
6558 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 5, MAY 2023

Efficient Data Collection Scheme for Multi-Modal
Underwater Sensor Networks Based on

Deep Reinforcement Learning
Shanshan Song , Jun Liu , Member, IEEE, Jiani Guo , Bin Lin , Senior Member, IEEE,

Qiang Ye , Senior Member, IEEE, and Junhong Cui

Abstract—Autonomous Underwater Vehicles (AUVs) with multi-
modal transmission can achieve high efficient data collection for
underwater sensor networks. However, multi-modal transmission
and trajectory planning impose great challenges on data collection
in complex underwater environments. Most prior studies focus
on design of multi-modal architecture, but lack of available im-
plementation and consideration of AUVs’ trajectory. Meanwhile,
existing trajectory planning research cannot work well on data col-
lection with multiple complex tasks simultaneously. In this paper,
an efficient Data Collection scheme for Multi-modal underwater
sensor networks based on Deep reinforcement learning (DCMD)
is proposed to solve the above challenges. We first propose an op-
timal multi-modal transmission selection algorithm that provides
an implementation to improve transmission efficiency. Then we
propose a distributed multi-AUVs’ trajectory planning algorithm
based on deep reinforcement learning by AUVs’ collaborations,
considering transmission situation, ocean currents and underwa-
ter obstacles, to maximize collection rate and energy efficiency.
In addition, we joint transmission and trajectory planning in a
protocol to improve collection efficiency. Extensive experimental
results show that DCMD achieves better performance on efficiency
and reliability than four state-of-the-art methods, demonstrating
its great advantage on collecting data for USNs.

Index Terms—Underwater sensor networks, data collection,
deep reinforcement learning, multimodal, trajectory planning.

I. INTRODUCTION

UNDERWATER Sensor Networks (USNs) have been
widely applied for underwater applications [1], [2], such as
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Fig. 1. Comparison of underwater data collection methods. (a) Traditional
methods utilize sensor nodes to upload data by multi-hops, using acoustic
communication. (b) Signal AUV collects USN’s data with its mobility, using
acoustic communication. (c) Multiple AUVs collect USN’s data efficiently with
collaborations, using multi-modal communication, e.g. acoustic communica-
tion, and optical communication.

marine monitoring, military reconnaissance, hydrology surveys,
oil and gas drilling. Sensor data collection is vital for USNs to
carry out these applications [3].

In conventional USNs, data collection adopts acoustics as
communication mean to upload sensor data [4], as shown in Fig.
1(a). However, as high energy consumption, large latency, and
low transmission speed of underwater acoustic communication,
USNs with natures of finite power are unsuitable to update a
mass of sensing data. Recently, USNs employ an Autonomous
Underwater Vehicle (AUV) to collect data with its mobility
shown in Fig. 1(b), which greatly reduces energy consumption
of sensor nodes for extending network lifetime [5], but efficiency
and coverage range of data collection are still restricted by
AUV’s finite battery power. Multiple AUVs with multi-modal
transmission can improve efficiency and geographical range of
collection with their cooperation shown in Fig. 1(c).

However, data collection with multiple AUVs is still chal-
lenged by multi-modal transmission and trajectory planning in
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TABLE I
NOTATIONS IN THIS ARTICLE

complex underwater environments, as they two are fundamental
and interact [7]. Although plenty of multi-modal transmission
research and trajectory planning algorithms have been proposed,
they are not specially designed for underwater data collection,
and without consideration of the mutual influence between
multi-modal transmission and trajectory planning.

Existing multi-modal transmission generally employs com-
plementary acoustic, optical and magnetic transmission means
to improve communication and collection efficiency [6]. How-
ever, these methods choose transmission mean without consid-
eration of AUV’s trajectory. When AUVs change acoustic to
another transmission mean for collection, the trajectory changes
simultaneously. Most prior research employs software-defined
technology to address multi-modal scalability and flexibility
issues, but most of them focus on the architecture, lack of
implementation details and consideration of trajectory planning.

Meanwhile, existing trajectory planning approaches preset
trajectory of AUVs for data collection based on offline optimiza-
tion [8], [9]. However, they ignore unique underwater environ-
ments, such as ocean currents and underwater obstacles, which
lead to large trajectory errors. Some methods can dynamically
plan AUVs’ collection path, such as artificial potential field,
genetic, ant colony, and neural network-based algorithms, but
they require a precise ocean current or mobility model, and
definite pay-off function, which are not suitable for complex
tasks. Our problem is complicated with many objectives to
achieve simultaneously, including high-efficient data collection
rate, energy consumption, multi-modal transmission, obstacle
avoidance, cooperation among AUVs, etc.

Recent research employs Deep Reinforcement Learning
(DRL) to solve complex decision-making issues [10]. Some
methods use DRL to plan AUVs trajectory [11], [12], [13], but
they are designed to maximize coverage area or target tracking,

TABLE II
COMPARISON OF MULTIPLE UNDERWATER COMMUNICATION MEANS

cannot be directly applied for underwater data collection because
the different task objectives.

This paper proposes a Data Collection scheme for Multi-
modal underwater sensor networks based on Deep reinforcement
learning (DCMD), which utilizes multi-modal transmission and
AUVs’ collaborations to achieve higher-efficient data collection
with lower-cost. The main contributions of this paper are sum-
marized as follows:
� This is the first work designing an efficient data collection

scheme for USNs that joints multi-modal transmission and
trajectory planning simultaneously.

� A novel multi-modal transmission selection algorithm is
proposed to achieve high quality of transmission service
for underwater data collection. The optimization for se-
lecting transmission mean and mode is formulated as an
Integral Linear Programming (ILP) problem, then we solve
it considering the influence of AUVs’ trajectory, distance,
and water turbidity on Signal Noise Ratio.

� Then a novel distributed deep reinforcement learning-
based multiple AUVs trajectory planning algorithm is pro-
posed specifically designed for underwater data collection,
with consideration of multi-modal transmission situation,
underwater obstacles and ocean currents, to achieve high-
efficient collection rate and energy consumption. In addi-
tion, we joint transmission selection and trajectory plan-
ning in a protocol, that focuses on maximizing efficiency
of collection, energy and transmission.

� Extensive simulations results demonstrate that DCMD
achieves better collection efficiency than the state-of-the-
art baselines in [11], [12], [13], and Random.

II. RELATED WORK

A. Multi-Modal Transmission Network

Recently, several research pays particular attention to multi-
modal underwater communication means, because a single one
is insufficient for high-efficient data collection [15], [16]. We
present multiple underwater communication means, include
acoustics, opticals, and magnetics in Table II. As shown in
Table II, the data rate of optical communication is Gbps with
wave speed 2.25× 108m/s, and the data rate of magnetic com-
munication is Mbps with wave speed 3× 107m/s, which are
much higher than the one of acoustic communication. The high
data rate of opticals and magnetics can obviously decreases
transmission latency and improve data collection performance,
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but they are only suitable for short-distance communication
(opticals 10-200 m, magnetics 10-100 m), while acoustics can
reach 5-100 km. In addition, optical communication may be dis-
abled even over short distance when water is turbid. Therefore,
multiple underwater communication means are on demand for
data collection.

However, traditional USNs’ architecture only fits for a single
communication mean, which is not scalable and flexible [17].
This imposes great challenges for adopting multiple communi-
cations, induces barriers to integrate heterogeneous underwater
communication devices.

The paradigm of Software-Defined Networking (SDN) has
been emergent as a revolutionary technology, which enables
USNs’ architecture to be software-based, service-oriented and
programmable. Vasilescu et al. first proposed an underwater
sensor networks architecture for long-term monitoring of coral
reefs and fisheries, which integrates optical and acoustic commu-
nications [18]. Then Akyildiz et al. proposed a software-defined
architecture to facilitate the development of next-generation
underwater communication systems [19]. It can provide truly
differentiated and scalable networking services.

However, the specific mechanism of these architectures still
need to be refined, such as transmission mean selection, data
transition scheduling. Lin et al. proposed a software-defined
beaconing framework for software-defined architecture, which
integrates two categories of defined beacons to synchronize
network information and execute network operations [20], but it
is centralized and without consideration of trajectory planning.

B. Trajectory Planning

Previous studies focus on trajectory planning of AUVs for
underwater data collection to improve network lifetime and
collection efficiency [21]. Some methods employ variants of
traveling salesman problem to plan AUVs’ trajectory in static
or fixed environments [15]. However, in dynamic underwater
environments, such as obstacles or ocean currents with temporal
and spatial change, they may not work well.

Some studies focus on dynamic real-time trajectory plan-
ning [22], which mainly employ ant colony [23], fuzzy al-
gorithm [24], genetic optimization [25], artificial potential
field [26], and machine learning [27]. However, they may fail
to find feasible paths because local minimum or oscillate traps
for complex underwater tasks, including collection rate, energy
consumption, multi-modal transmission, obstacle avoidance,
cooperation among AUVs, etc.

Recently, reinforcement learning brings new solution for
AUVs trajectory planning, utilizing its feasibility in complex
underwater environments. Chu et al. proposed a deep reinforce-
ment learning path planning method based on double deep Q
network (IDDQN) to improve AUV’s path planning capability
in unknown environments [11]. Li et al. proposed a path planning
model for AUVs based on deep reinforcement learning (APPD)
using WL interpolation surface to model the seabed [12]. Al-
though these machine learning methods are feasible to suit
dynamic ocean environments, they need sonar image to build
underwater map, or only provide discrete action for AUVs. Yang

et al. proposed a cooperative multi-agent reinforcement learning
based tracking algorithm following a centralized training with
distributed execution (CT-DE) manner [13]. However, they are
not specially designed for underwater data collection. Impor-
tantly, cooperation between AUVs are not exploited, which
affects collection efficiency of them.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model for Data Collection

We define N � i = 1, 2, . . .N AUVs and K � k = 1, 2, . . .
K sensor nodes in USNs. The task of N AUVs is to collect
K sensor nodes’ data by controlling their moving velocity
and orientation in an efficient manner. We aim to maximize
the collection efficiency and minimize the energy consumption
of AUVs. The energy consumption of an AUV comes from
its movement and transmission. We assume AUV i’s energy
consumption eit at time t is denoted as:

eit = εim,t + εic,t, (1)

where εim,t and εic,t are the moving energy consumption and
transmitting energy consumption for AUV i at time t, respec-
tively. The transmitting energy consumption of an AUV depends
on whether it communicates and its communication mode at time
t. We set εic,t = 0 if AUV i without transmitting. The moving
energy consumption of an AUV depends on its moving state.
Until time t, the energy consumption of AUV i is

∑t
τ=1 e

i
τ

During collection, AUV i moves with its velocity
vi,tx , vi,ty , vi,tz , heading angle hi

t, and its movement is affected
by ocean currents. AUVs typically cruise at fixed depth for
collection. As the depth can be easily obtained with a depth
meter, the z-axis velocity of an AUV is easy to obtain. In our
model, we decide x and y axes velocity and orientation of AUVs
and ocean currents. AUV i’s movement is also affected by ocean
currents. The velocity of the ocean current is ṽi,tx , ṽi,ty , and

its heading angle is h̃i
t. There are obstacles in the underwater

environment.

B. Problem Formulation

We consider two metrics for performance evaluation of
DCMD simultaneously: collection rate ct and energy efficiency
ηt, The collection rate is defined as:

ct =

∑K
k=1 ct(k)

K
, (2)

where ct(k) represents the value whether sensor node k’ has
been collected. If collected, ct(k) = 1. Otherwise, ct(k) = 0.

The energy efficiency is denoted as:

ηt =
ctK

ẽt
, (3)

where ẽt is normalized and averaged from et =∑N
i=1(

∑t
τ=1 e

i
τ ), which is consumed by all AUVs’ movement

and transmission until time t, and ct is also the collection rate
by all AUVs until time t.
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IV. DISTRIBUTED MULTI-MODAL

TRANSMISSION-AND-TRAJECTORY PROTOCOL

A. Optimal Multi-Modal Transmission Selection

1) Optimal Object: We aim to minimize the energy con-
sumption eit of AUV iwith multi-modal transmission means s =
1, 2, . . .S and modes y = 1, 2, . . .Y , because different transmis-
sion means and modes transmit data with different power. For
example, as the data rate of optical communication is Gbps, it
costs lower energy with shorter transmission delay than acoustic
communication, as in Table II. Meanwhile, one transmission
mean can have multiple transmission modes. For example, the
DSP-based acoustic modem [28] has SISO, SIMO and MIMO
three transmission modes to satisfy different demands of trans-
mission distance and speed. We formulate it as an integral
linear programming problem, aiming to optimize the energy
consumption of AUV i by appropriate transmission mean s and
mode y, as:

min

t∑
τ=1

(
εim,t +

(
S∑

s=1

xs,tP
y
s

))
,

s.t.

{∑S
s=1 xs,t = 1 s = 1, 2, . . . , S

xs,t ∈ {0, 1} s = 1, 2, . . . , S
(4)

where εim,t represents energy consumption of AUV i’s mobility.
εim,t depends on the resistance of AUV i when traveling with
ocean currents, which is proportional to the square of AUV’s
velocity at time t. P y

s represents energy consumption of AUV
i’s communication with transmission mean s and mode y. Trans-
mission modes represent transmission speeds and transmission
power to some extend. For example, optical transmission costs
mW , and acoustic transmission costs W according to its trans-
mission mode. xs,t represents the adopted transmission mean of
AUV i at time t with an integer values of 0 or 1. When mean s
is adopted at time t, then xs,t = 1, otherwise xs,t = 0.

2) Implementation Details: Because Signal Noise Ratio
(SNR) is the most important factor in the decision of transmis-
sion mean and mode, we evaluate the influence of trajectory,
distance and water turbidity on SNR, then we choose the suitable
transmission mean and mode by consideration of distance and
SNR to maximize the optimal object mentioned above it. Note
that, as the instability of magnetic communication, we employ
acoustic and optical communication as our alternate means for
transmission.

Trajectory is the AUV’s locations for each time, it depends
on AUV’s velocity and orientation. The trajectory of an AUV is
the basis of distance calculation.

Distance between sender i and receiver j is calculated by
locations, denoted as dij .

Water turbidity severely effects on quality of underwater opti-
cal communication medium. It is evaluated by extinction coeffi-
cient c(λ). which effects on the SNR of optical communicaiton.
There are mainly four types of water turbidity: pure, clean,
coastal, and turbid water. In complex underwater environments,
optical signal suffers from absorption and scattering [33]. c(λ) is
governed by the absorption a(λ) and scattering coefficient b(λ),

formulated as:

c(λ) = a(λ) + b(λ), (5)

λ is light wavelength. The absorption coefficient a(λ) is [34]:

a(λ) = aw(λ) + ac(λ)Cc + afCfe
−kfλ + ahChe

−khλ, (6)

where aw(λ) is the absorption coefficient of pure sea water. The
absorption coefficient of pure sea water is the smallest. ac(λ)
is the absorption coefficient of chlorophyll. Cc, Cf and Ch

are the concentrations of chlorophyll, fulvic and humic acids,
respectively. af and ah are the specific absorption coefficients
of fulvic and humic acid. kf and kh are constants.

The scattering coefficient b(λ) is as follows:

b(λ) = bw(λ) + bs(λ)Cs + bl(λ)Cl, (7)

where bw(λ) is the scattering coefficient of pure sea water. We
consider two cases scattering: small particles and large particles.
bs(λ) is the specific scattering coefficients for small particles,
and bl(λ) is for large. Cs and Cl are the concentrations for
small and large particles. af and ah are the specific absorption
coefficients of fulvic and humic acid. kf and kh are constants.

SNR is vital for transmission means and modes. For short-
range communication, SNR helps to choose from optical and
acoustic communication. We denote Υo and Υa for SNR of op-
tical communication and acoustic communication, respectively,
which are formulated as:

Υo = 10 lg

(
So

No

)
, Υa = 10 lg

(
Sa

Na

)
, (8)

where So is efficient received optical power, and No is ambient
light noise for optical communication. Sa is received acoustic
power, and Na is environment acoustic noise.

The efficient received power of optical signal can be formu-
lated as [35]:

So = ε2S̃2, (9)

where ε is the conversion efficiency from optical to electrical
signals. S̃ is the optical power of receiver, which is evaluated by
distance dij of node i and j, and extinction coefficient c(λ), as
follows:

S̃ = Eϕsϕre
−c(λ)dij

Rr

2πd2
ij

. (10)

It is obviously that the distance between sender and receiver
affects the received optical power S̃, and the sender’s optical
transmission power E changes by send and received optical
efficiency ϕs and ϕr. Rr is the receiver’s aperture area.

For the noise No in optical environments, shot noise σ2
s

and thermal noise σ2
t are generally considered as noise source.

Therefore, the noise is formulated as:

No = σ2
s + σ2

t . (11)

The shot noise σ2
s can be denoted as:

σ2
s = 2mεB(Pr,s) + 2mIcIbB, (12)

where m is the electronic charge, Ic is background current, and
Ib is noise bandwidth factor. The noise bandwidth is B. Another
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source of No is σ2
t , denoted as:

σ2
t =

8πkTk

V
ηArIbB

2 +
16π2kTkF

gm
η2A2

rInB
3, (13)

where k is the Boltzmann’s constant, Tk is the absolute temper-
ature, V is the open-loop voltage gain, η is the fixed capacitance
of photo detector per unit area,F is the FET channel noise factor,
and gm is the FET transconductance.

By the formulas above, Υo can be derived as:

Υo = 10 lg

⎛⎜⎝ε2
(
Eϕsϕre

−c(λ)dij Rr

2πd2
ij

)2

2mεB(S̃) + μ

⎞⎟⎠ , (14)

whereμ is the representation ofσ2
t and the rest part ofσ2

s, denoted
as:

μ = 2mIcIbB +
8πkTk

V
ηArIbB

2 +
16π2kTkF

gm
η2A2

rInB
3.

(15)
The received power of acoustic signal Sa can be formulated

as:

Sa =
Ẽ

A(dij , f)
, (16)

where Ẽ is the acoustic power of sender, A(dij , f) is the path
loss, formulated by:

A(dij , f) = duija(f)
d
ij , (17)

where u is spreading factor, and a(f) is absorption coefficient
which is determined by the frequency of acoustic signal f .

For the noise Na in acoustic environments, we mainly con-
sider currents, surface ship, wind, and thermal noise, and for-
mulates it as:

Na = Nc +Ns +Nw +Nt, (18)

where Nc, Ns, Nw, Nt are currents, surface ship, wind, and
thermal noise, respectively. They are affected by acoustic signal
frequency.

By the formulation above, we can get SNR for optical and
acoustic communications. The process to select transmission
mean and mode is in algorithm 1. If dij is over the threshold of
optical transmission rangeΓ, acoustic communication is the only
selection, that is x2,t = 1. Considering the multiple modulation
modes of an acoustic communication device, we further decide
specific mode by comparing the SNR of acoustic communica-
tion Υa and multiple acoustic modes’ threshold intervals φa,
which reflect channel condition. Different transmission speeds
represents different communication modes. Otherwise, distance
dij is less than threshold Γ, we consider the SNR of optical
communication Υo, if Υo is greater than minimum SNR of opti-
cal communication Smin, we can choose optical communication
x1,t = 1.

B. Distributed Multi-AUVs Trajectory Planning Based on
Deep Reinforcement Learning

We then propose a distributed multi-AUVs path plan-
ning algorithm tightly coupled with transmission situation

Algorithm 1: Selection for Transmission Mean and Mode.
Input: Distance dij between node i and node j at time t,
Υa, and Υo

Output: Communication mean s, and its mode y at time t
1: if dij > Γ then
2: x2,t = 1, select acoustic communication
3: Then compare Υa with φa(m)
4: for i < n do
5: if dij

Υa
∈ φa(m) then

6: y ← m, select mode m for acoustic
communication

7: end if
8: i← i+ 1
9: end for

10: else
11: if Υo > Smin then
12: x1,t = 1, select optical communication
13: else
14: x2,t = 1, y = min(m)
15: end if
16: end if
17: return s, y

based on Deep Reinforcement Learning (DRL) to guar-
antee high-efficiency data collection and energy consump-
tion for USNs. Each AUV has its own inherited con-
trol logic to determine their trajectories for data collection
in a fully distributed manner. We specifically design the
state, observation, action space, and reward for AUV’s DRL
model.

1) Model Design: The task of AUVs is to travel to collect
K sensor nodes’ data by controlling its velocity and orientation
in an cooperative manner. AUV i observes environment oit to
determine its action ait at timeslot t.

Observation Space: Considering the local observation ca-
pacity, observation space oit consists of: AUV i’ locations
xi
t, y

i
t, AUVs’ velocity vi,tx , vi,ty , heading angle hi

t, and en-
ergy consumption eit. Due to the great effect on trajec-
tory planning, transmission situation Υo and Υa is added as
an important observation. As ocean currents affect AUV’s
energy efficiency, velocity ṽi,tx , ṽi,ty and heading angle h̃i

t

of ocean currents are also considered. AUV i observes
oit| = xi

t, y
i
t, v

i,t
x , vi,ty , hi

t, e
i
t,Υo,Υa, ṽ

i,t
x , ṽi,ty , h̃i

t at each times-

lot. Therefore, observation space is formulated as O �
oit|i ∈ N, t = 1, 2, . . ., T .

State Space: Because multiple AUVs apply their collabora-
tions to collect data to improve efficiency, the information of
collected sensor nodes is essential for each AUV to determine
their trajectories in a distributed manner. Although our problem
is a POMDP, the environment is fully observable for AUVs, and
state space includes all AUVs’ observations with the collection
rate of all sensor nodes. The collected rate measures whether
a specific sensor node has been collected by any AUV in the
past time t. If a sensor node accesses the close range of any
AUV and has been collected data by this AUV, we refer the

Authorized licensed use limited to: Memorial University. Downloaded on June 23,2023 at 23:51:52 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: EFFICIENT DATA COLLECTION SCHEME FOR MULTI-MODAL UNDERWATER SENSOR NETWORKS 6563

Fig. 2. Model Training of an AUV.

sensor node as “collected”, otherwise not collected. Combin-
ing collection rate and observation space, the state space is
S � st = O ∪ ct(k)|∀k = 1, 2, . . .K.

Action Space: For our scenario, the action of an AUV mainly
means its mobility, which is measured by two core variables:
velocity and orientation, which are both continuous. Therefore,
the action of AUV i is ait = vi,tx , vi,ty , hi

t, and at = ait|i ∈ N .

The action space of all AUVs is A � at|t = 1, 2, . . .T .
Reward Function: A reward function is defined to achieve

maximizing collection rate, minimizing energy consumption.
Meanwhile, we consider ocean currents’ influence on AUV’s
mobility to reduce energy consumption. Obstacle avoidance are
taken into account as AUV’s important function. The reward
function has penalty and reward part.

For penalty, each AUV is prohibited from traveling outside the
coverage range of USNs or losing connectivity to all remaining
AUVs within its max communication range R, which ensure the
collaborations between AUVs. AUVs have penalty as hitting an
obstacle to guarantee its safety. The penalty is denoted as:

ζit =

{
ζo, hit obstacles

ζl, travel outside or lose connection
. (19)

The reward mainly considers AUVs’ collection rate and en-
ergy consumption, thus reward function is formulated as:

rit=
ρ1
∑K

k=1�ct(k)∑N
i=1�eit

−ρ2[(v
i,t−vi,t−1)2+(hi

t − hi
t−1)

2]−ζit ,
(20)

where �ct(k) = ct(k)− ct−1(k) is the collection rate incre-
ment of sensor node k, and �eit = eit − eit−1 is the energy
consumption during time t− 1 and t. ρ1 and ρ2 represent

weights of their corresponding reward and penalty.
∑K

k=1�ctr (k)∑N
i=1�eit

measures the increment of the accumulative reward. By rit, we
have rt = rit|i ∈ N .

2) Training and Testing: During training, each AUV acquires
to obtain global environment st and all AUVs’ action at by
AUVs’ communication. AUVs cooperate to transmit their local
observation to others. The training process is shown in Fig. 2.

Each AUV has four neural networks: actor network, target ac-
tor network, critic network, target critic network. Critic network
evaluates the value of action by all AUVs’ state st and actions at,
and actor network modify the probability of the selected action
based on the values of critic network. Target critic network can
be updated by critic network to evaluate next time value of action
by all AUVs’ state st+1 and actions at+1

We first initialize N critic networks Qi(·) and N actor net-
works μi(·) with parameters θQ

i
and θμ

i
for all the AUVs.

Then N target critic networks and N target actor networks are
initialized, which are the copy of their corresponding actor and
critic networks with parameters θQ

′i
= θQ

i
and θμ

′i
= θμ

i
, as

shown in Fig. 3.
Then we update the critic network and actor network sepa-

rately. The critic network of AUV i minimizes the loss function
L(θQ

i
), then update as:

L(θQ
i

) =
1
M

M∑
j=1

(jij −Qi(sj , aj |θQi

))2, (21)

where M is a randomly sampled mini-batch from experience
reply buffer. B is the size of experience reply buffer stored B
transitions, including state, action, and reward. yij is the target
value of critic’s target network, formulated as:

yij = rij + γQ
′i
(
sj+1, aj+1|θQ

′i
)
|
ai
j+1=μ′i(oij+1|θµ

′i ). (22)

The parameters of target critic network Q
′i is updated as:

θQ
′i
= τθQ

i

+ (1− τ)θQ
′i
. (23)
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Fig. 3. Protocol Joint Multi-modal Transmission and Trajectory Planning for USNs Data Collection.

Then the critic network feeds back to actor network. Each
AUV’s actor network weights θμ

i
are updated by the policy

gradient method, formulated as:

∇θµiJ(θμ
i

) ≈ 1
M

M∑
j=1

∇θµiμi(oij |θμ
i

)

∇ai
j
Qi(sj , aj)|ai

j=μi(oij |θµi ), (24)

where oij represents AUV i’s own observation. The parameters
of target actor network μ

′i are updated as:

θμ
′i
= τθμ

i

+ (1− τ)θμ
′i
. (25)

We demonstrate the process for training in algorithm 2. As
the training process needs global state and action information,
we design the training process is a combination of online and
offline.

During testing, the decision of each AUV is distributed, as
each AUV only needs to observe its local environment oit to
obtain its following action ait, which avoids communication
overheads to obtain global observation.

C. Protocol Joint Multi-Modal Transmission and Trajectory
Planning

The design of protocol joint multi-modal transmission and
trajectory planning for USNs data collection is shown in Fig.
3. Transmission and trajectory are fundamental and interact
for data collection. In Fig. 3, the transmission selection part
decides transmission mean and mode by Section A, provides
transmission situation for the trajectory planning part in Section
B. Meanwhile, the trajectory planning in Section B decides
AUVs velocity and orientation, and returns trajectory for the
transmission selection part in Section A. The two parts make
decision based on the observation of underwater environments.
Note that, for implementation, the transmission selection part

Algorithm 2: Training for AUV i.
Input: State st
Output: Action ait
1: Initialize critic and actor network Qi(st, at|θQi

) and
μi(oit|θμi

), with weights θQ
i

and θμ
i
, respectively.

2: Copy critic and actor network as target critic and target
actor network Q

′i(·) and μ
′i(·), respectively.

3: Set episode← 0, t← 0
4: for episode < E do
5: for t < T do
6: AUV i takes action ait and gets reward rit with

consideration of hitting obstacles, traveling outside
and losing connectivity

7: update new state st+1

8: Store (st, at, rt, st+1) in experience replay buffer
9: Set st ← st+1

10: Get M random samples (st, at, rt, st+1) in
experience replay buffer and set target value yij

11: Update critic network and actor network
12: Update target critic network and target actor

network
13: end for
14: end for
15: return ait

employs Network Function Virtualization (NFV) and Software-
Defined Radio (SDR) technology to achieve flexible, diverse,
and extensible underwater multi-modal communications.

V. PERFORMANCE ANALYSIS

As the multi-modal transmission selection consumes very few
computing resources, we focus on the computational complexity
of trajectory planning in DCMD.
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For an AUV’s training process, the computational complexity
depends on the neuron number of input, hidden and output
layers [36]. We consider the four neural networks (actor, critic,
target actor, and target critic networks) with i neurons in the
input layer, h neurons in the hidden layer and o neurons in
the output layer. The complexity of the four back-propagation
networks is due entirely to the training process of an AUV,
which is iterative. A backward pass which involves the error
computations is O(iho). As our model employs experience reply
buffer with size B, the total complexity of an AUV is O(Biho),
and the total complexity of N AUV is O(BNiho).

The sizes of the inputs of actor networks is i = 11N , which is
composed of observation space. The size of the inputs of critic
network is i = 3 + 11N , which is composed of observation and
action space. The sizes of the outputs of the critic and actor
networks are o = 4 and o = 3, respectively, as the outputs of
critic is action and Q function. The computational complexity of
O(Biho) is O(BN). Therefore, the computational complexity
of the training process for all AUVs is O(BN 2).

VI. SIMULATION STUDIES

A. Simulation Settings

We initially deploy 20 sensor nodes in a 10 km× 10 km area
at random (assuming sensor nodes on the seabed), and assume
3 AUVs and random obstacles in this area. Each AUV has two
transmission means, include acoustic and optical communica-
tions. The true velocity v̂ of an AUV consists two parts: the
sailing velocity vi,tx , vi,ty and the velocity from the effect of ocean
current ṽi,tx , ṽi,ty . We can have v̂i,t = vi,t + ṽi,t. The simulations
are tested on a Monte Carlo set of 100 channels.

For transmission, AUVs interact with each other by the
acoustics with communication range 1 km, which considers that
the size of interactive data is small. AUVs collect data by the
acoustics with communication range 500 m, which considers
that large data transmission with long-distance is impractical.
The transmission rate of acoustics depends on the mode of acous-
tic communication, according to DSP acoustic modem. The
acoustic transmission environment is that, the mean frequency of
acoustic signal f is 24KHz, spreading factor u is 0.5, absorption
coefficient a(f) depends on the value of f , as 10 lg a(f) =
0.11 f 2

1+f 2 + 44 f 2

4100+f + 2.75g10−4f 2+0.003. The optical com-
munication range is 100 m, and its transmission rate is 20 M.
We assume the optical transmission environment is in clear
ocean water turbidity, that absorption a(λ) is 0.114, scattering
coefficient b(λ) is 0.037, and extinction coefficient c(λ) is 0.151.
Both acoustic and optical communication have retransmission
mechanism to ensure the reliability of transmission.

We utilize the ocean current data from true underwater en-
vironments, which is downloaded from National Marine Infor-
mation Center of China (http://global-tide.nmdis.org.cn). The
data consists of time, velocity and direction of ocean cur-
rent [37]. We randomly select the data from Changjiang Estuary
(31◦21′N122◦1), China randomly. Note that, similar results are
obtained for other ocean current data. We employ smoothing
spline algorithm to fit the 24 real data points of ocean current

Fig. 4. The fitted ocean current velocity and real data points.

Fig. 5. Transmission and mobility Energy consumptions with multi-modal
transmission means. (a) Transmission. (b) Mobility.

in Changjiang Estuary, on March 17, 2022, randomly, by which
acquire 35000 groups of current velocity from 0.5 to 1 h. The date
and time above are both selected at random. The fitted current
velocity (fitting curve) and real data points (true data) are shown
in Fig. 4. In Fig. 4, we can find that the true red data points are
all on the fitting curve, which shows a good performance for the
fitting of current velocity.

For trajectory planning, we conduct plenty of experiments to
find the most appropriate set of hyperparameters. 25000 episodes
are prepared for training, and each of episode has 50 timeslots.
During testing period, we test each episode 100 times, take the
average and the best one out of each episode. We set po = 3,
and pl = 10, which can best train the model. We set τ = 0.01,
discount factor is 0.95, neuron number of hidden layer is 64, and
experience replay buffer size 1M .

B. Multi-Modal Transmission Selection

We simulate energy consumption with multi-modal under-
water communications for USNs, which considers the specific
optical and acoustic communication conditions. The energy
consumption with transmission and movement are shown in Fig.
5(a) and (b).

In Fig. 5(a), we can observe that as number of optical com-
munication nodes goes up, the transmission energy consumption
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Fig. 6. Accumulated reward, collection rate and energy efficiency during training. (a) Accumulated reward. (b) Collection rate. (c) Energy efficiency.

TABLE III
BENEFIT AND COST OF NEURAL NETWORKS WITH DIFFERENT HIDDEN

LAYER NODES

of all nodes drops down, which shows the transmission energy
efficiency improves. For example, when 80% of the nodes use
optical communication, the transmission energy consumption
for all AUVs is about 3413 J, compared to 13653 J when 20%
of the nodes use optical communication.

As we know, when AUVs adopt optical communication, they
need to sail near to nodes. Then we analyze the benefit of multi-
modal communication and movement in Fig. 5(b). Compared
with communication, the movement energy consumption of
AUVs are small. When 80% nodes use optical communication,
the movement energy consumption for all AUVs is about 14.9 J,
compared to 21.1 J when 20% nodes use optical communication.

C. Training Convergence for Trajectory Planning

We first simulate extensively to find appropriate hyperparam-
eters of the DNN. The results of different numbers of neurons in
actor, critic, and their target networks during training are shown
in Table III.

In Table III, we can observe that the neuron number in each
layer of a 2 fully-connected hidden layers affect collection
rate and energy efficiency. The energy efficiency with different
neurons numbers is fluctuating. The neural network with 128
hidden nodes has the best energy efficiency, but its collection rate
is lower than neuron number 64, and training time is much larger
than 64. Although the energy efficiency of 64 neuron nodes’
energy efficiency is not best, its training time is smallest, and its
collection rate is very high. Considering the benefit and cost of
neural number, we set neuron number of hidden layer 64.

Then we simulate the convergence of the trajectory planning
algorithm in Fig. 6. As shown in Fig. 6(a), although the reward
is fluctuating in 25000 episodes for training, the trend of it
is increasing overall. During the first 10000 episodes, AUVs

Fig. 7. Collection rate and energy efficiency with different number of AUVs.
(a) Collection rate. (b) Energy efficiency.

travel randomly for training, and communication lose, traveling
outside, and obstacle collision all have penalties, which make the
accumulated reward is negative at first 10000 episodes. As the
training time increases, AUVs try to maintain communication,
travel inside, avoid obstacles, and consider collection rate and
energy consumption affected by ocean currents. Thus, AUVs
have positive reward which goes up. At about 20000 episodes,
the rewards keep high and stable.

In Fig. 6(b) and (c), we show the results of collection rate and
energy efficiency for training. In Fig. 6(b), the collection rate
rises linearly over time and eventually reaches a high collection
rate for USNs, which maintains fluctuating a little bit over than
90%. The max collection rate is 98.4%. Meanwhile, the trend
of energy efficiency in Fig. 6(c) is the same with collection rate,
which increases first before 10000 episodes, and reaches a stable
and high value after about 20000 episodes.

The results in Table III and Fig. 6 verify that AUVs are well
trained with good policy.

D. Finding Appropriate Hyperparameters for Path Planning

We evaluate performance of DCMD with comparison of
different number of AUVs. Fig. 7(a) show the comparison results
of 2, 3, 4 AUVs for collection rate, respectively. We can observe
that the collection rate of 3 and 4 AUVs are both significantly
better than 2 AUVs. Although the collection rate of 3 AUVs is
close to 4 AUVs, its energy efficiency in Fig. 7(b) is higher than
4 AUVs. Therefore 3 AUVs are appropriate for our simulation
coverage area.
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Fig. 8. Collection rate and energy efficiency with different number of sensor
nodes. (a) Collection rate. (b) Energy efficiency.

The performance comparison of different number of sensor
nodes in USNs is shown in Fig. 8. Fig. 8(a) and (b) show the
comparison results of 20, 25, 30 sensor nodes for collection rate
and energy efficiency, respectively. We can observe that the
collection rate of 20, 25, 30 nodes fluctuate between 0.8 and 1,
but overall all perform well with 10000 episodes. The average
collection rate with 20, 25, 30 nodes is 95.67%, which verify
the stability of DCMD. The energy efficiency goes up with
increment of sensor nodes number, because energy consumption
is higher for more sensor nodes collection.

E. Comparing With State-of-The-Art Baselines

We compare DCMD with four state-of-the-art methods, in-
clude IDDQN [11], APPD [12], CT-DE [13], and Random.
IDDQN has double actor and critic neural networks with contin-
uous action space of each AUV. But each AUV only considers
its own state, not global environments and states, which has dis-
advantage on performing distributed collaborative tasks. CT-DE
uses multi-agent deep deterministic policy gradient (MADDPG)
with one actor neural network and one critic neural network.
APPD adopts greedy solution that may lead to maximum im-
mediate reward rit in a distributed manner, without considering
the long term. Random is a baseline method that each AUV
randomly decides its action, includes velocity and orientation,
not considering the tasks for collection.

1) Comparison Results With Different Number of Sensor
Nodes: In Fig. 9, we show the results of DCMD and baseline
methods with different number of sensor nodes. We test with
10000 episodes. Fig. 9(a), (b), (c) show that DCMD performs
significantly better on collection rate than CT-DE, APPD, and
random methods with 20, 25, and 30 nodes. Although the
collection rate of IDDQN in Fig. 9(a), (b), (c) is near to DCMD,
the average collection rate of DCMD is 0.98, 0.95, 0.94, which
is better than IDDQN 0.90, 0.93, 0.90, respectively.

Then in Fig. 9(d), (e), (f), we compare energy efficiency of
DCMD with state-of-the-art baseline methods with 20, 25, and
30 nodes. In Fig. 9(d), the average energy efficiency of DCMD is
1.53, which is better than IDDQN 1.37, APPD 1.13, and random
1.47. Although the average energy efficiency of CT-DE is the
same as DCMD, its collection rate is only 0.64, which is really
too low to collect data for USNs. Therefore, DCMD performs
best than state-of-the-art methods with higher collection rate and
efficiency. The same results are in Fig. 9(e), (f).

TABLE IV
OBSTACLE COLLISION NUMBERS OF DCMD AND BASELINE METHODS

WITH EPISODES

In addition, we compare the collision number of DCMD and
state-of-the-art baseline methods in Table IV. In Table IV, we
can easily observe that, the obstacle collision number of IDDQN
is nearly double of DCMD, because IDDQN only consider its
own state, and sacrifices obstacle collision numbers to improve
collection rate, which is unfitting. The collision numbers of
random, APPD, and CT-DE are small, but their collection rates
are too low and instability in Fig. 9(a), (b), (c).

2) Comparison Results With Different Number of AUVs: In
Fig. 10, we show the results of DCMD and baseline methods with
different number of AUVs. We test with 10000 episodes. Fig.
10(a), (b), (c) show that DCMD performs better on collection
rate than CT-DE, APPD, and random methods with 2, 3, and
4 AUVs. Although the collection rate of IDDQN in Fig. 10(a),
(b), (c) is near to DCMD, the average collection rate of DCMD
is 0.95, 0.98, 0.99, which is better than IDDQN 0.82, 0.90, 0.90,
respectively.

Then in Fig. 10(d), (e), (f), we compare energy efficiency of
DCMD with state-of-the-art baseline methods with 2, 3, and 4
AUVs. In Fig. 10(d), the average energy efficiency of DCMD is
2.16, which is better than IDDQN 1.93, APPD 0.62, and random
1.04. Although the average energy efficiency of CT-DE 2.55 is
the highest, its collection rates is only 0.41 in Fig. 10(a), which
is really too low to collect data for USNs. The same results are
in Fig. 10(e), (f). Therefore, DCMD performs best than state-
of-the-art methods with higher collection rate and efficiency.

3) Comparison of Average Results With Different Number of
Nodes and AUVs: We analyze the average collection rate and
energy efficiency with different sensor nodes and AUV in Table
V. As in Table V, we can observe that the average collection rate
of DCMD is the best with value 0.97. The average collection
rate of IDDQN is close to DCMD with value 0.89. The average
collection rates of CT-DE, APPD and random are to low, which
cannot be applied for underwater data collection. Average energy
efficiency of CT-DE is the highest, with average values of 1.89,
because low collection rate means the number of collected nodes
is low, which leads to energy consumption is too little to make
energy efficiency high.

In Table V, we can also observe that the average collection rate
and energy efficiency of DCMD and IDDQN are both relative
stable, while CT-DE, APPD and random vary significantly.
That because underwater environments have the characteris-
tics of time and space variability, APPD and random make
it hard to find an optimal solution all the time, and CT-DE
only have two neural networks for training, which makes its
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Fig. 9. Collection rate and energy efficiency of DCMD and baseline methods with different number of sensor nodes. (a) Collection rate with 20 nodes.
(b) Collection rate with 25 nodes. (c) Collection rate with 30 nodes. (d) Energy efficiency with 20 nodes. (e) Energy efficiency with 25 nodes. (f) Energy efficiency
with 30 nodes.

Fig. 10. Collection rate and energy efficiency of DCMD and baseline methods with different number of AUVs. (a) Collection rate with 2 AUVs. (b) Collection
rate with 3 AUVss. (c) Collection rate with 4 AUVs. (d) Energy efficiency with 2 AUVs. (e) Energy efficiency with 3 AUVs. (f) Energy efficiency with 4 AUVs.
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TABLE V
AVERAGE COLLECTION RATE AND ENERGY EFFICIENCY OF DCMD AND BASELINE METHODS WITH DIFFERENT NUMBER OF AUVS AND SENSOR NODES

training accuracy cannot catch up with DCMD and IDDQN.
DCMD has higher collection rate and energy efficiency than
IDDQN because DCMD considers global observation infor-
mation during training, while IDDQN only considers a single
AUV’s own observation information. Therefore, comprehensive
consideration, DCMD performs best than other state-of-the-art
baselines.

VII. CONCLUSION

In this paper, we present DCMD to collect data of multi-modal
underwater sensor networks by multiple AUVs. The main ideas
of DCMD is to utilize multi-modal transmission and AUVs’
collaborations to achieve high-efficiency data collection, en-
ergy consumption, and transmission. We propose an optimal
transmission selection algorithm to maximize benefit of com-
munication. The AUVs’ trajectory planning algorithm based on
deep reinforcement learning is proposed to improve collection
efficiency by collaborations, with consideration of transmission
situation and the unique underwater environments: obstacles
and ocean currents. The transmission selection and trajectory
planning are combined in one protocol. Our experimental re-
sults show that DCMD achieves better performance by multiple
AUVs than other benchmark methods.

In the future, we plan to further improve performance of
the AUVs’ trajectory planning, which to reduce computing and
storage demands of AUVs.
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