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Abstract—Smart cities incorporating smart grid and intelligent
transportation systems are an emerging paradigm that aims
to improve the quality of life for residents through ubiquitous
networking coverage, automation, and artificial intelligence (AI).
However, the emergence of electric and autonomous vehicles
(EAVs), the wide expansion of data centers, and the high
integration of renewable energy impose heavy burdens on the
ossified smart cities infrastructure. In this article, we develop a
sustainable and adaptive digital twin (DT) framework to charac-
terize smart cities with high fidelity and real-time synchronization
between physical and digital spaces of smart city applications.
Different from existing DT models, the developed framework
considers the interconnections among multiple subsystems, where
each subsystem is connected with real-world physical space
to achieve real-time interaction. Considering large-scale system
simulations and huge amounts of Internet-of-Things (IoT) data to
be processed, we propose a hierarchical computing architecture
and a DT update mechanism to decompose and distribute
computing tasks according to the capabilities of data centers
and local computing devices. Two case studies are presented
to validate the adaptability and high fidelity of the developed
DT framework that achieves close-to-optimal performance with
partially lacking data.

I. INTRODUCTION

Smart cities are a promising paradigm that incorporates
sensing, networking, and computing techniques to improve
the quality of life for city residents as well as to enhance the
sustainability and efficiency of city operation [1]. Recently,
the prevalence of electric and autonomous vehicles (EAVs)
has brought new challenges to smart city planning and op-
eration. First, the operations of EAVs are closely coupled
with smart grid (SG) and intelligent transportation system
(ITS), making the system modelling complicated. Second,
EAV commercialization imposes a burden on the SG loading
while raising the bar of on-road networking and computing
due to increasing autonomous driving demands. Additionally,
the rise of generative artificial intelligence (AI) technology
requires a wide expansion of data centers (DCs), which puts
pressure on the SG for high carbon emissions. Renewable
energy generations (REGs) emerge as potential solutions with
net-zero emission but incurs additional challenges due to their
intermittent nature. Considering the dynamics and complicity
of the system, it is imperative to develop an intelligent oper-
ation platform for a precise characterization of smart cities.

Thanks to the advancement of real-time data collection, data
analytics, and machine learning technologies, digital twin (DT)
emerges as a key enabling technology to realize a high-fidelity
and intelligent operation platform for smart cities [2]. Different
from existing modelling and operation techniques, DT maps

real-time data and response from a physical space into a digital
space to offer precise representations of physical entities. With
real-time interactions between physical and digital spaces, a
DT of smart cities can provide the city operator with valuable
data and guidance for operation and planning.

In the literature, applications of DT in smart cities have
been explored. For example, a road infrastructure DT was
investigated in [3] for road monitoring and object detection
in smart cities. In [4], a smart DT platform was proposed
to control connected and autonomous vehicles over wireless
networks. The application of digital twin in industrial Internet-
of-Things (IoT) systems was explored in [5] for ultrahigh-
voltage converter station. While existing literature has devel-
oped well-modelled DTs for part of smart cities, none of
them considered the system-level DT model, which is much
more complicated. An attempt at system DT modelling was
discussed in [6], where the smart transportation system and
smart energy system were modelled together. In [7], a machine
learning model was integrated into the digital twin platform
to simulate cyber-attacks and evaluate response strategies in
smart cities. However, the coupling between subsystems is
weak. In [8], a spatio-temporal graph model was developed as
the ITS DT with SUMO and OMNET++ network simulator.
While the interaction between ITS and SG is considered, the
work focuses more on the DT model update rather than its
operation optimization.

While existing literature has contributed to various aspects
of the smart cities DT development, three major research
gaps exist: First, most literature considers a subsystem of
smart cities without an explicit characterization of the inter-
connections among subsystems in smart cities. This research
gap is critical, especially with the integration of DCs, EAVs,
and REGs. These components are highly power-rated with
stochastic load profiles that require the coordination of the
SG and the ITS for optimal performance. Second, most of
the DTs are centrally deployed on one virtualized computing
node (potentially for cloud computing), which suffers from
limited scalability and low operation resilience. Finally, most
DTs utilize existing datasets for model creation, which may
not achieve real-time interactions between the DT and the
modelled entity in the physical space. Real-time interactions
are critical for fundamental infrastructure to provide timely
and accurate simulation results.

To bridge the research gaps, we develop a sustainable and
adaptive DT framework that can precisely characterize smart
cities while capturing the interconnections of subsystems in
smart cities. The DT framework will be implemented using
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emerging hardware-in-the-loop devices [9] and NSF Colos-
seum [10]. Specifically, our contributions are as follows:

• The proposed framework is one of the first to incorporate
SG, ITS and communication subsystems together in the
smart city modelling. The framework uses local REGs
to achieve net-zero energy provision with detailed com-
munication system modelling to evaluate its impact on
system performance.

• A hierarchical DT update mechanism is proposed to
decompose and distribute computing tasks to maximize
resource utilization, decrease network latencies, and pro-
tect user privacy.

• Leveraging synthesized data and machine learning algo-
rithms to implement the proposed DT framework, we can
validate the superiority of the developed framework in
terms of accuracy and adaptability.

The rest of the article is organized as follows. Section
II introduces the system architecture. Section III presents
the proposed DT framework and two use cases for the DT
workflow demonstration. Section IV proposes a hierarchical
DT update mechanism that incorporates task decomposition
and distribution across multiple tiers. Section V presents case
studies to demonstrate the effectiveness of the developed DT
framework. Finally, we conclude the article in Section VI.

II. SYSTEM ARCHITECTURE

A. System Overview

We consider smart cities to be composed of an SG and
an ITS, both built on the city topology. The communication
system is incorporated into the SG and the ITS through
Internet-of-Things (IoT) devices and the HILP system. As
shown in Fig. 1, the architecture of smart cities is composed
of a digital twin, its counterpart (a physical twin), and a
DT modelling block (shown in light blue). The physical twin
consists of all the subsystems and devices where the real data
are transferred to its DT space via communication systems.
The DT mirrors the physical twin with detailed modelling
on targeted components such as EAVs, DCs, and roadside
units (RSUs). In this section, we introduce the physical twin
of smart cities. The main components and functions of each
subsystem are elaborated in the following.

B. SG

The SG is a fundamental subsystem in smart cities, aim-
ing to provide residents with green and stable electricity.
Compared to the conventional power grid, the SG utilizes
advanced sensing, networking, and information technologies
to optimize its operation while guaranteeing the reliability
and stability of the system. The SG in smart cities is a low-
voltage power distribution system that connects with a high-
voltage transmission system via a point of common coupling
(PCC). In the power distribution system, REGs and loads are
connected to different levels of feeders depending on their
power and voltage ratings. For example, large-scale REGs
(e.g., solar farms) and industrial loads with high load demands
are deployed at primary feeders. Meanwhile, lower power-
rated generators and loads such as EVCSs, residential loads,

and RSUs are deployed at secondary feeders. Communication
devices are deployed in both wired and wireless formats to
ensure a seamless information exchange in the SG.

C. ITS

Another fundamental infrastructure in smart cities is the
ITS, which is composed of transportation, communication, and
computing components. In the ITS, RSUs with cameras and
sensors monitor traffic conditions and regularly transmit the
data to DCs for analysis. RSUs may act as edge computing
devices to cache popular content and conduct simple comput-
ing tasks with local data. As EAVs become prevalent, EVCSs
are widely deployed in the ITS to alleviate EAV range anxiety.
EVCSs are equipped with networking and computing devices
to perform edge computing tasks. EVCSs couple the operation
of SG and ITS by reflecting the traffic flow fluctuation in the
form of EAV charging demand in the SG.

D. DCs

Smart cities are a complex system that requires high com-
putation power to maintain its operation. To help alleviate the
heavy computation burden, we develop a hierarchical comput-
ing architecture that decomposes and distributes tasks to DCs
with different computing capabilities. Corresponding to their
computing capacities, DCs have different cooling requirements
and load ratings, and are deployed at SG’s feeders according
to their ratings.

As shown in Fig. 1, the hierarchical computing architecture
is composed of cloud DCs, edge DCs, and end users. Cloud
DCs are responsible for system-level DT operation and thus
have high power ratings, usually up to MW level. Addition-
ally, cloud DCs require heavy-duty cooling devices for their
servers. Cloud DCs are deployed in the transmission system
to fulfill their power demand. Edge DCs are responsible for
the regional DT update and data processing. Edge DCs have
considerable power demands (e.g., kW level) with moderate
cooling requirements. Therefore, edge DCs are usually de-
ployed at primary feeders in the SG. End users with computing
capabilities (e.g., EVAs, EVCSs, and RSUs) can provide edge
computing services to reduce the data transmission overhead
and preserve user privacy. These end users can connect to
secondary feeders for power provision.

As the expansion of DCs unfolds, the decade-old SG
infrastructure encounters significant loading pressures. As a
cost-efficient solution, REGs are integrated with DCs in the
SG. For example, cloud DCs are integrated with MW-level
REGs to avoid transmission line congestion. For an edge DC
with hundreds of kW power demand, a small-size REG is
sufficient.

E. EAVs

EAVs are coupled with the SG and ITS operations through
their transportation and charging/discharging features. For
example, locations of EVCSs in the SG affect EAV travelling
trajectories in the ITS. In return, EAV traffic conditions in
the ITS affect their charging decisions, which impacts the
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Fig. 1. System Architecture and the Proposed DT Framework.

EVCS loading status in the SG. The autonomous driving
capabilities of EAVs make them ideal candidates for data
sensing, networking relay, and edge computing.

III. PROPOSED DT FRAMEWORK AND USE CASES

In this section, we present the proposed DT framework for
smart cities. Then, we showcase the workflow of the proposed
framework through two use cases.

A. Proposed DT Framework

The proposed DT framework maps smart cities from the
physical space to its digital space through data sensing,
processing, and system modelling. Mirroring smart cities in
the physical space, the proposed DT framework consists of two
subsystems: the SG DT and the ITS DT, which are described
in detail. Further, we emphasize on the DT models of key
components (e.g., EAVs and DCs) in smart cities.

1) SG DT: As shown in the right part of Fig. 1, the SG
in the digital space is created using Typhoon HILLTOP+ [9]
and OpenDSS. Typhoon HILLTOP+ is a real-time simulator
that connects the SG in the physical space with its DT. In
our proposed framework, Typhoon HILLTOP+ connects the
SG DT with the SG Laboratory for data sampling, command
transfer, and system status monitoring. OpenDSS can simulate
quasi-status time series (QSTS) of the power distribution
system while interfacing with HILLTOP+ to calculate power
flows. HILLTOP+ can interface with OpenDSS through the
Python API (OpenDSS Direct) to understand how dynamic
control of power system components affects the system-level
operation. Such a co-simulation platform can also be leveraged

to develop optimization and machine-learning algorithms for
the steady-state power grid analysis.

2) ITS DT: In the digital space, the ITS DT model is
composed of the transportation subsystem and the communi-
cation/computing subsystem. SUMO is employed to model the
transportation system, including the road topology, terrain in-
formation, and vehicular traffic. The SUMO model is fed with
real-time data from the Caltrans Performance Measurement
System (PeMS) [11] for model calibration. On the other hand,
the communication/computing system is modelled leveraging
NSF Colosseum [10] to simulate and test real-life networking
scenarios. Colosseum has 128 standard radio nodes (SRNs), a
massive channel emulator (MCHEM), a traffic generator, GPU
nodes, and management infrastructure which can be reserved
and used remotely. Multiple SRNs are reserved to simulate
and collect real signal transmission data that are fed into
OMNET++ for high-layer networking simulation. Enabled by
the traffic control interface (TraCI) and Python interface, the
ITS can be co-simulated with the SG.

3) DC DT: In the digital space, DC functionalities such as
temperature monitoring, cooling, and load management are
modelled to characterize DC’s computing, networking, and
load statuses. DC DTs are integrated into the SG DT through
feeders. DC DTs communicate with the SG DT about their
loading forecasting, requested power, and committed power.
DC DTs also interact with the ITS DT to perform computing
tasks and migrate computing tasks through the communication
system when necessary.

4) EAV and EVCS DT: The EAV DT is constructed with
the input of EV driving trajectory data from our EV test drive
program. The trajectory data helps the EAV DT to model
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Fig. 2. Use Case 1: EAV Charging Navigation.

the EAV driving mechanism and energy consumption pattern.
Moreover, EV battery cycling data from our laboratory and
emulated vehicular networking data from NSF Colosseum are
regularly sampled and fed into the EAV DT for the calibration
of EV battery and networking models.

The EVCS DT inputs the ITS traffic data from Caltrans
PeMS and the EAV charging data synthesized by [12] to
construct its charging load and pricing models. Both EVCS
DTs and EAV DTs interconnect with the SG DT and the
ITS DT for real-time information exchange while taking into
account the networking impact on the system performance.

B. Use Cases

1) Use Case 1: EAV Charging Navigation: Charging navi-
gation is a critical task for both EAVs and smart cities. From
EAV perspective, on-time charging helps alleviate drivers’
range anxiety. From smart cities perspective, optimal charging
navigation on the system level helps guide the traffic flow
and mitigate peak electric loads. Additionally, the charging
navigation task interconnects the operation between the SG
and the ITS as the EVCS pricing could affect the EAV routing
plan in the ITS while the traffic conditions could impact the
EAV charging plan in the SG.

As shown in Fig. 2, the EAV charging navigation requires
cooperative efforts from all entities in smart cities. When an
EAV is on the road, its DT regularly monitors and assesses its
state-of-charge (SoC) status to evaluate its charging demand
given the external environment. When the EAV DT decides
to search for EVCSs, the EAV sends the charging request to
the ITS DT via vehicular networks. The ITS edge DC collects
and aggregates its regional EAV charging requests to analyze
the temporal and spatial EAV charging demands. Later on,
the regional EAV charging demand is sent to the SG. The SG
DT performs a hierarchical EVCS pricing scheme based on
the current and forecasted EAV charging demand, power flow
analysis, and current load commitment. Once the EVCS price
is confirmed and updated, EVAs make reservations to their
preferred EVCSs or navigate to the EVCS and be served on a

first-come-first-serve basis. EVAs then communicate with the
ITS to autonomously navigate to the reserved EVCS.

The charging navigation helps update system data such as
ITS traffic conditions, SG loading data, and EAV driving
status, which are fed into corresponding DTs for model
calibraiton.

2) Use Case 2: Load Shifting for Data Centers: The rapid
advancement of generative AI and data-based technologies has
boosted the deployment of DCs. In the United States, the
electricity load growth was forecasted to jump 81% led by
DCs [13]. Multiple countries have started imposing restrictions
on DCs with legislation to encourage DCs to become net-
positive with REG integration. Our proposed framework can
effectively address the heavy loading issues incurred by DCs
with a hierarchical load shifting strategy as shown in Fig. 3.

The cloud DT (short for cloud DC DT) evaluates its local
REG generation and upcoming task amount to decide the
number of tasks to be offloaded to edge DCs. The offloaded
tasks are decomposed and distributed to edge DCs according
to their available computing resources and REG generation.
The locally processed computing tasks are subject to load
scheduling and power capping, through which the cloud DC
aims to achieve a flattened load profile, which is updated with
the SG.

The edge DT (short for edge DC DT) monitors its upcoming
computing tasks to assess its available power capacities for
task implementation. Different from the cloud DC, the edge
DC has fewer servers that require medium temperature control
and have a lower power rating. Correspondingly, the com-
puting capability of an edge DC is significantly smaller and
therefore, edge DCs may require end users to conduct local
computing tasks (e.g., data cleaning and device model update).
Once tasks are decomposed and distributed from the edge DCs
to end users, the edge DT updates the SG with its load request.
Notably, both cloud and edge DCs are integrated with REGs,
aiming to achieve a net-positive operation. Therefore, these
two DTs need to develop REG integration schemes in accor-
dance with real-time and forecasted electricity consumption
and temperature control.

In this use case, we take the EAV as an example that can
sense its external and internal environment, process the data,
and update its DT locally. Localizing computing tasks not only
maximizes resource utilization but also preserves user privacy.
Further, with its on-broad battery, the EAV can achieve net-
zero computing if charged with green energy.

Upon receiving the load requests from all computing de-
vices, the SG DT responds with the committed generation
to each computing infrastructure through careful power flow
analysis and load forecasting. In emergency conditions (e.g.,
power outages or post-disaster scenarios), the PCC may be
disconnected between the power distribution system and the
transmission system for grid protection. Therefore, DCs that
are in the outage-affected areas need to be self-sustained.
As such, only critical and necessary computing tasks are
implemented at DCs while EAVs are navigated to these power-
outaged DCs for temporary energy provision. The previously
distributed tasks may be rescheduled by the cloud DT to other
normally operated edge DCs.
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Fig. 3. User Case 2: Hierarchical Load Shifting for DCs.

IV. HIERARCHICAL DT UPDATE

The hierarchical computing architecture and the operation
among multiple subsystems in smart cities in the proposed
DT framework necessitate an efficient DT update strategy.
In this section, we develop a top-down approach to update
DTs by illustrating the internal DT update and specify the
interconnection between DTs at different layers.

A. Cloud DT Update

At the top tier, the cloud DT is responsible for the system
overall update. The cloud DT is operated through the coordina-
tion between the SG and the ITS operators. As shown in Fig. 4,
the cloud DT interacts with the physical space through real-
time data communication. The DT update requires constant
data aggregated sent from edge DC DTs. As smart cities
evolve, emerging technologies and devices join the system and
thus multi-system coordination is updated accordingly.

Tasks are decomposed in terms of their properties. For
example, traffic-related tasks (e.g., traffic flow forecasting and
fleet routing) can be decomposed and distributed to ITS DT
while power-related tasks (e.g., EAV charging) are decom-
posed and distributed to the SG DT.

B. Edge DT Update

Smart cities have multiple edge DCs, each responsible for
computing tasks of one subsystem for a specific region. Edge
DTs can be categorized into regional ITS DTs and regional
SG DTs.

1) Regional ITS DT Update: The regional ITS DT char-
acterizes the ITS in a given region (e.g., 20km) with real
data collected from the physical space to calibrate the model
development (e.g., road topology update) and optimize the
operation (e.g., traffic flow guidance). In return, the ITS DT
can provide up-to-date traffic guidance and more accurate
synthesized data. Upon receiving computing requests from
the cloud DT, the regional ITS DT implements tasks locally,
further, distributes tasks to lower tiers, or migrates tasks to
DCs at the same tiers with redundant computing resources.

2) Regional SG DT Update: Regional SG DT is deployed
at edge DCs to monitor and simulate the SG in a given region.
The DT is operated by the regional utility company and real
SG data in the physical space are fed into the DT model
for operation optimization (e.g., REG integration control)
and data synthesis. In return, the regional SG DT provides
recommended control actions. Upon receiving computing tasks
from the cloud DC, the regional SG DT decomposes tasks and
distributes tasks to end users under coverage. Different from
the ITS, end users in the smart grid are significantly different
from each other. For example, REGs can only implement tasks
related to their generation and storage control while EAVs may
implement tasks for both EAVs and EVCS.

C. End-User DT Update

Considering the complexity of smart cities, there are numer-
ous end users who have their local DTs for data computing.
For simplicity, we introduce three representatives of end-user
DTs.

1) RSU DT Update: The RSU DT characterizes the oper-
ation of RSUs in the regional ITS. The RSU is responsible
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Fig. 4. Hierarchical DT Update.

for sensing the surrounding networking and traffic condi-
tions, which are fed into the RSU DT for model update
through learning-based model training. Correspondingly, the
updated DT can implement computing tasks accurately to pro-
vide local traffic/networking guidance and upload hierarchical
data/commands to upper tiers.

2) EAV DT Update: The EAV DT characterizes the opera-
tion of EAVs in smart cities. The EAV couples the SG and the
ITS, responsible for data sensing, transportation, networking
relay, edge computing, charging and discharging services. EAV
sensing data are fed into the EAV DT for its model calibration
and data synthesis and in return, the updated DT helps improve
the autonomous driving performance as well as the battery
management. EAVs can perform tasks in a fleet manner as an
aggregated computing device/battery pool.

3) REG DT Update: The REG DT characterizes the op-
eration and control of REG in the regional SG. The REG
generates electricity using local RES with detailed control
schemes tailored to each RES. The real generation data along
with the REG environmental data are transferred to the REG
DT to calibrate the REG generation forecasting profile as
well as the REG control strategy. Then, the REG DT helps
improve the REG generation through its model’s forecasting
and optimized control. The REG DT can undertake computing
tasks from the smart grid, especially the ones related to REG
control and environmental data sensing.

V. CASE STUDY

To demonstrate the effectiveness of our developed DT
framework, we conduct two case studies. First, the high fidelity
and adaptability of the developed DC DT are showcased using
real performance data of virtual machines from distributed
DCs from Bitbrains [14]. Then, the DC loads are integrated
into smart cities, in cooperation with EAVs and REGs, to per-
form a cooperative economic dispatch in the SG for peak load
mitigation. Here, we demonstrate how such a DT framework
can achieve near-optimal results while outperforming other
benchmarks.

A. Forecasting Performance on CPU Usage
The forecasting performance on the CPU usage using the

proposed DT framework is shown in Fig. 5, in comparison
with the real data and model-based forecasting (i.e., auto-
regression model). We show the forecasting results on two
different virtual machines. It is observed that the proposed
DT framework achieves high forecasting accuracy compared
to real data while the model-based forecasting has a much
lower forecasting accuracy as it cannot well track the sudden
impulses of incoming computing tasks. Statistically, the pro-
posed DT framework achieves a mean squared error (MSE)
of 0.008578, much better than the model-based forecasting for
Machine 1. Similar statistics apply to Machine 2 results: the
DT framework has an MSE of 0.0005228 which is negligible.
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Fig. 5. Forecasting Performance on CPU Usage.

It is also observed that the proposed DT framework can
achieve high forecasting accuracy even on virtual machines
with significantly different CPU usage patterns. Therefore, we
have validated the framework’s adaptability as the DT frame-
work can be adaptively adjusted to achieve good performance
under different operation scenarios.
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B. Performance Comparison of the Cooperative Economic
Dispatch

This case study considers the joint optimization of the SG
DT and the ITS DT with the integration of DCs, EAVs, and
REG. Specifically, we consider using EAVs as mobile energy
storage that can charge and discharge in corporations with the
SG demand to achieve a cost-efficient power generation. As
such, the joint optimization problem is formulated to reduce
the generation cost Cgen, EV fleet travelling cost Ctra, and
battery degradation cost Cbd as follows:

min (δCgen + ϵCtra + ζCbd) (1)

The optimization problem is subject to constraints of power
balance, EV mobility and battery capacities. Due to the space
limit, we omit the discussion on constraints. The simulation is
conducted on IEEE 14-bus system with one REG integrated
and two edge DCs deployed. Two EAV fleets travel in smart
cities (modelled in the ITS DT) to provide on-demand energy
considering the uncertainty of loads and the REG. Due to the
uncertainty of the SG components, it is critical to have the
proposed DT framework for data synthesis and forecasting.

The performance comparison of the cooperative economic
dispatch scheme using real data, data forecasted by the
proposed DT framework, and data provided by the model-
based forecasting is shown in Fig.6. It can be observed that
the economic dispatch cost of the real data (i.e., without
uncertainty) is minimal while the proposed DT framework
achieves a relatively low cost compared to the model-based
forecasting result (i.e., the auto regression-based forecasting).
The results show the promise of using the proposed DT
framework for data synthesis and forecasting.

VI. CONCLUSION

In this article, we have developed a sustainable and adaptive
DT framework for smart cities that integrates SG with ITS.
The emerging paradigms such as EAVs, DCs, and REGs
are also characterized and incorporated into the proposed
framework to meet the net-zero/net-positive goal for a highly
intelligent and automated city operation. Further, a hierarchical
computing architecture has been developed to improve the re-
source utilization of local computing resources, strengthening
the resilience of the smart cities operations, while preserving
user privacy with limited data uploading to the centralized op-
erator. Two use cases have been introduced to demonstrate the
necessity of the proposed framework for emerging paradigms.
A hierarchical DT update mechanism has been proposed to
achieve an efficient and privacy-preserved DT update through
task decomposition and peer-to-peer task migration. Two case
studies have been presented to demonstrate the effectiveness of
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the developed DT framework on adaptability and high-fidelity
modelling to achieve near-optimal performance.

For future work, we plan to develop a full-scale well-
rounded DT platform to provide guidance on long-term smart
cities planning and operation.
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