Our first experiment demonstrates how data distribution
impacts DFL stability and efficiency. This is achieved by an-
alyzing the propagation of classification bias among nodes
arranged in a 100-node cycle topology. A learning rate of 0.1
is used in this experiment. Specifically, our analysis focuses
on how frequently each digit is misclassified. We measure
this using the bias proportion: for a given digit, this is the

Fig. 4: Average test accuracy over time.

count of its false positives (times it was predicted incor-
rectly) divided by the total number of misclassifications
overall. Figure 2 illustrates this bias proportion for three
sample digits (3, 4, and 9). The visualization tracks these
proportions over time (x-axis) for a specific range of nodes
(nodes 55-70, y-axis). The patterns in this Fig. 2 are caused
by the specific data distributions summarized in Fig. 3.

4.2.1 Bias propagation

Referring to panel (a) for digit 3 in Figure 2, nodes 56 and
57 initially show a tendency to misclassify other digits as
3. Over time, this bias towards digit 3 at these two nodes
decreases, as indicated by the color changing from darker to
lighter gray in the figure. As shown in Figure 3, nodes 56
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and 57 both possess digit 3 samples in their local training
set. Consequently, they exhibit an initial bias towards digit
3. This tendency diminishes over time due to knowledge
gained from other nodes through the DFL process. In this
specific example, the two biased nodes (56 and 57) are
adjacent in the network topology.

In contrast, biased nodes do not need to be adjacent; in-
termediate nodes situated between separated biased nodes
can also be affected. Figure 2(a) also shows that nodes
67, 68, and 69 exhibit a similar tendency to misclassify
other digits as 3. Notably, node 68, which is trained only
with digits 1 and 4 (and not 3), exhibits an even stronger
bias towards digit 3 than nodes 67 and 69 do. Referring
again to Figure 3, node 67 only contains digit 3 samples,
whereas node 69 contains samples from both digits 3 and
8. Node 68 demonstrates a strong propensity towards digit
3, jointly boosted by the tendencies of nodes 67 and 69.
Specifically, node 67’s inclination towards digit 3 is diluted
by its knowledge of digits 1 and 8 (from node 66) and of
digits 1 and 4 (from node 68). Likewise, node 69’s tendency
towards digit 3 is moderated by its understanding of digits
1,4, 6, and 7, acquired from nodes 68 and 70.

In addition to bias propagating between nodes, compet-
ing biases towards different digits can exist within a single
node. For example, at the beginning, nodes 61, 62, and 63
exhibit a bias towards digit 9. Specifically, node 61 contains
digits 4 and 9; node 62 contains digits 8 and 9; and node 63
contains digits 2 and 6 (but no 9). Node 64 contains digits 4’
and '9’. Consequently, node 63 develops a bias towards digit
'9’, likely influenced by nodes 62 and 64. Node 65 contains
digits 4 and 7. Node 64, holding both 4 and 9 locally, serves
as an example where competing biases can arise. Initially,
node 64 (along with node 65) exhibits a bias towards digit
4, possibly due to mutual reinforcement as both hold digit
4 data. However, node 64 also possesses data for digit 9,
creating an internal potential for bias towards 9 as well.
Later, the bias towards '9’ becomes more prominent Over
time, these specific initial biases within nodes like 64 and 65
diminish as they gain broader knowledge about other digits
from more distant neighbors in the network.

Three key takeaways emerge from these observations:
First, nodes initially develop biases reflecting the digits
present in their local training set. Second, nodes mutually in-
fluence each other’s biases through communication. Third,
initial node biases towards specific digits tend to decrease
over time. This bias reduction occurs as nodes acquire
broader knowledge from other nodes across the network,
including from distant neighbors.

4.2.2 ’Learn fast” vs. "learn well”

Next, we will examine the impact of the learning rate of the
local model on stability and efficiency in DFL. While data
distribution primarily drives bias propagation, the learning
rate also significantly affects system convergence speed and
stability.

Figure 4 compares the average test accuracy of DFL
systems using learning rates of 0.1 and 0.01, both evaluated
on a 100-node cycle topology. The shaded regions in the
figure represent the 90% confidence intervals. The choice of
learning rate clearly involves a trade-off between conver-
gence stability and speed. As shown in Figure 4, the smaller

8

learning rate (0.01) results in stable but slower convergence,
reflecting a more gradual exchange of information among
nodes. In contrast, the larger learning rate (0.1) can acceler-
ate convergence but also lead to instability. Specifically, with
a learning rate of 0.1, the average test accuracy reaches 90%
within approximately 1,000 time steps. Meanwhile, with
a learning rate of 0.01, the average test accuracy remains
below 90% even after 10,000 time steps. If achieving a target
accuracy of 80% is the goal, the learning rate of 0.1 provides
a convergence speed roughly four times faster than that of
0.01.

Observing the confidence intervals, the DFL system with
the smaller learning rate (0.01) exhibits a wider interval
compared to the system using the higher learning rate (0.1).
This indicates that at the low learning rate, a considerable
number of nodes may become trapped in local optima, even
while many others reach high accuracies, leading to large
performance variance across the network. Furthermore,
these nodes using the low learning rate exhibit considerable
stability regardless of their learning accuracy level. While
the higher learning rate of 0.1 enables convergence to a
higher average accuracy, it also introduces greater insta-
bility. This instability is evident in the larger performance
fluctuations observed over time. For example, with learning
rate of 0.1, around the 7,000 time step mark, the average
accuracy noticeably drops from approximately 94% to 75%.

Next, we look into the loss of performance at nodes 79 to
81 to trace how this happened. Fig. 5 zooms into time steps
690 to 700 given the data distribution in Fig. 6. In addition,
Fig. 7 illustrates the evolution of the confusion matrices for
nodes 79 to 81. As shown in Fig. 7, at t = 691, node 80
misclassifies numerous instances of digit 4 as digits 7 or 9
due to the absence of digit 4 in its own dataset and the data
of nearby nodes, making digit 4 prone to misclassification.
Node 80 contains digits 2 and 9. At ¢t = 692, in comparison
to t = 691, more instances of digit 4 are misclassified as
digit 9. At t = 693, many instances of digits 4 and 9 are
misclassified as digit 7. At ¢t = 694, many instances of digit 2
are misclassified as digits 7 or 9, while digits 4, 5, 7, and 8 are
all misclassified as digit 9. At ¢ = 695, digit 4 is misclassified
as digit 9, digit 5 as digits 3 or 9, and digit 8 as digits 2, 6, or
9. The bias towards digit 7 at t = 693 is transferred to node
80 from nodes 78 and 79. At t = 694, node 80 transmits its
bias towards digit 9 to nodes 79 and 81, resulting in node 81
inheriting this bias and being unable to recover in the short
term. Next, we will discuss strategies to achieve stable and
fast DFL, aiming to optimize both convergence speed and
system reliability, to mitigate the potential negative impacts.

Quantitatively, we measure the instability of DFL with
learning rates of 0.1 and 0.01 with a kind of high-pass filter.
To to that, we first segment the average test accuracy into
intervals of length 7 = 20 and compute the mean for each
interval. We then calculate the squared differences between
successive means to evaluate instability. As shown in Fig. 8
higher learning rates are associated with greater instability,
whereas lower learning rates enhance stability.

4.3
links

The experiments above show that stable convergence can
only be achieved with a low learning rate. Yet, it results

Increasing connectivity by adding teleportation
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Table 5 shows the average pair-wise distance for them
with varying numbers of added teleportation links. For

in a slow convergence due to the gradual exchange of
the cycle topology, the average pair-wise distance decreases

knowledge across the network. To accelerate convergence
number of teleportation links to the network. This improves
network connectivity and accelerates the dissemination of
Fig. 9 shows examples of increasing connectivity by adding
varying number of edges across different topologies.

significantly from 25.25 hops with no extra edges to 7.92
of cliques also shows a considerable decrease from 13.12 to

knowledge by reducing the average pair-wise distance.
with 9 extra edges, showing a reduction of 68.64%.

while maintaining stability, we strategically add a small

+9 edges
%) 7.92 (168.64%)

+6 edges

12.34 (J51.14%) 9.54 (162.22

+3 edges
7.39 (143.66%) 6.17 (152.96%) 5.41 (158.77%)

8.12 (147.34%) 7.17 (153.52%) 6.54 (157.59%)

15.42

13.12

Fig. 7: Evolution of confusion matrix for nodes 79 to 81.
25.25

TABLE 2: Average pair-wise distance for different topologies

with varying number of teleportation links.

Topology +0 edges

Ring of
Cliques
Sphere

Cycle
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Table 3 shows the clustering coefficients for these net-

5.41, resulting in a 58.77% reduction. Similarly, the sphere’s
average pair-wise distance decreases from 15.42 to 6.54, with
work topologies with different numbers of teleportation

a 57.59% reduction.
coefficient of 0, regardless of the number of teleportation

links added. In contrast, the ring of cliques consistently
shows a high clustering coefficient of 0.75, unaffected by
the addition of teleportation links. This indicates that the
ring of cliques inherently supports higher clustering com-
pared to the cycle and sphere, which accounts for its better

links. The cycle and sphere topologies have a clustering
convergence compared to cycle and sphere.
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TABLE 3: Clustering coefficient for different topologies with i
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8 —— +0 edges
Topology +0 edges +3 edges +6 edges +9 edges 0 +3 edges
Cycle 0 0 0 0 < 0.61 —— +6 edges
Ring of I
Cliques 0.75 0.75 0.75 0.75 —— 49 edges
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4.4 Performance evaluation of adding teleportation (c) Sphere.

links

Using the examples above, we evaluate the practical impact ~Fig. 10: Average test accuracy for different topologies with
of teleportation links on network performance. Figure 10 different numbers of teleportation links.

shows the average test accuracy achieved on different

topologies when varying numbers of teleportation links

are introduced. As illustrated in the figure, strategically convergence speed without sacrificing convergence stability.
adding even a small number of teleportation links improves To further quantify the benefits of teleportation links,
network structure by reducing the average pair-wise dis- Table 4 lists the number of time steps required for various
tance. This structural improvement then leads to accelerated  topologies, configured with varying numbers of teleporta-
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TABLE 4: Time steps required for different topologies with
varying numbers of teleportation links to achieve 0.8 and
0.9 test accuracy.

Target

Topology accuracy +0 edges +3 edges  +6 edges  +9 edges
Cvdle 0.9 - - 3034 1992

y 0.8 1412 967 ({31%) 884 ({37%) 679 (152%)
Ring of 0.9 1965 1493 ({24%) 1318 ({33%) 1038 ({47%)
cliques 0.8 643 528 (118%) 450 ({30%) 373 (142%)
Sphere 0.9 2655 1929 (127%) 1664 (137%) 1509 (143%)
P 0.8 837 659 (121%) 595 ({29%) 546 (135%)

TABLE 5: Average pair-wise distance for different topologies
with varying number of teleportation links.

Topology +0 edges +3 edges +6 edges +9 edges

Cycle 2525  12.34 (151.14%) 9.54 (162.22%) 7.92 (168.64%)
g?(;c’u‘éi 1312 7.39 (J43.66%) 6.17 (152.96%) 5.41 (158.77%)
Sphere 1542 812 (]47.34%) 7.17 (153.52%) 6.54 (157.59%)
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Fig. 11: Average test accuracy for 1,000-node network
Topologies.

TABLE 6: Average pair-wise distance for the ycle topology
with varying number of teleportation links.

Topology +0 edges +3 edges +6 edges +9 edges

250.25 115.11 ({54.00%) 79.42 (]68.26%) 60.83 (175.70%)

Cycle

tion links, to achieve target test accuracies of 0.8 and 0.9.
The table illustrates that adding teleportation links signif-
icantly reduces the convergence time (measured in time
steps) needed to reach the target accuracies for all tested
topologies. For instance, in the ring of cliques topology,
adding just 9 teleportation links reduces the time required to
reach 0.8 accuracy by 42% and the time to reach 0.9 accuracy
by 47%.

4.5 Teleportation links in larger DFL networks

Fig. 11 illustrates the average test accuracies across 1,000-
node network topologies. It indicates that introducing a
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Fig. 12: Boxplot of test accuracy under ring of cliques and
sphere topologies.
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tolologies.

TABLE 7: Average degree, average pair-wise distance, and
clustering coefficient for different topologies with 100 and
1,000 nodes.

Average Average pair-wise

Topology Nodes Clustering coefficient

degree distance
Cvele 100 2.00 25.25 0.00
Y 1000 2.00 250.25 0.00
Ring of 100 3.50 13.12 0.75
cliques 1000 3.50 125.63 0.75
Sphere 100 2.16 15.42 0.00
P 1000 2.06 47.56 0.00

small number of edges to the cycle topology can enhance the
convergence speed while maintaining stability. This occurs
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because the addition of these edges dramatically decreases
the average pairwise distance, as demonstrated in Table 6.

Additionally, in scenarios without teleportation links, the
ring of cliques consistently outperforms the sphere topology,
which in turn surpasses the performance of the cycle topol-
ogy. A detailed examination of the topological properties,
as reported in Table 7, shows that the ring of cliques has
a larger average pairwise distance compared to the sphere.
This suggests that, on average, information takes longer to
propagate globally across the ring of cliques. Nevertheless,
it still achieves superior learning performance, making this
result particularly notable.

The strong performance of the ring of cliques can be
primarily attributed to two key structural advantages: a
significantly higher average node degree and an excep-
tionally high clustering coefficient of 0.75. In contrast, the
sphere topology has a lower average degree and a clustering
coefficient of zero. The high clustering coefficient reflects the
presence of densely connected local communities, or cliques,
where nodes form tightly knit groups. These strong local
connections, supported by a larger number of neighbors,
enable each node to interact with a more diverse set of
peer models. For example, on the MNIST dataset, where
each node holds data from at most two digit classes, the
ring of cliques structure enables rich information exchange
within each local community. Each clique in the ring con-
sists of four fully connected nodes, enabling every node
to interact with peers that collectively represent a broader
range of digit classes. This dense local interaction promotes
the development of more robust and well-informed local
models. In contrast, nodes in the sphere topology have a
lower average degree and no clustering, which limits their
opportunities to communicate with diverse neighbors. As
a result, they are less effective at aggregating varied local
information, leading to slower convergence and reduced
performance in the early stages of training.

By enabling rich local communication and effective in-
formation sharing within communities, the ring of cliques
accelerates model refinement and leads to faster conver-
gence toward a high-quality global model. These advan-
tages demonstrate that strong local structure and high local
connectivity can outweigh the limitations introduced by
longer global communication paths. Fig. 12 compares the
test accuracy between the ring of cliques and sphere topolo-
gies. In this analysis, we compute the average test accuracy
within each clique for the ring of cliques, and compare it
with the node-level test accuracy in the sphere topology to
evaluate local consensus. As shown in Fig. 12, even after
just 5 time steps, the 25th, 50th, and 75th percentiles of the
ring of cliques already outperform those of the sphere. This
early advantage reflects faster local consensus facilitated
by the community structure. As training progresses, the
performance gap between the two topologies gradually
narrows due to increased information exchange across the
entire network. By round 4000, the accuracies become nearly
indistinguishable.

Besides, we quantitatively assess the instability across
1,000-node topologies as defined in section 4.2. As illus-
trated in Fig. 13, the introduction of a small number of edges
maintains stable convergence. Moreover, the three different
topologies exhibit a high stability.
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5 CONCLUDING REMARKS

We address the significant challenge of catastrophic for-
getting in decentralized federated learning, which is pri-
marily caused by non ii.d. data. We investigate how data
heterogeneity hinders knowledge retention, and how local
learning rates impact overall model stability. To enhance
information flow between learning nodes, we introduce
teleportation links inspired by small world networks. These
long range links are strategically positioned using a genetic
algorithm, which aims to shorten communication paths
and thereby enhance overall network communication. The
cost of a communication network is typically measured by
its total number of links. Therefore, we focus on adding
only a few carefully selected links to improve performance,
ensuring we do not significantly increase overall network
complexity. The experimental results demonstrate that these
teleportation links speed up model convergence while pre-
venting catastrophic forgetting.

This work has several limitations. It does not account for
highly dynamic environments where network topology and
data distribution change frequently. The ability to adapt to
such changes is not explored. In addition, the performance
of the proposed method is not evaluated in heterogeneous
networks. Such heterogeneous networks have nodes with
varying capabilities and resources, where message asyn-
chrony can be very common. Thus, more challenges would
need to be addressed, including inconsistent model updates,
delayed convergence, and reduced model accuracy due
to nodes processing outdated information. Asynchronous
message passing can also result in increased computational
and communication overhead for the need of managing and
re-incorporating out-of-order messages.

This work can be extended in a few interesting ways
as future research. First, we will explore dynamically ac-
tivating and deactivating a small number of teleportation
links to adapt to environments where network topology
and data distribution change frequently. Second, hardware
heterogeneity and the resulting straggler effect are critical
real-world factors. Our current work assumes homogeneous
hardware for clarity, but this is a limitation. Investigating
the impact of heterogeneity and developing strategies to
manage stragglers are important directions for future re-
search, as the benefits of teleportation links may otherwise
be diminished. Third, we will measure and manage the age
of information to effectively handle out-of-order messages,
ensuring timely and agile model updates. Fourth, we will
test the proposed method in more general synthetic and
real-world topologies. In addition, the proposed method
can be applied to other different application domains. For
instance, it can optimize communication in distributed sen-
sor networks, enhance data flow in peer-to-peer systems,
and improve efficiency in transportation networks. Finally,
catastrophic forgetting may manifest differently in more
complex tasks, and evaluating the method on real-world
data, such as medical images or time-series sensor data, is
considered a crucial next step.
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