
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024 8307

ShuttleBus: Dense Packet Assembling With QUIC
Stream Multiplexing for Massive IoT

Bo He , Member, IEEE, Jingyu Wang , Senior Member, IEEE, Qi Qi , Senior Member, IEEE,
Qiang Ye , Senior Member, IEEE, Qihao Li , Member, IEEE, Jianxin Liao , and Xuemin Shen , Fellow, IEEE

Abstract—In this paper, we investigate dense short packet for-
warding for clustering-based massive Internet-of-Things (mIoT).
The objective is to support the data forwarding with minimal
communication overhead while satisfying the differentiated latency
constraints from the transport layer perspective. To this end, we
propose a dense packet assembling scheme, named ShuttleBus,
for forwarding devices in mIoT to achieve effective data merging.
The assembling scheme is designed based on the stream multiplex-
ing mechanism of the Quick UDP Internet Connection (QUIC)
protocol. With ShuttleBus, the payload data sent from IoT de-
vices are extracted as independent frames belonging to different
data streams. The ShuttleBus can bundle data frames from multiple
streams into a single packet while ensuring data integrity of these
streams. Furthermore, we develop a resilient packing mechanism in
packet assembling to merge data received from IoT devices within
a cluster. In addition, a latency-oriented scheduling mechanism
for backlogged QUIC data is established to guarantee satisfactory
delivery of diverse transmission tasks. To accommodate the dy-
namic network environment, we tailor a learning-based algorithm
to determine the optimal packet assembling time adaptively. We
evaluate the performance of ShuttleBus under various network
load conditions. Both analytical and experimental results demon-
strate that the proposed scheme significantly reduces communi-
cation overhead and enhances data delivery performance under
stringent latency constraints.

Index Terms—Packet assembling and scheduling, massive IoT,
QUIC, stream multiplexing, deep reinforcement learning.

Manuscript received 25 May 2023; revised 8 November 2023; accepted
18 December 2023. Date of publication 25 December 2023; date of current
version 2 July 2024. This work was supported in part by the National Natural
Science Foundation of China under Grants U23B2001, 62171057, 62071067,
and 62201148, in part by the National Postdoctoral Program for Innovative
Talents under Grant BX20230052, in part by Guangdong Province Basic and
Applied Basic Research Foundation under Grant 2022KQNCX, in part by the
Key Area Research and Development Program of Guangdong Province under
Grant 2020B0101110003, in part by China Postdoctoral Science Foundation
under Grant 2023TQ0039, in part by the Ministry of Education and China Mobile
Joint Fund under Grants MCM20200202, and MCM20180101, and in part by
Beijing University of Posts and Telecommunications-China Mobile Research
Institute Joint Innovation Center. Recommended for acceptance by V.P. Ranga
Rao. (Corresponding authors: Jingyu Wang; Jianxin Liao.)

Bo He, Jingyu Wang, Qi Qi, and Jianxin Liao are with the State Key Lab-
oratory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China (e-mail: hebo@bupt.edu.cn;
wangjingyu@bupt.edu.cn; qiqi8266@bupt.edu.cn; liaojx@bupt.edu.cn).

Qiang Ye is with the Department of Electrical and Software Engi-
neering, University of Calgary, Calgary, AB T2N 1N4, Canada (e-mail:
qiang.ye@ucalgary.ca).

Qihao Li is with the College of Communication Engineering, Jilin University,
Changchun 130012, China (e-mail: qihaol@jlu.edu.cn).

Xuemin Shen is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/TMC.2023.3345898

I. INTRODUCTION

THE massive Internet-of-Things (mIoT), featuring
densely deployed machine-type communication devices

(MTCDs), has empowered typical application scenarios of the
next generation wireless networking, such as data dissemination
in smart farming, remote control in industrial automation, and
city-wide sensing and monitoring [1], [2]. The MTCD density
is anticipated to increase up to 107 per km2 [3], and packet
generation rates of MTCDs usually vary depending on the
supported IoT services [4]. The consistent transmission of short
packets with varying packet generation rates is a distinctive
characteristic of MTCDs. These massive, but short packets
dynamically sent from MTCDs to a central base station
(BS), present challenges in controlling packet transmission
collisions [5].

Partitioning MTCDs into clusters is a possible solution for
collision mitigation in mIoT [6], [7]. As shown in Fig. 1,
the MTCD clusters with reduced contention regions maintain
machine-type communication gateways (MTCGs) for data for-
warding [8], [9]. Among existing clustering-based solutions,
MTCGs employ the conventional TCP [10], [11] to forward the
aggregated packets received from MTCDs, which reduces the
number of transmitted packets with larger sizes. Nevertheless,
these approaches may not be suited for mIoT accommodating
massive short packets, as a substantial portion of resources are
dedicated to transmitting packet headers rather than user data. In
this case, MTCGs continue to experience high communication
overhead for data forwarding, and frequent network congestion
arises due to increased packet transmission rates.

Aggregating received raw user data into a single packet at
MTCGs has been effective in decreasing the communication
overhead by eliminating recurring lower-layer headers. It also
reduces latency by creating less interference on the shared
spectrum [12]. However, it is crucial to ensure data integrity
from different MTCDs during the packet assembling process
using a lossless approach. Here, data integrity is defined as the
condition in which each received user data block from MTCDs
remains unaltered by others in the same forwarding packet. If
data integrity is not preserved, it becomes difficult for a central
BS in mIoT to recover the received data from MTCGs accurately.
Also, the raw user data originating from various applications in
mIoT are often heterogeneous and cannot be processed using
traditional aggregation schemes commonly used in wireless
sensor networks (WSNs) [13], [14], [15]. A potential solution is

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1301-4981
https://orcid.org/0000-0002-2182-2228
https://orcid.org/0000-0003-0829-4624
https://orcid.org/0000-0002-8208-6295
https://orcid.org/0000-0002-2602-142X
https://orcid.org/0000-0003-1486-0573
https://orcid.org/0000-0002-4140-287X
mailto:hebo@bupt.edu.cn
mailto:wangjingyu@bupt.edu.cn
mailto:qiqi8266@bupt.edu.cn
mailto:liaojx@bupt.edu.cn
mailto:qiang.ye@ucalgary.ca
mailto:qihaol@jlu.edu.cn
mailto:sshen@uwaterloo.ca

8308 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

Fig. 1. Transmission architecture supporting massive short packets sent by
MTCDs of various services in clustering-based mIoT.

to apply stream multiplexing, which enables the establishment of
parallel data streams with data packing. In particular, the stream
control transmission protocol (SCTP) [16], [17] is a transport
protocol that supports a stream multiplexing mechanism and
can be implemented at MTCGs to achieve data merging. How-
ever, adopting SCTP in mIoT scenarios with dynamic packet
transmissions is challenging since the SCTP only allows for
the multiplexing of a fixed number of streams [18]. There-
fore, proposing an effective packet assembling and forwarding
scheme for clustered-based mIoT scenarios is essential.

The stream multiplexing mechanism of the Quick UDP Inter-
net Connection (QUIC) protocol [19] accommodates a varying
number of data streams, with each stream having a distinct data
byte sequence. Besides, the payload of a QUIC packet comprises
frames that may carry user data or control signals from different
streams [20]. Consequently, QUIC ensures the data integrity
of streams while providing a tailored transmission strategy for
each stream. Nevertheless, merging received short packets using
QUIC at the MTCGs still faces the three following challenges:
� Stream scheduling with differentiated and dynamic latency

guarantee: Various tasks of MTCDs have differentiated
latency constraints [21], [22] (e.g., 1 ms latency in motion
control and 50 ms latency in remote monitoring [23]).
When heavy network congestion occurs, the transmission
of tasks that require ultra-low latency can be throttled
due to the simplified task scheduling and compulsory loss
recovery in the existing QUIC protocol. Data deliveries
with latency violations may cause severe safety hazards
and economic losses [24], [25]. Therefore, for a complex
and highly dynamic mIoT scenario, how to flexibly deliver
tasks from different streams with various stringent latency
requirements needs investigation.

� Frequent packet assembling with diminishing gain: The
arrival of each packet at the MTCGs triggers the packet
assembling in the existing QUIC protocol if the sender is
idle. However, the efficiency of current packet assembling
schemes [26] can still be improved by better utilizing the
available space of assembled packets. Consequently, fewer
packets are merged in the forwarding process, and the mul-
tiplexing gain of communication overhead is diminished.

� Trade-off between merging efficiency and latency: Al-
though packet merging at the MTCGs significantly reduces
the communication overhead, it inevitably brings addi-
tional latency for merging the data [27]. The forwarding
performance of each MTCG is determined by the real-
time network load conditions and its individual processing

capability. Consequently, it is challenging to obtain the
lowest communication overhead under latency constraints
in different mIoT environments.

In this paper, we design a self-adaptive packet assembling
scheme, called ShuttleBus,1 based on the QUIC protocol to
merge the massive short received packets at MTCGs. Specifi-
cally, an MTCG multiplexes concurrent data streams originating
from multiple MTCDs and extracts the received user data from
these streams as frames in QUIC packets. Subsequently, The
MTCG forwards the merged packets over a unique connection
to a central BS. To address the first challenge, we customize a
new type of QUIC frame to flexibly and rapidly notify the peer
of the latest transmission requirements of a specific stream. We
then establish latency-oriented stream-level transmission control
to meet the requirements of each stream, including sending
priorities, deadline-based scheduling, and optional retransmis-
sion. To address the second challenge, we devise a resilient
mechanism for the QUIC packet assembling process. This mech-
anism allows the assembling packet to wait for the possible
arrivals of new frames, provided that the packet still possesses
adequate payload space. As a consequence, this mechanism
further increases the number of multiplexing frames, thereby
reducing the number of forwarding packets. To address the third
challenge, we design a learning-based algorithm to limit the
tolerance time for each QUIC assembling packet according to
the real-time network conditions. In this way, the MTCGs can
balance the tradeoff between merging efficiency and additional
latency incurred during packet assembling, ultimately deriving
optimal performance.

We implement ShuttleBus at the MTCGs and conduct exten-
sive experiments under various network load conditions. At the
premise of forwarding the same amount of user data, ShuttleBus
reduces the packet rate by over 90%, decreases the total data rate
by an average of 30% and up to 45%, and reduces the number of
timeout data frames by an average of 70% and up to 80%. Our
main contributions are four-folded:
� We design ShuttleBus, a self-adaptive packet assembling

scheme at MTCGs based on the stream multiplexing of
QUIC. It significantly reduces the communication over-
head and thus increases the supported MTCD number
under the central BS.

� We build a latency-oriented negotiation and scheduling
mechanism to address the time-varying and differentiated
latency constraints of streams. To satisfy these constraints,
multiple transmission rules are provided for each stream.

� We develop a resilient packet assembling mechanism to
further increase the multiplexing frame number in packets
and alleviate congestion at MTCGs.

� We devise a learning-based algorithm to determine the
tolerance time for the current assembling packet. This
algorithm adapts to real-time network load and backlogged
data conditions.

The rest of this paper is organized as follows. Section II
presents a review of the relevant literature works. Section III

1In our scheme, an assembled packet forwards the user data from multiple
received packets like a shuttle bus transports multiple passengers simultaneously.

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

HE et al.: SHUTTLEBUS: DENSE PACKET ASSEMBLING WITH QUIC STREAM MULTIPLEXING FOR MASSIVE IOT 8309

provides an overview of the mIoT scenario and the packet
assembling process. The proposed packet assembling scheme,
ShuttleBus, is presented in Section IV, and the performance
analysis of the proposed scheme design is presented in
Section V. Experimental results are discussed in Section VI.
Section VII draws the concluding remarks for the paper.

II. RELATED WORK

Traffic packets in mIoT networks are characterized by their
large quantity and short lengths. In order to manage the massive
packets, many strategies have been investigated within the field
of data aggregation. Based on the specific aggregation function
employed, we present a comprehensive overview of existing
schemes, delineating those that utilize either a lossy or lossless
approach, respectively.

A. Data Aggregation in a Lossy Approach

Data aggregation is a widely recognized technique for enhanc-
ing energy efficiency by minimizing communication overhead
in WSNs [28], [29]. This scheme aggregates multiple data items
from information sources (i.e., sensors) to sink(s) to prolong the
network’s operational lifetime [30]. Data aggregation schemes
in WSNs can be broadly categorized into two groups: temporal
and spatial solutions [15]. Temporal solutions promote packet
convergence over time and aggregate sensor data items using
customized aggregation functions [13]. Solis et al. [31] em-
ployed a fixed rooting tree where elected nodes aggregate the
packets from their children. The nodes are required to wait for a
duration dependent on their depth in the tree to achieve the lowest
communication overhead. To maximize aggregation benefits,
Fan et al. [32] proposed a randomized waiting strategy that intro-
duces artificial latency to packets, thereby enhancing temporal
convergence. Spatial solutions, on the other hand, aim to design
an optimal routing protocol based on the spatial relationships of
data. In a clustering-based structure, a cluster head aggregates
data from all sensors within this cluster and directly forwards a
concise digest to the sink. Heinzelman et al. [33] assumed all
nodes possess equal energy capacity and developed the LEACH
protocol, which elects a cluster head based on real-time network
conditions. Younis et al. [14] targeted to maximize network
lifetime and proposed the HEED protocol to form efficient
clusters, assuming the availability of multiple power levels at
sensor nodes.

In previous studies, communication overhead was decreased
by performing intermediate node processing on raw data using
operations like MAX, MIN, SUM, and AVG. Consequently, only
the abstracted data rather than raw data were forwarded to the
sink.

Despite processing homogeneous raw readings is essential for
reducing communication load, thereby enhancing the network’s
efficiency, transmitting all raw readings may result in significant
energy consumption and communication overhead, potentially
limiting the effective network throughput. However, processing
homogeneous raw readings (such as temperature) can lead to a
loss of precision compared to transmitting all raw readings [15].
Therefore, striking a balance between minimizing transmission

costs and preserving data accuracy is crucial for further improv-
ing network performance.

B. Data Aggregation in a Lossless Approach

Compared with the cluster heads in WSNs, the MTCGs
in clustering-based mIoT have a significantly larger number
of received packets and connecting MTCDs. Most existing
studies on data aggregation in clustering-based mIoT focused
on transmission schemes rather than aggregation functions to
support massive readings. To characterize the interference and
coverage performance for massive Machine-Type Communica-
tions (mMTC) with data aggregation, Guo et al. [34] built a
tractable two-hop transmission model and obtained key per-
formance metrics such as MTCD success probability. Wang
et al. [7] analyzed the joint queue-length evolution of MTCGs
and employed a transmission scheme that forwards stored data
packets only when the length reaches a predetermined threshold.
López et al. [35] designed principles based on non-orthogonal
multiple access (NOMA) to enable data aggregation at MTCGs.
In their proposed hybrid access scheme, several MTCDs can
share the same orthogonal channel. Kim et al. [36] concentrated
on reducing signaling overhead caused by packet aggregation
and determined the optimal number of aggregators as a function
of MTCD density. Akyurek et al. [12] considered the various
applications in an mIoT cluster and reduced the number of
packets by aggregating data sent from multiple applications
on individual MTCDs instead of MTCGs. They traded off the
aggregation gain and latency by designing a gain function for
the optimal sending period.

The existing studies in this field predominantly rely on the
assumption that the raw data from all MTCDs and applica-
tions can be aggregated into a single packet, and subsequently
transmitted to sinks (e.g., the central BS). These studies employ
lossless aggregation approaches, promising that all readings can
be properly reconstructed from their aggregates at the sinks [29].
These approaches result in savings in the number of packets,
however, the total number of bytes being transmitted remains
unchanged. Notably, the present lossless approaches are insuf-
ficient in addressing the challenges posed by the current mIoT
systems. These challenges stem from the fact that the amount
of data transferred is continually increasing, leading to elevated
energy consumption and network congestion. Therefore, it is
important to explore alternative approaches that can efficiently
reduce both the amount of transferred bytes and number of
packets, without sacrificing the accuracy of the raw transmitted
data.

C. Summary

Different from the aforementioned studies, our work accom-
plishes data aggregation at MTCGs in a lossless approach, which
concurrently reduces both the number of packets and bytes sent.
Our primary focus lies in the practical implementation of the
complex packet merging tasks within the transport layer, while
accommodating multiple applications through the stream multi-
plexing mechanism facilitated by the emerging QUIC protocol.

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

8310 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

Fig. 2. Typical QUIC packet structure and a StreamFrame structure.

Besides, ShuttleBus quantitatively evaluates the gains of com-
munication overhead reduction resulting from data aggregation
in mIoT scenarios.

III. NETWORKING SCENARIO AND MOTIVATION

A. Clustering-Based mIoT Scenario

Consider a clustering-based mIoT network comprising multi-
ple MTCGs that connect hundreds of MTCDs, as Fig. 1 shows.
The clusters can be built and managed based on various fac-
tors, such as latency [37], location [38], and traffic characteris-
tics [39]. In this paper, we adopt the location-based clustering
scheme to construct the mIoT network and our work is compati-
ble with all these clustering schemes. This clustering-based net-
work builds a two-hop transmission architecture where MTCDs
access is divided into an intra-clustering transmission phase
and an MTCG forwarding phase. During the intra-clustering
transmission phase, MTCDs use lower power to send short
packets to their associated MTCGs rather than the central BS. In
the MTCG forwarding phase, MTCGs disassemble the received
packets, reassemble new packets, and forward these new packets
to the BS. In the mIoT network, densely deployed MTCDs,
such as sensors, actors, and controllers, have differentiated
latency constraints to execute various tasks [40]. Moreover,
the constraints of some emerging services, which necessitate
ultra-low latency, such as haptic communication, may decrease
to a sub-millisecond level [41].

Except for the differentiated transmission requirements, there
are some prominent communication characteristics in mIoT:
(i) short packets: packet payload lengths range from a few
bytes to several hundred bytes [36]; and (ii) uplink-dominated
transmission: a substantial portion of the data traffic is attributed
to sensor readings or MTCD status reports [42]. Given these
characteristics, MTCGs can potentially reduce communication
overhead by efficiently merging the short received uplink pack-
ets.

B. Packet Assembling in QUIC

As illustrated in Fig. 2, the QUIC packet structure comprises
a public header (colored in red) and a payload (colored in
blue) composed of a varying number of frames. Each frame
serves as an independent entry that carries either user data or
control signals. The frame type responsible for carrying user
data is referred to as StreamFrame, and its Stream ID field
indicates the stream to which it belongs. Consequently, a QUIC
packet can accommodate frames from multiple streams without

Fig. 3. Default active-stream queue and the frame packing rule of QUIC.

conflict [43]. Besides, each stream possesses an exclusive data
sequence, and the Offset field of each StreamFrame signifies
the position of its carried user data within the corresponding
sequence. Upon receiving a packet containing multiple Stream-
Frames, the receiver disassembles the packet and segments the
entire payload into StreamFrames by interpreting the values in
their Data Length fields. Therefore, the stream multiplexing of
QUIC ensures data integrity for each stream during transmission.

Based on the packet structure, Fig. 3 demonstrates the packet
assembling process of QUIC. Specifically, the sender maintains
an active-stream queue for all streams with data awaiting trans-
mission. When initiating packet assembling, the sender requests
data from these active streams sequentially. Each requested
stream is popped from the queue and a data block is taken either
from the stream’s retransmission buffer or from its transmission
buffer. This data block will be encapsulated as a StreamFrame
with a specific offset. If there is still data to be transmitted, the
stream will be appended to the end of the active-stream queue.
For example, as shown in Fig. 3, Stream 2 takes a data block
with an offset being 20 from its retransmission buffer and it
will append the data with the offset being 70 to the end of the
active-stream queue. The derived StreamFrames are then packed
into the current packet and prepared for transmission. Two
possible scenarios may lead to the end of packet assembling: (i)
the remaining payload space of the current packet is insufficient
to accommodate additional frames, or (ii) all active streams have
been processed.

The packet assembling process of QUIC exhibits two distinct
characteristics: (i) if the current active-stream queue is empty,
packet assembling is immediately triggered by the data arrival in
any stream, and (ii) the packing order of StreamFrames strictly
adheres the sequence of active streams without any additional
priority rules.

C. Our Approach

Integrating packet assembling with stream multiplexing at the
MTCGs offers several advantages for mIoT scenarios: (i) the
payload data of most packets sent by MTCDs comprise only
tens of bytes, whereas the maximum length of a QUIC packet
is approximately 1,500 bytes. This disparity enables MTCGs
to consolidate the data from multiple received packets into a
single outgoing packet; (ii) MTCDs generate a vast number
of parallel data streams, facilitating the assembling of packets
with data from distinct MTCDs utilizing stream multiplexing;

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

HE et al.: SHUTTLEBUS: DENSE PACKET ASSEMBLING WITH QUIC STREAM MULTIPLEXING FOR MASSIVE IOT 8311

Fig. 4. Packet merging process based on the stream multiplexing mechanism
at an MTCG.

and (iii) the volume of waiting data in a single active stream is
insufficient to fill an empty packet, given the low transmission
data rates of most MTCDs. Consequently, scheduling queued
active streams can efficiently manage packet assembling in the
considered mIoT scenario.

Leveraging these advantages, we aim to design a packet
assembling approach that efficiently merges the received packets
while adhering to their latency constraints. Initially, we recog-
nize the heterogeneous latency constraints of streams and estab-
lish tailored packet assembling rules for each. In this manner, the
unique constraints of streams are satisfied to the greatest extent
possible during packet assembling. Subsequently, we strive to
minimize communication overhead by increasing the average
multiplexing frame count in assembled packets. Specifically,
each partially filled QUIC packet is permitted to wait for a dura-
tion and accommodate newly arriving StreamFrames during this
interval. Lastly, to prevent the excessive prioritization of merging
efficiency at the expense of latency, we design an algorithm
that constrains the tolerance assembling time of QUIC packets.
This algorithm endeavors to achieve the lowest communication
overhead under latency constraints of raw data, depending on
real-time network load conditions and historical forwarding
capabilities.

IV. DENSE PACKET ASSEMBLING SCHEME

The proposed dense packet assembling scheme, ShuttleBus,
comprises four components: (i) a data merging approach based
on QUIC stream multiplexing is designed for forwarding tasks
at MTCGs; (ii) a latency-oriented negotiation and scheduling
mechanism is developed for all active streams, allowing for
flexible satisfaction of their latency constraints; (iii) a resilient
packing mechanism is implemented for extracted frames, which
serves to further reduce communication overhead; and (iv) an
adaptive learning-based algorithm is formulated to adjust the tol-
erance assembling time of the current packet. These components
are elaborated upon as follows.

A. Stream Multiplexing-Based Data Merging

As shown in Fig. 4, each MTCG establishes a connection
with each neighboring MTCD and the central BS, utilizing the
two-hop transmission architecture. Through these connections,
MTCGs receive packets from MTCDs and forward the acquired
user data to the central BS. We design the stream multiplexing-
based data merging (SMDM) approach using the QUIC protocol.

Fig. 5. Structure format of StreamPropertyFrame (in the unit of byte).

For an individual MTCG, the process involves the following
steps:
� Establishing a dedicated stream for the received data of

each connected MTCD in the connection with the BS.
� Disassembling the received packets to retrieve user data

and storing this data in the buffers of their respective
streams.

� Extracting available data blocks from active streams as
StreamFrames and packing them into the current packet.

� Sending the assembled packet, consisting of a public
header and all StreamFrames, to the central BS.

The SMDM approach enables an MTCG to multiplex concur-
rent data streams originating from distinct MTCDs, ensuring the
data integrity of these streams during transmission. Compared
with the conventional single-frame (data block) per packet for-
warding approach, SMDM diminishes the number of forwarding
packets by permitting the consolidation of data from multiple
packets into a single one. As a result, the MTCG significantly
reduces the number of bytes sent for packet headers. Besides,
when the network topology changes because an MTCD joins or
exits the cluster, the SMDM approach needs to add or delete a
QUIC data stream in the connection between the MTCG and the
central BS. In this way, this approach can cope with the dynamic
network topology of the clustering structure well.

B. Latency-Oriented Negotiation and Scheduling

In the current QUIC packet assembling with stream multi-
plexing, several rules present challenges to latency guarantees:
(i) the sender and receiver lack a flexible and rapid negoti-
ation approach for latency constraints; (ii) the packing order
of StreamFrames strictly adheres to the queueing sequence of
active streams, preventing a stream from extracting its awaiting
data until all preceding streams have been processed; and (iii)
mandatory retransmission rules may increase latency and im-
pede subsequent data transmission, for example, a lost Stream-
Frame should not be retransmitted if it has exceeded the latency
constraints of its stream.

To satisfy the latest latency constraint of each stream, we
build the latency-oriented negotiation and scheduling (LONS)
mechanism that consists of two modules as follows:

1) Negotiation Module: To ascertain the transmission rules
of each stream, the sender and the receiver require a negotia-
tion method to exchange information. Leveraging the adaptable
frame-based QUIC packet structure depicted in Fig. 2, we de-
sign and register a frame type named StreamPropertyFrame to
convey the transmission rules for a specific stream. As shown in
Fig. 5, a StreamPropertyFrame contains five fields:

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

8312 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

Fig. 6. Multi-priority active-stream queues. Stream 5 has a data block that
needs to be retransmitted.

� Frame Type: The identifier of this frame type. We register
0 × 20 as the StreamPropertyFrame type’s identifier.

� Stream ID: The identifier of the stream subject to latency
negotiation. The value is unique within a connection.

� Priority: The sending priority of the stream, with a default
value of 0. A higher value represents increased priority.

� Retransmission Rule: The retransmission rule governing
the stream. The default value is 0, signifying that a lost
frame associated with this stream must be retransmitted.
When set to 1, the decision to retransmit a lost frame
depends on the elapsed time and deadline constraint. When
set to 2, the lost frame will not be retransmitted.

� Deadline: The latency constraints applicable to the stream.
The default value is 0, indicating that the stream does
not have stringent latency constraints. When assigned a
positive value, the latency constraint is expressed in mil-
liseconds.

By sending StreamPropertyFrames, the sender can flexibly
and rapidly notify the receiver of these transmission rules when
a stream is established or when its rules are updated dynamically
based on its corresponding applications.

2) Scheduling Module: According to the latest information
received from the StreamPropertyFrames, we establish two
scheduling rules for active streams to ensure their latency con-
straints, as detailed below:
� Sending priority rule: We assign a priority level (indicated

in the Priority field) to each stream within the same con-
nection and build multiple active-stream queues. As shown
in Fig. 6, each priority possesses a dedicated active-stream
queue. If a stream has data to send, it is pushed into the
active-stream queue corresponding to its assigned priority.
During packet assembling, the sender requests data from
streams with higher priority levels before addressing those
with lower priority levels. In this way, the streams with
higher priority levels send their awaiting data as soon as
possible, which helps satisfy their latency constraints when
congestion arises at the MTCG.

� Retransmission rule: We tailor a specific retransmis-
sion rule (indicated in the Retransmission Rule field) for
each stream. For certain streams with ultra-low latency
constraints that cannot accommodate retransmission la-
tency, the lost StreamFrames may be designated as non-
retransmittable by the sender. Conversely, for streams with
more relaxed latency constraints, their lost StreamFrames
may be retransmitted as long as doing so does not breach

the constraints. It should be noted that any optional re-
transmission necessitates adjustments to the relevant flow
control rules for both the sender and receiver. For the sake
of brevity, we do not discuss these modifications in detail
within this paper.

C. Resilient Frame Packing

To assemble a packet, the sender must scan the active-stream
queues, extract the available StreamFrames, and pack them into
the current packet. If there are no active streams in the queues,
the sender periodically scans the queues until it obtains at least
one StreamFrame. Once StreamFrames start to be packed into
the current packet, the sender stops scanning until the packet
has loaded all extracted StreamFrames. Under the existing as-
sembling mechanism, when peak traffic is absent, most packets
only contain one or two StreamFrames. The reason is that the
scanning period for the active-stream queues is too brief to
coincide with the arrivals of multiple new packets sent from
MTCDs. Accordingly, the proposed SMDM approach does not
demonstrate apparent advantages over the conventional forward-
ing approach without data merging in terms of communication
overhead.

To further enhance the benefits of data merging, we propose
the resilient frame packing (RFP) mechanism to increase the
average number of StreamFrames in each assembled forwarding
packet. In RFP, after loading all extracted StreamFrames, the
current packet waits for a resilient period if it has sufficient
free payload space to load additional StreamFrames, instead
of being sent immediately. During the waiting period, the
sender continues to scan the active-stream queues and pack
the extracted StreamFrames from newly arrived packets into
the current packet. We set a tolerance time (denoted by T)
to limit the total frame packing time of a single packet. The
algorithm for calculating the tolerance time will be elaborated
in Section IV-D. In this way, the packet will be sent after
the tolerance time or when filled with StreamFrames. As a
result, there are three possible cases in the packet assembling
process:
� Case 1: Initial StreamFrames do not fill the packet, and

it waits for time T but without loading enough Stream-
Frames.

� Case 2: Initial StreamFrames do not fill the packet, and it
waits for time t (t ≤ T) to load enough StreamFrames.

� Case 3: Initial StreamFrames fill the packet, and it is sent
immediately after loading enough StreamFrames.

D. ShuttleBus Algorithm

Although the RFP mechanism significantly reduces com-
munication overhead and alleviates congestion, it inevitably
brings additional latency. Consequently, a balance has to be
struck between frame multiplexing efficiency and data latency
during packet assembling. In the packet assembling process with
RFP, the average latency of StreamFrames is positively corre-
lated with the tolerance assembling time T (will be proved in
Section V-B). Based on this observation, we tailor the ShuttleBus
algorithm to adaptively determine an appropriate T for each

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

HE et al.: SHUTTLEBUS: DENSE PACKET ASSEMBLING WITH QUIC STREAM MULTIPLEXING FOR MASSIVE IOT 8313

Fig. 7. Workflow of ShuttleBus at an MTCG.

packet. This algorithm calculates the maximum T under latency
constraints, achieving the lowest communication overhead.

1) System Modeling: As shown in Fig. 7, the QUIC packet
assembling process at the MTCGs comprises data arrivals from
MTCDs, packet assembling, packet sending, and periodic scan-
ning of the active-stream queues for newly arrived data.

Similar to existing works [12], [36], we model packet arrivals
using a Poisson process in an mIoT environment. This selection
is justified for two primary reasons: first, employing Poisson
process-based modeling enables a more tractable performance
analysis; second, the arrival characteristics observed in actual
massive-access tests demonstrate a strong correlation with these
models generated by the Poisson process. Concretely, for an
MTCG connecting withN MTCDs, packet arrivals at the MTCG
from MTCD i are modeled as a Poisson process with arrival rate
λi. Then, the packet arrivals from all MTCDs form a Poisson
process with the total arrival rate Λ =

∑N
i=1 λi. We define the

packing time of a StreamFrame as a constant T1, which includes
the time required to extract it from a stream and configure its
frame header. The transmission time of a StreamFrame is a
constantT2 when the bandwidth of the link remains stable. Upon
completing the assembling of the current packet j, the sender
scans the active-stream queues for newly arrived StreamFrames
to assemble the subsequent packet j+1. The scanning interval
for the queues is also a constant T3. The constant c represents the
maximum number of StreamFrames that can be packed into an
empty packet, which is determined by the average length of the
arrived StreamFrames. In the default packet assembling process
without RFP, for a packet containing n (n ≤ c) StreamFrames,
the maximum experienced latency D of its StreamFrames is:

D = tb + nT1 + nT2 (1)

where tb (tb ≤ T3) is the backlogged time of the first Stream-
Frame in the active-stream queues.

2) CalMinRemPackTime() Function: To derive the maxi-
mum value ofT for each packet, we must calculate the remaining
tolerance time of each packed StreamFrame according to its
latency constraint and the current time.

More specifically, for the assembling packet j, we denote the
set of StreamFrames to be packed into it as SF j . Upon initiating
the assembling of packet j, we calculate its tolerance assembling
time Tj as:

Tj = min
(
δSF j,min

,
c

Λ
− T3

)
(2)

Algorithm 1: CalMinRemPackTime() Function.

where δSF j,min
is defined as the smallest remaining assembling

time among all StreamFrames of SF j . Given that the total
assembling time includes both queues scanning and subsequent
waiting, c

Λ − T3) serves as a constraint that ensures T can effec-
tively regulate the packet assembling process (will be explained
in Section V-A). Each time a new StreamFrame is added to
SF j , we update the value of δSF j,min

accordingly. For each
StreamFrame s (s ∈ SF j), we designate its remaining packing
time as:

δs = α [σs − ts,b − c ∗ (T1 + T2)] (3)

where σs is the latency constraint of s and ts,b is the backlogged
time of s in the active-stream queues. Algorithm 1 exhibits the
workflow of the CalMinRemPackTime() function that calculates
the latest δSF j,min

. To avoid timeouts caused by potential net-
work fluctuation, we allocate time for packing and sending c
StreamFrames as shown in (3). Additionally, we employ the
weighting factor α (α ∈ (0, 1]) to balance the tradeoff between
merging efficiency and latency of StreamFrames.

3) Network Load-Aware Weighting Algorithm: Calculating
the optimal value ofα is challenging in dynamic mIoT networks.
Intuitively, for packet assembling within the same MTCG, a
larger α value leads to reduced communication overhead but
increased additional latency. However, our testing indicates that
the performance of α is determined not only by the capability
of the physical MTCGs but also by the real-time network load
conditions.

Under heavy network load, a larger α achieves lower commu-
nication overhead and similar latency performance compared
with a smaller α. This outcome occurs because a significant
proportion of packets exit the waiting process early in Case
2, which assists in coping with potential network fluctuations.
Conversely, under light network load, although a small α in-
curs higher communication overhead, it exhibits better latency
performance than a large α. This finding is attributed to the
fact that most packets cannot load enough StreamFrames in
Case 1 and consequently wait for the complete tolerance time.
If unpredictable network fluctuations occur, the StreamFrames
contained in these packets are more likely to violate latency
constraints.

Therefore, the packet assembling scheme has to obtain the
mapping from the network load degrees to the optimal α value.
But for MTCGs with varying capabilities, the mappings also

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

8314 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

Algorithm 2: NLAW Algorithm.

differ. In this case, for each individual MTCG, we employ deep
reinforcement learning (DRL) [44] to learn the mapping from
the network load degrees to the optimal α value. Owing to the
model-free learning capability, most DRL-based methods per-
form well in a Markov decision process (MDP) framework [45],
[46], which involves an agent, state space, and action space.
At each epoch, the agent observes the environment’s states and
determines a corresponding action. After executing this action
in the environment, the agent receives a reward for the action to
optimize its decision-making policy. Here, the policy represents
a mapping from the state space to the action space, iteratively
optimized by specific DRL optimization algorithms. We cus-
tomize the MDP framework for forwarding tasks at MTCGs as
follows:
� Agent: The agent is an entity deployed to an MTCG and

makes decisions about the optimal α value for this MTCG.
� State Space: The state space needs to represent the real-time

network load degrees of the MTCG. Hence, we select two
metrics as the states: the normalized real-time packet rate
and data rate received from MTCDs.

� Action Space: Each action corresponds to an α value,
making the action space a continuous range from 0 to 1.

� Reward: The reward of an action at a given epoch has to
consider latency constraints and communication overhead.
Thus, we define the reward function at epoch m as:

rm = − (pm + dm) (4)

where pm and dm represent the normalized proportion of
timeout StreamFrames and the sent data amount from the
MTCG at epoch m, respectively.

Using this framework, we can derive the optimal mapping
from network load degrees to the weighting factorα value by op-
timizing the decision-making policy. Due to the continuous state
and action spaces, we adopt the twin delayed deep deterministic
(TD3) [47] algorithm that excels in continuous decision-making

Algorithm 3: ShuttleBus Algorithm.

tasks. To obtain a strong learning capability, all models including
actors, critics, and target neural networks are built by three
fully-connected neural layers. These models of a single TD3
agent are deployed on each MTCG and work for the respective
MTCG. We outline the drafted DRL-based network load-aware
weighting (NLAW) algorithm in Algorithm 2. As shown, at each
epoch, the agent assembles a transition vector and stores it in the
experience pool. The agent then samples some transition vectors
from the experience pool and optimizes the policy using the TD3
algorithm. In this way, the agent can ultimately determine the
optimal α value according to the real-time network load degrees
for the MTCG. Note that for a specific MTCG, its computing
capability and the total bandwidth between it and the central BS
hardly change. Thus, the DRL models of an MTCG do not need
to be frequently retrained using new data samples, and the model
inference is usually time and computation-efficient.

4) Complete Shuttlebus Algorithm: In summary, the com-
plete workflow of the ShuttleBus algorithm is outlined in
Algorithm 3. For the current assembling packet j, the number of
available StreamFrames in all active-stream queues is initially
checked. Following this, as many StreamFrames as possible are
packed into packet j. If there is still free space for additional

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

HE et al.: SHUTTLEBUS: DENSE PACKET ASSEMBLING WITH QUIC STREAM MULTIPLEXING FOR MASSIVE IOT 8315

Fig. 8. Three possible cases of packet assembling.

StreamFrames, packet j starts to wait, and its current tolerance
assembling time Tj is calculated based on the CalMinRemPack-
Time() function and the NLAW algorithm. During the waiting,
the value of Tj is updated each time a new StreamFrame arrives.
Either the time is up or packet j is full, the waiting is terminated,
and the packet is sent immediately.

V. PERFORMANCE ANALYSIS

A. Impact of the RFP on Congestion

To ensure the long-term effective operation of MTCGs, we
assume that the long-term average speed of data forwarding by
MTCGs exceeds the average speed of data arrival. According
to the queueing model constructed in Section IV-D, there must
be a stable probability distribution πn for n StreamFrames in
an assembled packet. For each StreamFrame, violation of the
latency constraint occurs solely due to congestion. In the packet
assembling process without RFP, we define congestion as the
arrival of at least c packets at the MTCG within a short time.
Specifically, this short time encompasses the frame packing time
of the last packet and the subsequent scanning interval for the
current packet. For simplicity, we ignore the packet disassem-
bling process and directly use the extracted StreamFrames to
replace the received packets in the subsequent analysis. Given
that arrivals of StreamFrames from all MTCDs adhere to a
Poisson process, the probability of congestion PC is expressed
as:

PC =

∞∑
k=c

c−1∑
n0=0

Λk (T3 + n0T1πn0
)k

k!
e−Λ(T3+n0T1πn0) (5)

where n0 is the number of StreamFrames in the last packet.
With RFP, we can model the three cases of packet assembling

discussed in Section IV-C, as illustrated in Fig. 8. In this figure,
the dotted lines represent the number of StreamFrames arrived,
while the solid lines represent the number of StreamFrames
packed. The cases exhibit distinct characteristics of the Stream-
Frames’ arrival process as follows:
� Case 1: Fewer than c StreamFrames arrive during (T +
T3).

� Case 2: Fewer than c StreamFrames arrive during T3, and
at least c StreamFrames arrive during (T + T3).

� Case 3: At least c StreamFrames arrive during T3.
To ensure that the T setting effectively regulates RFP,

(T + T3) should not exceed c/Λ; otherwise, most packets will
load c StreamFrames during T . Consequently, the congestion
probability with RFP is equal to the probability of Case 3

occurrence:

P3 =
∞∑

k=c

ΛkT k
3

k!
e−ΛT3 (6)

The conclusion that P3 is smaller than PC is reached re-
gardless of the value of distribution πn, which proves that RFP
reduces the probability of congestion at the MTCG.

B. Average Latency of StreamFrames at the MTCGs

The packet assembling process with RFP constitutes a batch-
service queueing process [48], [49]. The frame packing duration
depends on the number of StreamFrames [50], but the total time
of packet assembling varies (i.e., awaiting additional incoming
StreamFrames). This attribute complicates the modeling process
using conventional queueing models. Thus, we analyze the aver-
age latency of StreamFrames according to their arrival patterns.

Building upon the analysis presented in Section V-A, we ini-
tially derive the probabilities of Case 1 and Case 2 occurrences:

P1 =
c−1∑
k=1

Λk (T + T3)
k

k!
e−Λ(T+T3) (7)

P2 =

∞∑
k=c

[
Λk(T + T3)

k

k!
e−Λ(T+T3) − ΛkT k

k!
e−ΛT

]
. (8)

As depicted in (5), P3 is a constant independent of T , which
implies that the sum of P1 and P2 is also a constant equal to
(1− P3). Next, we calculate the derivative of P1:

P ′
1 = −Λe−Λ(T+T3)

(ΛT + ΛT3)
c−1

(c− 1)!
. (9)

Accordingly, P ′
1 remains consistently negative. Therefore,

with the increase of T , P1 decreases and P2 increases, which
proves that T directly governs the ratio of P1 to P2. In the
following, we solely analyze the relationship between T and the
weighted average latencyD(T) of the first StreamFrame packed
into the current packet in Case 1 and Case 2. D(T) represents
the sum of the processing latency (inclusive waiting and packing
time) and transmission latency.

In Case 1, the weighted average processing latency D1,p(T)
and transmission latency D1,t(T) are given by:

D1,p(T) = P1 · (T + T3) (10)

D1,t(T) = P1 · nT2 = P1 · Λ (T + T3)T2. (11)

In Case 2, the weighted average processing latency D2,p(T)
and transmission latency D2,t(T) are obtained based on the
probability density function of a Poisson process:

D2,p(T) =

∫ T+T3

T3

Λe−Λt (Λt)
c−1

(c− 1)!
dt

= Λc−1c

⎡
⎢⎣
(

c∑
k=1

T k
3

k!
+

1

Λ

)
e−ΛT3

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

8316 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

−
(

c∑
k=1

T k

k!
+

1

Λ

)
e−ΛT

⎤
⎥⎦ (12)

D2,t(T) = P2 · cT2. (13)

Thus, the weighted average latency in Case 1 and Case 2 can
be expressed as:

D(T) = D1,p(T) +D1,T (T) +D2,p(T) +D2,T (T)

= (1 + ΛT2) (T + T3)

c−1∑
k=1

Λk (T + T3)
k

k!
e−Λ(T+T3)

+Λc−1c

[(
c∑

k=1

T k
3

k!
+

1

Λ

)
e−ΛT3

−
(

c∑
k=1

T k

k!
+

1

Λ

)
e−ΛT

]
+ P2 · cT2. (14)

We denote the three terms in (13) as follows:

f1(T) = (1 + ΛT2) (T + T3)

c−1∑
k=1

Λk (T + T3)
k

k!
e−Λ(T+T3)

f2(T) = Λc−1c

[(
c∑

k=1

T k
3

k!
+

1

Λ

)
e−ΛT3

−
(

c∑
k=1

T k

k!
+

1

Λ

)
e−ΛT

]

f3(T) = P2 · cT2. (15)

Then, the derivative of the weighted average latency D(T)
can be obtained by adding the derivatives of the three terms. To
this end, we calculate these derivatives respectively:

f ′
1(T) = (1 + ΛT2)

[
c−1∑
k=1

Λk (T + T3)
k+1

k!
e−Λ(T+T3)

]′

= (1 + ΛT2) e
−Λ(T+T3) (16)[

(ΛT + ΛT3) +

c−1∑
k=1

(ΛT + ΛT3)
k

k!
− (ΛT + ΛT3)

c

(c− 1)!

]

f ′
2(T) = − Λc−1c

[
c∑

k=1

(T + T3)
k

k!
e−Λ(T+T3) +

e−Λ(T+T3)

Λ

]′

= cΛc−1e−Λ(T+T3)

[
1 +

c∑
k=1

(T + T3)
k

(k − 1)!

(
ΛT + ΛT3

k
− 1

)]
(17)

≈ cΛc−1e−Λ(T+T3)

f ′
3(T) = P ′

2 · cT2. (18)

Clearly, f ′
3(T) remains consistently positive. Next, we judge

whether (f ′
1(T) + f ′

2(T)) is positive or negative:

f ′
1(T) + f ′

2(T) = e−Λ(T+T3){
cΛc−1+

[
ΛT+ΛT3+

c−1∑
k=1

(ΛT+ΛT3)
k

k!
−Γ

]
(1+ΛT2)

}

> e−Λ(T+T3)

{
cΛc−1+

[
c−1∑
k=1

(ΛT+ΛT3)
k

k!
−Γ

]
(1+ΛT2)

}

> e−Λ(T+T3)

{
cΛc−1 +

[
(ΛT + ΛT3)

c−1

(c− 1)!
− Γ

]
(1 + ΛT2)

}

>
Λc−1e−Λ(T+T3)

(c− 1)!

[
c!+(1−ΛT−ΛT3)(1+ΛT2)(T+T3)

c−1
]

(19)

where

Γ =
(ΛT + ΛT3)

c

(c− 1)!
. (20)

Since (T + T3) is larger than c/Λ, which is significantly
smaller than 1, (f ′

1(T) + f ′
2(T)) is greater than 0. Consequen-

tly, the derivative of the average latency D(T) remains con-
sistently positive, indicating that D(T) of StreamFrames is
positively correlated with T . This conclusion proves that ad-
justing T significantly impacts data delivery performance when
aiming to reduce communication overhead.

VI. EXPERIMENTAL RESULTS

In this section, we first introduce the evaluation settings.
Second, we validate the effectiveness of ShuttleBus and its
components on communication overhead. We also compare
ShuttleBus with benchmarks to demonstrate its benefits in data
delivery under differentiated latency constraints. Last, we con-
duct an in-depth analysis of the packet assembling process and
the involved parameters.

A. Evaluation Setting

1) Experimental Environment: Constructing an actual mIoT
network deploying thousands of MTCD entities is challenging.
Hence, we design a practical approach based on some docker
containers equipped with the QUIC protocol,2 enhanced by the
proposed ShuttleBus. In this approach, a container can function
as a BS, an MTCG, or a group of MTCDs, as illustrated in Fig. 9.
To measure the latency accurately, all containers are deployed
in a Dell workstation (CPU: Intel I7-10700 2.9 GHz, Memory:
64 G DDR4 3200 MHz). In the intra-clustering transmission
phase, each MTCD container builds multiple QUIC connec-
tions with an MTCG container by utilizing different ports. In
this phase, each connection contains a single QUIC stream to
transmit the raw data of the corresponding MTCD, and these
connections operate concurrently to simulate transmission from
multiple independent MTCDs. In the MTCG forwarding phase,

2The code of the enhanced QUIC protocol is modified based on the quic-go
project (https://github.com/lucas-clemente/quic-go).

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

https://github.com/lucas-clemente/quic-go

HE et al.: SHUTTLEBUS: DENSE PACKET ASSEMBLING WITH QUIC STREAM MULTIPLEXING FOR MASSIVE IOT 8317

TABLE I
EXPERIMENTAL NETWORK TRACES

Fig. 9. An illustration of our simulated network.

each MTCG container builds a single QUIC connection with
the unique central BS container, and hundreds of streams run
simultaneously within this connection. In this way, the approach
effectively simulates the two-hop communication in an mIoT
network.

2) Experimental Setting: Referring to related works [4],
[51], [52], we configure certain network parameters as follows.
To clearly distinguish the transmission priorities of MTCDs
clearly, we categorize them into three types with different
priority levels: high-priority (HP), regular-priority (RP), and
low-priority (LP) (the number of MTCD priority levels can
be adjusted based on specific mIoT scenarios). The latency
constraints and packet generation intervals for HP, RP, and LP
MTCDs are set at 1ms and 2ms, 10ms and 10ms, and 50ms and
20ms, respectively. Among all MTCDs, the distribution of HP,
RP, and LP MTCDs is 5%, 45%, and 50%.

To generate various network load conditions, we create a BS
container, four MTCG containers, and four MTCD containers
that simulate a total MTCD count ranging from 400 to 4,000. We
set the average payload length of packets sent from MTCDs at
50 bytes, thus the network load degree of an MTCG is directly
proportional to the number of connected MTCDs. Except for
fixed network loads, we generate four random network traces
with varying numbers of MTCDs and durations, as listed in
Table I. In each trace, the number of MTCDs varies from 400
to 4,000, and the duration ranges from 5,000 to 10,000 millisec-
onds. Whenever the number of MTCDs changes, we randomly
select corresponding numbers of MTCDs with different priority
levels and update their latency constraints using the proposed
StreamPropertyFrame in the network.

To simulate the wireless links between MTCGs and MTCDs,
we configure the data transmission rate of the links at 3 MB/s
with a 0.1% random packet loss rate [53]. In these links, the
transmission latency of a packet is about 300 μs, which has
been taken into account when calculating the total latency. The
links between the MTCGs and the BS are set as wireless (with
a 0.1% random packet loss rate), and their data transmission
rates are set at 100 MB/s. In typical mIoT scenarios, the total
distance between MTCDs and the BS spans hundreds of meters
to several kilometers. Consequently, the total propagation time is
only several microseconds, which is not considered a bottleneck.

B. Performance on Communication Overhead

We collect two metrics of communication overhead in MTCG
containers: the average forwarding packet rate and the average
forwarding data rate incurred by transmitting the same amount
of user data. The data rate encompasses both packet headers and
payloads. We compare ShuttleBus with conventional forward-
ing approaches using TCP and QUIC connections (denoted as
TCP-Forwarding and QUIC-Forwarding, respectively) without
data merging. Besides, we conduct distillation experiments to
analyze the impact of ShuttleBus components. Specifically, we
document the results of the pure SMDM approach (denoted
as SMDM-only), the SMDM approach with RFP (denoted as
SMDM-RFP), and the SMDM approach with LONS (denoted as
SMDM-LONS). In the following experiments, the DRL models
of ShuttleBus and SMDM-RFP are trained offline first by using
the simulated data before conducting online inference tasks.

Tables II and III summarize the performance of these ap-
proaches at MTCGs with fixed and dynamic network loads,
respectively. We observe that: (i) TCP-forwarding and QUIC-
forwarding send a similar number of packets, but QUIC-
forwarding consumes more bandwidth resources due to the short
frame headers of QUIC StreamFrames. (ii) Compared with the
conventional forwarding schemes, SMDM-based approaches
(including ShuttleBus) show apparent advantages in the com-
munication overhead, indicating that merging multiple short
packets effectively conserves network resources. (iii) The RFP
mechanism significantly reduces the packet rate and data rate, as
the average multiplexed frame number per packet dramatically
increases. (iv) The LONS mechanism decreases communica-
tion overhead by effectively scheduling data transmission under
dynamic network loads. (v) By integrating these mechanisms,
ShuttleBus derives the best performance in communication
overhead reduction among all schemes under most network

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

8318 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

TABLE II
COMMUNICATION OVERHEAD DURING THE FORWARDING WITH FIXED NETWORK LOADS

TABLE III
COMMUNICATION OVERHEAD DURING THE FORWARDING WITH DYNAMIC NETWORK LOADS

conditions, reducing the packet rate by over 90% and the data
rate by about 30% to 45%.

C. Performance on Data Delivery (Latency)

In this subsection, we focus on determining whether the
data violate latency constraints before delivery. To evaluate
this, we define two metrics: the proportion of waiting timeout
StreamFrames (PWTS) and the proportion of delivery timeout
StreamFrames (PDTS). PWTS and PDTS are the proportions
of StreamFrames that exceed the latency constraints during
backlog and before delivering to the BS, respectively. We
compare the ShuttleBus scheme with the conventional QUIC-
forwarding approach and conduct the same distillation experi-
ments as Section VI-B to evaluate the impact of the proposed
components on data delivery.

In our testing, the values of PDTS and PWTS are minimal
when the network load is low. Hence, in experiments with
fixed network loads, we assess the data delivery performance
in mIoT networks, with the total number of MTCDs ranging
from 2,800 to 4,000. As plotted in Fig. 10, we observe that:
(i) QUIC-Forwarding exhibits the poorest performance under
all network conditions due to inefficient resource utilization
without data merging. Besides, the performance difference be-
tween QUIC-Forwarding and other schemes becomes more
pronounced with increased network load. (ii) Upon adopting the
RFP or LONS mechanisms, both metrics show marked declines.
We can conclude that the RFP and LONS mechanisms contribute
to satisfying latency constraints in mIoT scenarios. With these

Fig. 10. Data delivery performance of forwarding approaches under different
network load conditions.

components, ShuttleBus reduces the proportions of timeout
StreamFrames by approximately 50% to 85%. (iii) Compared
with SMDM-LONS, although the PDTS of ShuttleBus may be
marginally larger when the network load is light, the PWTS
of ShuttleBus is considerably smaller under all conditions. This
outcome is attributable to the RFP mechanism’s ability to reduce
congestion probability and data backlogged time, as demon-
strated in Section V-A.

D. In-Depth Analysis of ShuttleBus

1) Probabilities of Three Possible Cases: To investigate the
packet assembly process of ShuttleBus, we document the al-
terations in the probabilities of three potential cases after im-
plementing the RFP mechanism, as discussed in Sections VI.
Fig. 11(a) and (b) display the average results at the MTCGs under

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

HE et al.: SHUTTLEBUS: DENSE PACKET ASSEMBLING WITH QUIC STREAM MULTIPLEXING FOR MASSIVE IOT 8319

Fig. 11. Probabilities of the cases under different network load conditions.

Fig. 12. Number of backlogged StreamFrames at the MTCGs.

fixed and dynamic network loads, respectively. In Fig. 11(a), the
constraint on tolerance assembling time leads to the predomi-
nance of Case1 under most conditions, preventing the sender
from blindly pursuing a reduction in communication overhead
at the expense of increased latency. As the fixed network load
rises, the probabilities of Case2 and Case3 both increase, im-
plying a larger average number of multiplexed StreamFrames
within each QUIC packet. In Fig. 11(b), the probabilities of
Case1 are substantially higher than those of the other two
cases across all random network traces. The reason is that
Shuttlebus assembles a greater number of packets under low net-
work load conditions to ensure adherence to latency constraints.
These findings confirm that the packet assembling process of
ShuttleBus effectively balances communication overhead and
latency.

2) Congestion Conditions: To access congestion at the
MTCGs, we sample the number of active streams in the queues
every 200 ms under the heaviest network load (i.e., 4,000
MTCDs). We illustrate the collected data when the RFP mech-
anism is incorporated into the SMDM-only and SMDM-LONS
schemes in Fig. 12(a) and (b), respectively. As shown, in all
schemes, sudden congestion is not entirely avoided due to
the limited processing capacity of MTCGs. However, the con-
gestion in ShuttleBus is significantly alleviated in frequency
after integrating the RFP mechanism into both the SMDM-
only and SMDM-LONS schemes. This is because the proposed
RFP mechanism diminishes the congestion probability during
the packet assembling process, as analyzed in Section V-A.
Moreover, in comparison to the backlogged conditions in
SMDM-only, SMDM-LONS considerably reduces the potential
congestion occurring at the MTCGs. This outcome proves that

Fig. 13. Data rate and timeout StreamFrame ratio (TFR) of an MTCG using
different values of α with fixed network loads.

the proposed LONS mechanism also contributes to efficient
and timely data forwarding through the use of latency-oriented
scheduling.

3) Impact of α in Equation (3): To evaluate the impact of
α on the merging efficiency (i.e., communication overhead re-
duction) and latency of StreamFrames, we conduct experiments
where α ranges from 0.1 to 1.0. Fig. 13 plots the average
packet rate and timeout StreamFrame ratio (i.e., the sum of
PDTS and PWTS) at each MTCG, with a fixed total number
of connected MTCDs ranging from 400 to 4,000. In the figure,
a larger α value results in higher merging efficiency owing to an
extended tolerance assembling time; however, it also increases
the risk of timeout when the network load is low. The reason
is that most packets wait for an entire tolerance assembling
time before being sent under a low network load, causing the
data delivery performance to be easily affected by unpredictable
network fluctuations. Conversely, a small α value does not
guarantee meeting latency constraints for data under a heavy
network load, as this leads to inefficient packet merging at the
MTCGs.

By adopting the NLAW algorithm, the proposed ShuttleBus
selects the optimal α value according to real-time network load
conditions. As shown in Fig. 13, ShuttleBus with the NLAW
algorithm achieves superior data delivery performance com-
pared to using fixedα values. Furthermore, although ShuttleBus
consumes slightly more communication resources when the
network load is low, it yields the lowest communication overhead
under other network load conditions.

Additionally, we compare the ShuttleBus scheme with various
fixed values of α at the MTCGs under dynamic network loads,

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

8320 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

Fig. 14. Data rate and timeout StreamFrame ratio (TFR) of an MTCG using
different values of α with dynamic network loads.

exhibiting the results in Fig. 14. As shown, fixedα values cannot
simultaneously optimize communication overhead and timely
data delivery metrics under dynamic network loads. In contrast,
ShuttleBus obtains the best performance for both metrics across
all random network traces. This is due to its ability to adapt α
values according to real-time network load conditions, seeking
to minimize communication overhead while adhering to latency
constraints. In summary, the proposed ShuttleBus effectively
balances the trade-off between communication overhead and
data delivery performance under all network load conditions.

VII. CONCLUSION

In this paper, we have proposed a QUIC-based dense packet
assembling scheme, ShuttleBus, to address the short packet
forwarding issue at MTCGs for dynamic clustering-based mIoT.
With ShuttleBus, the QUIC protocol can be enhanced to reduce
the communication overhead and satisfy differentiated latency
constraints when aggregating and forwarding the transmission of
massive parallel connections. The advantages and practicality of
ShuttleBus are: (i) it preserves data integrity of QUIC streams
during packet reassembling and massive end-to-end transmis-
sions, while providing excellent scalability for adjusting the
stream count; (ii) its improvement of network resource utiliza-
tion significantly increases the afforded MTCD number under
a central BS and supports more dense communications for an
mIoT scenario; (iii) since the underlying QUIC protocol operates
in the user space, ShuttleBus is compatible with most real-world
middlebox implementations. The QUIC-based ShuttleBus can
be deployed in emerging massive MTC scenarios to improve
network performance. For future work, we will investigate more
flexible data scheduling approaches, such as data replication
and data acknowledgment for QUIC streams traversing multiple
wireless paths, to further enhance the transmission reliability.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
Internet of Things: Challenges, opportunities, and directions,” IEEE Trans.
Ind. Inform., vol. 14, no. 11, pp. 4724–4734, Nov. 2018.

[2] J. Bai, H. Song, Y. Yi, and L. Liu, “Multiagent reinforcement learning
meets random access in massive cellular Internet of Things,” IEEE Internet
Things J., vol. 8, no. 24, pp. 17 417–17 428, Dec. 2021.

[3] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward
6G networks: Use cases and technologies,” IEEE Commun. Mag., vol. 58,
no. 3, pp. 55–61, Mar. 2020.

[4] 6G: The next horizon white paper, Huawei, 2021. [Online].
Available: https://www.huawei.com/en/technology-insights/future-
technologies/6g-white-paper

[5] U. Tefek and T. J. Lim, “Full-duplex relaying in machine-type communica-
tions with a multi-antenna base station,” IEEE Trans. Wireless Commun.,
vol. 17, no. 9, pp. 5804–5817, Sep. 2018.

[6] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative edge
caching in user-centric clustered mobile networks,” IEEE Trans. Mobile
Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[7] T. Wang, Y. Wang, Z. Yang, and J. Cheng, “Group-based random access
and data transmission scheme for massive MTC networks,” IEEE Trans.
Commun., vol. 69, no. 12, pp. 8287–8303, Dec. 2021.

[8] 3GPP, “Service requirements for machine-type communications,”
3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 22.368, version 17.0.0, Dec. 2014. [Online]. Available: https:
//portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=645

[9] X. Shen, G. Jie, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network
virtualization and pervasive network intelligence for 6G,” IEEE Commun.
Surveys Tuts., vol. 24, no. 1, pp. 1–30, First Quarter, 2022.

[10] J. Postel, “Transmission control protocol,” RFC 793, Sep. 1981. [Online].
Available: https://www.rfc-editor.org/info/rfc793

[11] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, “TCP exten-
sions for high performance,” RFC 7323, Sep. 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7323

[12] A. S. Akyurek and T. S. Rosing, “Optimal packet aggregation scheduling
in wireless networks,” IEEE Trans. Mobile Comput., vol. 17, no. 12,
pp. 2835–2853, Dec. 2018.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A
tiny aggregation service for ad-hoc sensor networks,” in Proc. 5th Symp.
Operating Syst. Des. Implementation, Boston, MA, USA, 2002, pp. 131–
146.

[14] O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” IEEE Trans. Mobile
Comput., vol. 3, no. 4, pp. 366–379, Fourth Quarter, 2004.

[15] F. Ren, J. Zhang, Y. Wu, T. He, C. Chen, and C. Lin, “Attribute-aware
data aggregation using potential-based dynamic routing in wireless sensor
networks,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 5, pp. 881–892,
May 2013.

[16] R. Stewart, “Stream control transmission protocol,” RFC 4960, Sep. 2007.
[Online]. Available: https://www.rfc-editor.org/info/rfc4960

[17] R. Stewart, M. Tüxen, and M. Proshin, “Stream control transmission
protocol: Errata and issues in RFC 4960,” RFC 8540, Feb. 2019. [Online].
Available: https://www.rfc-editor.org/info/rfc8540

[18] E. Volodina and E. P. Rathgeb, “Flow control in the context of the
multiplexed transport protocol QUIC,” in Proc. IEEE 45th Conf. Local
Comput. Netw., Sydney, Australia, 2020, pp. 473–478.

[19] A. Langley et al., “The QUIC transport protocol: Design and internet-scale
deployment,” in Proc. Conf. ACM Special Int. Group Data Commun., Los
Angeles, CA, USA, 2017, pp. 183–196.

[20] M. Bishop, “Http/3,” RFC 9114Jun. 2022. [Online]. Available: https://
www.rfc-editor.org/info/rfc9114

[21] Q. Li, J. Chen, M. Cheffena, and X. Shen, “Channel-aware latency tail
taming in Industrial IoT,” IEEE Trans. Wireless Commun., vol. 22, no. 9,
pp. 6107–6123, Sep. 2023.

[22] S. Yan, Q. Ye, and W. Zhuang, “Learning-based transmission protocol
customization for VoD streaming in cybertwin-enabled next-generation
core networks,” IEEE Internet Things J., vol. 8, no. 22, pp. 16 326–16 336,
Nov. 2021.

[23] 5G for connected industries and automation, 5G Alliance Connected Ind.
Autom., white paper, Frankfurt, Germany, Feb. 2019.

[24] T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Fully distributed packet
scheduling framework for handling disturbances in lossy real-time wireless
networks,” IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 502–518,
Feb. 2021.

[25] Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang, and X. Shen, “Joint RAN
slicing and computation offloading for autonomous vehicular networks:
A learning-assisted hierarchical approach,” IEEE Open J. Veh. Technol.,
vol. 2, pp. 272–288, Jun. 2021.

[26] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and secure
transport,” RFC 9000, May 2021. [Online]. Available: https://www.rfc-
editor.org/info/rfc9000

[27] Q. Xiang, H. Zhang, J. Xu, X. Liu, and L. J. Rittle, “When in-network
processing meets time: Complexity and effects of joint optimization in
wireless sensor networks,” IEEE Trans. Mobile Comput., vol. 10, no. 10,
pp. 1488–1502, Oct. 2011.

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

https://www.huawei.com/en/technology-insights/future-technologies/6g-white-paper
https://www.huawei.com/en/technology-insights/future-technologies/6g-white-paper
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx{?}specificationId$=$645
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx{?}specificationId$=$645
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx{?}specificationId$=$645
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc8540
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000

HE et al.: SHUTTLEBUS: DENSE PACKET ASSEMBLING WITH QUIC STREAM MULTIPLEXING FOR MASSIVE IOT 8321

[28] R. Rajagopalan and P. K. Varshney, “Data-aggregation techniques in sensor
networks: A survey,” IEEE Commun. Surveys Tut., vol. 8, no. 4, pp. 48–63,
Fourth Quarter, 2006.

[29] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: A survey,” IEEE Wireless Com-
mun., vol. 14, no. 2, pp. 70–87, Apr. 2007.

[30] K. Fan, S. Liu, and P. Sinha, “Structure-free data aggregation in sensor
networks,” IEEE Trans. Mobile Comput., vol. 6, no. 8, pp. 929–942,
Aug. 2007.

[31] I. Solis and K. Obraczka, “In-network aggregation trade-offs for data
collection in wireless sensor networks,” Int. J. Sensor Netw., vol. 1, no. 3/4,
pp. 200–212, Jan. 2006.

[32] K. Fan, S. Liu, and P. Sinha, “On the potential of structure-free data
aggregation in sensor networks,” in Proc. IEEE 25th Int. Conf. Comput.
Commun., Barcelona, Spain, 2006, pp. 1–12.

[33] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670,
Oct. 2002.

[34] J. Guo, S. Durrani, X. Zhou, and H. Yanikomeroglu, “Massive machine
type communication with data aggregation and resource scheduling,” IEEE
Trans. Commun., vol. 65, no. 9, pp. 4012–4026, Sep. 2017.

[35] O. L. A. López, H. Alves, P. H. J. Nardelli, and M. Latva-aho, “Aggregation
and resource scheduling in machine-type communication networks: A
stochastic geometry approach,” IEEE Trans. Wireless Commun., vol. 17,
no. 7, pp. 4750–4765, Jul. 2018.

[36] D. M. Kim, R. B. Sorensen, K. Mahmood, O. N. Osterbo, A. Zanella,
and P. Popovski, “Data aggregation and packet bundling of uplink small
packets for monitoring applications in LTE,” IEEE Netw., vol. 31, no. 6,
pp. 32–38, Nov./Dec. 2017.

[37] R. Abbas, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “Random access
for M2M communications with QoS guarantee,” IEEE Trans. Commun.,
vol. 65, no. 7, pp. 2889–2903, Jul. 2017.

[38] A.-T. H. Bui, C. T. Nguyen, T. C. Thang, and A. T. Pham, “A compre-
hensive distributed queue-based random access framework for mMTC in
LTE/LTE-A networks with mixed-type traffic,” IEEE Trans. Veh. Technol.,
vol. 68, no. 12, pp. 12 107–12 120, Dec. 2019.

[39] W. Cao, A. Dytso, G. Feng, H. V. Poor, and Z. Chen, “Differentiated
service-aware group paging for massive machine-type communication,”
IEEE Trans. Commun., vol. 66, no. 11, pp. 5444–5456, Nov. 2018.

[40] X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober,
“Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39,
no. 3, pp. 615–637, Mar. 2021.

[41] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, May/Jun. 2020.

[42] C. Bockelmann et al., “Massive machine-type communications in 5G:
Physical and MAC-layer solutions,” IEEE Commun. Mag., vol. 54, no. 9,
pp. 59–65, Sep. 2016.

[43] A. Joseph, T. Li, Z. He, Y. Cui, and L. Zhang, “A comparison between
SCTP and QUIC,” Internet Eng. Task Force, Tech. Rep. draft-joseph-quic-
comparison-quic-sctp-00, Mar. 2018, p. 24. [Online]. Available: https://
datatracker.ietf.org/doc/draft-joseph-quic-comparison-quic-sctp/00/

[44] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[45] R. Bellman, “A Markovian decision process,” J. Math. Mechanics, vol. 6,
pp. 679–684, 1957.

[46] W. Zhang et al., “Optimizing federated learning in distributed Industrial
IoT: A multi-agent approach,” IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3688–3703, Dec. 2021.

[47] S. Fujimoto, H. V. Hoof, and D. Meger, “Addressing function approxima-
tion error in actor-critic methods,” in Proc. 35th Int. Conf. Mach. Learn.,
Stockholmsmässan, Sweden, 2018, pp. 1582–1591.

[48] N. T. J. Bailey, “On queueing processes with bulk service,” J. Roy. Statist.
Soc. Ser. Methodol., vol. 16, no. 1, pp. 80–87, 1954.

[49] S. Sasikala and K. Indhira, “Bulk service queueing models - A survey,”
Int. J. Pure Appl. Math., vol. 106, no. 6, pp. 43–56, Jan. 2016.

[50] D. Claeys, B. Steyaert, J. Walraevens, K. Laevens, and H. Bruneel, “Anal-
ysis of a versatile batch-service queueing model with correlation in the
arrival process,” Int. J. Pure Appl. Math., vol. 70, no. 4, pp. 300–316,
Apr. 2013.

[51] J. Gao, W. Zhuang, M. Li, X. Shen, and X. Li, “MAC for machine-
type communications in industrial IoT - Part I: Protocol design and
analysis,” IEEE Internet Things J., vol. 8, no. 12, pp. 9945–9957,
Jun. 2021.

[52] J. Gao, M. Li, W. Zhuang, X. Shen, and X. Li, “Mac for machine
type communications in Industrial IoT - Part II: Scheduling and numer-
ical results,” IEEE Internet Things J., vol. 8, no. 12, pp. 9958–9969,
Jun. 2021.

[53] H. Shariatmadari et al., “Machine-type communications: Current status
and future perspectives toward 5G systems,” IEEE Commun. Mag., vol. 53,
no. 9, pp. 10–17, Sep. 2015.

Bo He (Member, IEEE) received the PhD degree from
the Beijing University of Posts and Telecommunica-
tions, China, in 2023. He is currently a postdoctoral
researcher with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of
Posts and Telecommunications. From 2021 to 2022,
he was a visiting PhD student with the University
of Waterloo, Canada. His research interests include
5 G/6 G networks, multipath networks, collective
communication, transmission control, and deep re-
inforcement learning.

Jingyu Wang (Senior Member, IEEE) received the
PhD degree from the Beijing University of Posts
and Telecommunications, in 2008. He is currently a
professor with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University
of Posts and Telecommunications. He is a senior
member of the China Communication Society and
was selected for the Beijing Young Talents Program.
He has published more than 100 papers in interna-
tional journals or conferences, including the IEEE
Communications Magazine, IEEE Transactions on

Services Computing, IEEE Transactions on Multimedia, CVPR, ACL, ICDE,
AAAI, and so on. His research interests span broad aspects of intelligent
networks, edge/cloud computing, machine learning, AIOps, IoV/IoT, SDN/NFV,
knowledge-defined network, and intent-based networking.

Qi Qi (Senior Member, IEEE) received the PhD
degree from the Beijing University of Posts and
Telecommunications, in 2010. Currently, she is a
professor with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of
Posts and Telecommunications. She has published
more than 30 papers in international journals or con-
ferences, and obtained two National Natural Science
Foundations of China. Her research interests include
edge intelligence, the Internet of Things, multimedia
services, deep reinforcement learning, and distributed
machine learning.

Qiang Ye (Senior Member, IEEE) received the PhD
degree in electrical and computer engineering from
the University of Waterloo, ON, Canada, in 2016.
Since 2023, he has been an assistant professor with the
Department of Electrical and Software Engineering,
University of Calgary, AB, Canada. Before joining
UCalgary, he worked as an assistant professor with the
Department of Computer Science, Memorial Univer-
sity of Newfoundland, NL, Canada from 2021 to 2023
and with the Department of Electrical and Computer
Engineering and Technology, Minnesota State Uni-

versity, USA, from 2019 to 2021, respectively. He was with the Department of
Electrical and Computer Engineering, University of Waterloo as a postdoctoral
fellow and then a research associate from 2016 to 2019. He has published around
70 research articles on top-ranked Journals and Conference Proceedings. He
is/was the general, publication, program co-chairs for different international
conferences and workshops, e.g., IEEE ICCC’23, CANAI’23, IEEE VTC’22,
IEEE INFOCOM’22, and IEEE IPCCC’21. He serves/served as associate editors
of IEEE Transactions on Vehicular Technology, IEEE Transactions on Cognitive
Communications and Networking, IEEE Open Journal of the Communications
Society, Peer-to-Peer Networking and Applications, ACM/Wireless Networks,
and International Journal of Distributed Sensor Networks. He also serves as the
IEEE Vehicular Technology Society (VTS) Regions 1-7 Chapters coordinator
(2022–2023).

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

https://datatracker.ietf.org/doc/draft-joseph-quic-comparison-quic-sctp/00/
https://datatracker.ietf.org/doc/draft-joseph-quic-comparison-quic-sctp/00/

8322 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

Qihao Li (Member, IEEE) received the MSc degree
in information and communication technology from
the University of Agder, Norway, in 2013, and the
PhD degree from the Department of Electrical and
Computer Engineering, University of Oslo, Norway,
in 2019. In 2016, he was a visiting researcher with the
Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada. In
2020, he was a postdoctoral fellow with the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Waterloo. He is currently an associate pro-

fessor with the College of Communication Engineering, Jilin University, China.
His current research focuses on industrial Internet, digital twin, optimal control
and optimization, wireless network security, and localization. He served as the
a member of Technical Program Committee for IEEE Globecom’19-22, IEEE
ICC’19-22, IEEE CIC ICCC’17-23, EuCAP’2019, and BDEC-SmartCity’18.

Jianxin Liao received the PhD degree from the
University of Electronics Science and Technology
of China, in 1996. He is currently the dean of the
Network Intelligence Research Center and the full
professor of the State Key Laboratory of Network-
ing and Switching Technology, Beijing University
of Posts and Telecommunications. He has published
hundreds of research papers and several books. He
has won a number of prizes in China for his research
achievements, which include the Premier’s Award
of Distinguished Young Scientists from the National

Natural Science Foundation of China in 2005, and the Specially-invited professor
of the “Yangtse River Scholar Award Program” by the Ministry of Education in
2009. His main research interests include cloud computing, mobile intelligent
network, service network intelligence, networking architectures and protocols,
and multimedia communication.

Xuemin Shen (Fellow, IEEE) received the PhD de-
gree in electrical engineering from Rutgers Univer-
sity, New Brunswick, NJ, USA, in 1990. He is cur-
rently a university professor with the Department
of Electrical and Computer Engineering, University
of Waterloo, Waterloo, ON, Canada. His research
focuses on resource management in interconnected
wireless/wired networks, wireless network security,
social networks, smart grid, and vehicular ad hoc and
sensor networks. He is a registered professional en-
gineer of Ontario, Canada, fellow of the Engineering

Institute of Canada, fellow of the Canadian Academy of Engineering, fellow of
the Royal Society of Canada, foreign member of the Chinese Academy of Engi-
neering, and distinguished lecturer of IEEE Vehicular Technology Society and
Communications Society. He was the recipient of Canadian Award for Telecom-
munications Research from the Canadian Society of Information Theory (CSIT)
in 2021, R.A. Fessenden Award in 2019 from IEEE, Canada, Award of Merit
from the Federation of Chinese Canadian Professionals (Ontario) in 2019, James
Evans Avant Garde Award in 2018 from the IEEE Vehicular Technology Society,
Joseph LoCicero Award in 2015 and Education Award in 2017 from the IEEE
Communications Society, and Technical Recognition Award from Wireless
Communications Technical Committee (2019) and AHSN Technical Committee
(2013). He was also the recipient of Excellent Graduate Supervision Award in
2006 from the University of Waterloo and Premier’s Research Excellence Award
(PREA) in 2003 from the Province of Ontario, Canada. He was the technical
program committee chair/co-chair of IEEE Globecom’ 16, IEEE Infocom’14,
IEEE VTC’10 Fall, IEEE Globecom’07, and the chair of IEEE Communications
Society Technical Committee on Wireless Communications. He is the president
of IEEE Communications Society. He was the vice president of Technical and
Educational Activities, vice president for Publications, member-at-large on the
Board of Governors, chair of the Distinguished Lecturer Selection Committee,
a member of IEEE Fellow Selection Committee of the ComSoc. He was the
editor-in-chief of the IEEE Internet of Things Journal, IEEE Network, and IET
Communications.

Authorized licensed use limited to: University of Calgary. Downloaded on April 03,2025 at 04:07:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

