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Abstract
In wireless sensor networks, time synchronization is an important issue for all nodes to have a unified time. The wireless
sensor network nodes should cooperatively adjust their local time according to certain distributed synchronization algo-
rithms to achieve global time synchronization. Conventionally, it is assumed that all nodes in the network are cooperative
and well-functioned in the synchronization process. However, in cognitive radio wireless sensor networks, the global time
synchronization process among secondary users is prone to fail because the communication process for exchanging syn-
chronization reference may be frequently interrupted by the primary users. The anomaly nodes that failed to synchronize
will significantly affect the global convergence performance of the synchronization algorithm. This article proposes an
anomaly node detection method for distributed time synchronization algorithm in cognitive radio sensor networks. The
proposed method adopts the statistical linear correlation analysis approach to detect anomaly nodes through the histori-
cal time synchronization information stored in local nodes. Simulation results show that the proposed method can effec-
tively improve the robustness of the synchronization algorithm in distributed cognitive radio sensor networks.
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Introduction

Wireless sensor network (WSN) is a special distributed
wireless network that can support pervasive and robust
monitoring of various physical conditions such as tem-
perature, sound, humidity, and so on. Designed for
rapid and robust deployments, WSNs are widely used
in both military and civilian applications.1 Time syn-
chronization plays a very important role in WSNs
because it enables all nodes to have a unified time, on
which all applications such as data collection and envi-
ronment monitoring depend.1,2 Cognitive radio (CR)
network has been widely regarded as a key technology
to increase the spectrum utilization of wireless commu-
nication systems.3 CR technology enables secondary
users (SUs) without spectrum license to share wireless

channels with primary users (PUs) who hold the spec-
trum license through dynamic spectrum access technol-
ogy. The application of CR technology in WSNs can
enhance the capacity of WSNs and has been widely
investigated in recent years.4,5 However, time synchro-
nization in cognitive radio sensor networks (CRSNs) is
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prone to failure because the communication process for
exchanging synchronization references among SUs may
be frequently interrupted by the PUs’ activity. The
anomaly nodes that fail to keep synchronized will sig-
nificantly reduce the convergence performance of the
synchronization algorithm in CRSNs.4

In the literature, many-time synchronization algo-
rithms for WSNs have been proposed. These algorithms
can be broadly categorized into two types: centralized
and distributed approaches.1

In the centralized approach, there is a powerful cen-
tral node servicing as a root. The root node and other
nodes in the network form a tree or mesh topology. The
central node periodically broadcasts the time reference
information, marked as level 1. Based on the received
level 1 timing information, the neighbor nodes of the
root adjust their local time references and marked them
as level 2. In the same way, the two-hop neighbor nodes
of the root adjust their local time reference according to
the root node’s one-hop neighbors. The same procedure
propagates through the entire network. If a node
receives more than one timing references from its neigh-
bor nodes, it will adjust its local time reference accord-
ing to the node with the most superior level.6–10 The
centralized methods are effective in achieving the con-
vergence of time synchronization with a low signaling
cost. In addition, it is easy to find an abnormal node
that does not adjust its local time reference. However,
these centralized algorithms are over-dependent on the
root node. Moreover, the time reference bias and error
will accumulate as the hops between a node and the
root node increase. Therefore, distributed synchroniza-
tion algorithms are proposed.

In the distributed approach, each node independently
adjusts its time reference according to the time difference
between its local time reference and the time reference of
its neighbor nodes. In the literature, different types of
the distributed algorithms have been proposed. The
major types are test-based detection, majority voting
detection, and node–self-detection methods.

In the test-based detection methods, nodes execute
test task and then make a judgment on abnormal nodes
based on the test results. In a k-connected graph,
Webber let one node execute the test together with its
neighbors to detect the abnormal node.11 This algorithm
requires that every node should have a given number of
neighbors, so its application is restricted to some limited
scenarios. Chessa proposed a test-based algorithm using
comparison method.12,13 In his algorithm, the system
will choose a trusted node to broadcast test information.
Its neighbors, respectively, compare the information
and then return a testing result to the trusted node for
deciding if a node is normal or not. This algorithm is
suitable to distributed networks, but how to choose a
trusted node becomes a new problem. On the basis of
Chessa’s algorithm, Elhadef proposed some improved

algorithms—adaptive Distributed Self-Diagnosis
Protocol (DSDP) and mobile DSDP.14 Similar methods
of regularly checking nodes’ behavior in WSNs to detect
abnormal nodes were discussed in You et al.15 and El-
Koujok et al.16 Although the test-based algorithms can
improve the detection accuracy, they also bring chal-
lenges in terms of the communication cost and computa-
tional complexity.

The majority voting detection method takes the
advantage of the spatial similarity of the nodes in WSNs
to decide abnormal nodes. Vuran et al.17 set a threshold
value to test the difference between two nodes. If the dif-
ference is higher than the threshold, one of the two nodes
is likely to be abnormal. If one node is voted by all its
neighbors, the node will be regarded as an abnormal
node. As an improvement to the simple voting, the vot-
ing methods discussed in Xiao et al.18 and Behnke et al.19

were affected by the weights between nodes. The method
presented in Xiao et al.18 required that the nodes be con-
nected only when they are similar, which make the voting
credible. The Efficient Localized Detection of Erroneous
Nodes (ELDEN) proposed by Behnke et al.19 computed
the weight through the distance between nodes and every
node chooses the median of its neighbors to compare
with its own state value. Then the difference will be nor-
malized by the weight and becomes the final difference
Y. If Y is higher than the threshold, a node is regarded as
abnormal. The majority voting detection method can
achieve a good performance in accuracy with a relatively
small signaling cost, but it shows a poor performance in
scenarios with a small number of nodes.

The node–self-detection methods for distributed
WSNs were discussed in Babaie et al.;20–22 these algo-
rithms require extra hardware or software to complete
the detection, which impose extra cost for resource lim-
ited nodes in WSNs.

Through the above literature review, we can find
that detecting the abnormal nodes in distributed time
synchronization is very important for cognitive WSNs.
The abnormal nodes who could not adjust its local time
reference according to the time synchronization algo-
rithm will damage the convergence of the algorithm. In
this article, we propose a novel method to detect the
abnormal node in distributed time synchronization
algorithm. In our method, the correlation coefficient is
introduced to compute the local time reference correla-
tion between nodes in the networks. As the time refer-
ence of an abnormal node is likely to be uncorrelated
to the time reference of the normal node, the correla-
tion coefficient can be used as a metric for effective
detection of abnormal nodes in the network.

System model

In this article, we study the time synchronization algo-
rithm under an assumption that the topology of the
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cognitive WSN is a totally connected graph. Messages
sent from a source node will successively be received by
any given destination node in the network within sev-
eral hops. All the nodes except the abnormal nods in
the network adjust their local time references according
to the distributed synchronization algorithm.

Distributed synchronization algorithm

The algorithm proposed in this article is designed for
WSNs in which nodes communicate in a distributed
manner. We denote the set of all points/network nodes
as V , and the neighbors of node i are denoted as
Node(i). The time references of node i in the current
state and the next state are marked as ti(n) and
ti(n+ 1), respectively. It is assumed that there are N

nodes in the network, and the time adjustment of node
i could only be computed by receiving the current state
tj(n) of the time reference of its neighbors. In distribu-
ted time synchronization algorithms, each node
updates its local time reference by an adjustment that is
computed by the time difference between its local time
reference and that of its neighbors. Therefore, every
node’s next state of time reference ti(n+ 1) will be
affected by its neighbors’ current state of time refer-
ence, tj(n), that is

ti n+ 1ð Þ= ti nð Þ �
X

j2Node ið Þ
wij ti nð Þ � tj nð Þ
� �

ð1Þ

Here, wij is the weight between node i and node j,
which should be in the range between 0 and 1, and
Node(i) is the neighbor set of node i. For different algo-
rithms, there are different manners for computing wij.
Therefore, equation (1) can be simplified as

ti n+ 1ð Þ=
X
j2V

wijtj nð Þ ð2Þ

The weights between non-neighbor nodes which do
not belong to Node(i) are equal to 0, that is,
wik = 0, k Node(i); the weight of wii is equal to
1�

P
j2Node(i) wij and

P
j2V wij = 1.

The distributed time synchronization algorithm can
be expressed as
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Here, T is a vector of the set of every node’s next
time state, and W is the weight matrix. As shown in
equation (3), the distributed time synchronization algo-
rithm is expressed by a distributed average formula. If
the WSN is a connected network, which means that the
weight matrix is an irreducible matrix, the time refer-
ence of every node in the network will converge to a
same value after a few numbers of iterations. However,
if more than one abnormal nodes in the network do
not comply with the synchronization algorithm, it will
lead to un-convergence of the algorithm.

Synchronization error model

Assume that an abnormal node appears in the network,
whose state of time reference does not change according
to the distributed synchronization algorithm. The exis-
tence of abnormal node will influence time reference of
its neighbor nodes in the next iteration of the synchro-
nization algorithm, such that its neighbor nodes will
have incorrect time references. These neighbor nodes
with error time references will further influence their
nearby nodes to get incorrect time references. The error
of time reference will propagate as the algorithm iter-
ates, which is shown in Figure 1.

Supposed that the node k is an abnormal node which
do not change its local time reference according to the
synchronization algorithm. We use white Gaussian
noise (WGN) to represent the state of k. The synchroni-
zation model with abnormal node can be expressed as

ti nð Þ=
PN

j= 1

wijtj nð Þ i 6¼ k, 1� j�N

s nð Þ i= k, 1� j�N , s nð Þ 2 WGN

8<
: ð4Þ

Figure 1. The spread of error information.
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In equation (4), the time reference of all the normal
nodes expect the abnormal node change according to
equation (2). As the existence of abnormal node will
affect the time reference of other nodes in the network,
we should study the convergence problem of the syn-
chronization algorithm.

If there are more than two abnormal nodes which
do not change their time references in the network—all
other N � k(k � 2) nodes adjust their time references
according to the synchronization algorithm—we will
subsequently prove that the algorithm will not
converge.

Assumed that node p and node q could not adjust
their local time references, we mark the time reference
of node p and node q as tp and tq(tp 6¼ tq), respectively.
If the time references of all other normal nodes are con-
verged to t�, t� 6¼ tp (t� 6¼ tq is the same similar way).
According to equation (4), the time reference of node i

(one of the neighbors of node p) will not be equal to t�

in the next iteration. Only when wiptp +wiqtq = t� can
we keep the time references of other normal nodes in
the same value. Otherwise, the synchronization algo-
rithm will not converge. Therefore, the detection of the
abnormal nodes becomes an essential issue.

Correlation coefficient

According to the synchronization error model, all the
normal nodes current state of time reference are com-
puted by the distributed average of their neighbors’
previous state of time reference. Thus, the time refer-
ence of a normal node will linearly correlate to that of
their neighbor nodes. However, the time reference of
the abnormal node is independent from those of its
neighbors, since it does not adjust its local time refer-
ence according to the synchronization algorithm. The
main idea of the proposed abnormal node detection
method is that every node should compare the correla-
tion coefficient between the local time reference and
that of its neighbors.

In statistics, there are several tools to analyze the
correlation between two sample groups, such as
Pearson product–moment correlation coefficient
(PPMCC), Spearman’s correlation coefficient for
ranked data, and the Kendall coefficient of concor-
dance. These tools have different usage scenarios; we
choose PPMCC in this article because PPMCC is a
good metric for measuring the linear dependence.

PPMCC is a frequently used tool in statistics; it is
used to measure the linear correlation between two
variables. The correlation value of PPMCC ranges
from –1 to 1. If the value is larger than 0, it means that
the two variables measured are positively correlated.
Otherwise, they are regarded as negatively correlated.
If the value is close to 0, it means the two variables are
uncorrelated.

The PPMCC of two continuous variables is defined
as the quotient of their covariance and standard devia-
tion, that is

rXY =
cov X , Yð Þ

sX sY

ð5Þ

Here, X and Y are two values to be measured. sX ,sY

are the standard deviations of X , Y . cov(X , Y ) is the
covariance coefficient

cov X , Yð Þ=E X � E Xð Þð ÞE Y � E Yð Þð Þ ð6Þ

E(X ) and E(Y ) are the expectations of X and Y . For
each node in the network, the time reference of state in
sequence are discrete values. We use the time average,
instead of ensemble average, as a statistical value to
compute the mathematical expectation of the time ref-
erence of each node. Supposed that the number of his-
torical time state used for computing the expectation is
M , which is shown in equation (7)

E
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M

8>>><
>>>:

ð7Þ

The standard deviations are expressed in equation
(8)

s
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Therefore, the covariance can be evaluated as

cov
^

X , Yð Þ=

PM
n= 1

x nð Þ � E
^

Xð Þ
� �

y nð Þ � E
^

Yð Þ
� �

M
ð9Þ

The correlation coefficients of the time reference of
nodes in WSNs, which is expressed in equation (9), are
used as the parameter to detect the abnormal nodes.

Algorithm description

In this article, we assume that the topology is static and
there is one abnormal node at most. As Figure 2 shows,
the algorithm consists of two forms: non-real-time
detection and real-time detection. The former is used to
find out the abnormal node when the network has been
un-synchronized, which needs less computation cost.
The latter is working with synchronization algorithm
to monitor the network and detect the abnormal node.
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Non-real-time detection

The non-real time detection algorithm is shown in
Figure 2(a). In this form, the network is un-synchroni-
zation. Then the follow steps are used to find out the
abnormal node:

1. Execute the synchronization algorithm N times
according to equation (4), and each node stores
the local time reference states in a sequence.

2. Each node computes the coefficient of time ref-
erence between itself and its neighbors by the
PPMCC method. Because node X ’s next state is
affected by its neighbor Y ’s current state, we

choose the samples of X from 1 to N � 1 and
the sample of Y from 2 to N to compose an
observation pair. The correlation coefficient
rXY shows the influence of X to Y .

3. After computing the PPMCC, every node
chooses its neighbor node whose correlation
coefficient is the smallest and notices the chosen
node that it has a problem. If one node is
noticed by all its neighbors, the node will be
regarded as a suspected abnormal node.

4. If there is only one suspected abnormal node,
the node been chosen is confirmed as the abnor-
mal node. If there exists more than one

(a) (b)

Figure 2. Algorithm flowchart: (a) non-real-time detection and (b) real-time detection.
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suspected abnormal nodes, they will compute
their autocorrelations, respectively (its buffer
from 1 to N � 1 and its buffer from 2 to N ),
and the one with the smallest value is confirmed
to be the abnormal node.

Real-time detection

The real-time detection is shown in Figure 2(b). In this
scenario, the network has been synchronized, and the
algorithm is used to monitor whether one normal node
becomes abnormal suddenly. Every node has a N length
buffer to store the states of time reference and has a
counter disable node list to record the nodes which are
selected as abnormal nodes.

Before the abnormal node appears, the nodes exe-
cute the synchronization algorithm, update the buffers,
and compute the PPMCC:

1. If the PPMCCs of node X are all 1, it means X

is absolutely linearly correlated with its neigh-
bors and X does not need to choose a suspected
node, so the disable node list will be reset.
Otherwise, X needs to select the neighbor with
smallest PPMCC as non-real-time detection do
and then notices it.

2. If there exists only one suspected abnormal
node, its disable node list will plus 1. If there are
several suspected abnormal nodes, we will do it
by the same way which non-real-time detection
does in step 4.

3. The node selected as the final suspected abnor-
mal node will plus its disable node list, and the
other suspected abnormal nodes’ disable node
list will reset.

4. If one node’s disable node list comes to be k, it
will be confirmed as the final abnormal node.

Feasibility analysis

As mentioned previously, the abnormal node is like a
virus, it will spread error information to its neighbors,
and the neighbors will also spread the error information
to their nearby nodes.

In Figure 3, the strength of the influence from the
abnormal node is shown. Darker color means the
nodes suffer more influence from the abnormal node.
Similarly, the number shown between two nodes indi-
cates the strength of their PPMCC. The larger the num-
ber, the weaker the correlation coefficient. Since one
node will have weak linear dependence with its neigh-
bors if it is much affected by the abnormal node, the
node will be selected as the problematic node with a
higher probability.

Therefore, the abnormal node will surely be selected
as the suspected abnormal node in this way. However,
one of the abnormal node’s neighbor also has the prob-
ability to be selected as the suspected abnormal node,
because the abnormal node also chose one of its neigh-
bor to notice as the abnormal node. If one node is
noticed by the abnormal node as an abnormal node,
and it is also noticed by other neighbors at the same
time, the node will be another suspected abnormal
node. In this way, there will be two suspected nodes at
most: one of them is the abnormal node, and the other
one is its neighbor.

If there exists two suspected abnormal nodes, we just
need to compute the autocorrelation value. Because the
next state of time reference in one normal node contains
the information of the current state of time reference,
the time reference of the abnormal node is uncorrelated
to its previous state. The node with weaker autocorrela-
tion can be confirmed as the abnormal node.

If the degree of abnormal node is 1, its only neigh-
boring node will find that the correlation coefficient
with the abnormal neighboring node is lower than that
with another normal neighboring node. Hence, the
abnormal node will be detected. If a normal node con-
nects to the network only by an abnormal node, its time
reference is adjusted by that of the abnormal node. The
time reference of the normal node may be incorrect
because the abnormal node is its only neighboring
node. However, it does not affect other nodes in this
circumstance, because the normal node with incorrect
time reference does not have neighbor of any other nor-
mal nodes. Therefore, adopting the statistical linear
correlation analysis approach is an effective method to
detect anomaly nodes.

Figure 3. Influence of abnormal node.
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Simulation and results

In this article, we simulate in a normalized 1 3 1
square area. In the simulation area, there are N nodes
with uniform distribution. The communication radius
is r. If the distance between two nodes is less than r, it
means they are neighbor nodes. Only the neighbor
nodes can communicate with each other, and each
packet from a node can be sent to another node in the
network with multi-hop. In the simulation, the main
parameters we observed are node density N , communi-
cation radius r, and length of buffer B.

Non-real-time detection

Non-real-time detection is used to find out the abnor-
mal node when the network has been un-synchronized.

Length of buffer B. The non-real-time scenario, the
abnormal nodes detection algorithm was run one time
to discover the influence of length of buffer to the detec-
tion rate, is marked as ‘‘once detection’’ in Figure 4.

In Figure 4, we can find that the length of buffer B

has a great influence on the recognition rate. When B is
small, the recognition rate will be low. Moreover, with
the length of buffer B increasing, the recognition rate
gets larger; thus, it will finally reach 1 and stay at this
value. Our algorithm is based on the correlation of time
reference between nodes, so a larger number of samples
contributes to a more accurate result. Here, the length
of buffer means the number of time reference samples.
So large B can lead to high recognition rate.

Besides, we can find that the result with less nodes is
better than the result with more nodes when the buffer
is fixed.

Node density N. The relationship between the node den-
sity and the detection rate is shown in Figure 5.

As Figure 5 shows, when the length of buffer is fixed,
with the node density N increasing, the recognition rate
of the system will decline. In this article, the synchroni-
zation algorithm we used is related to the weight and
node degree. The bigger the node degree is, the smaller
the weight will be. This means the correlation is weak
and the probability of erroneous judgment is high.
Therefore, if we increase the node density N , the weight
will decrease, and it becomes more difficult to find the
abnormal node.

On the other hand, with the whole node density N

increasing, the density of abnormal node becomes small.
Our algorithm is based on the unanimous voting. If one
neighbor of the abnormal node does not notice the
abnormal node, it cannot be detected. So, it should have
more samples to compute the PPMCC accurately. From
Figure 5, we can find that the performance of the system
can be maximized if the length of buffer is large enough.

Real-time detection

Real-time detection is working with synchronization
algorithm to monitor the network and detect the abnor-
mal node.

Length of buffer B. In real time detection scenario, we
need to observe the iteration time which began from
the abnormal node appears until it has been detected.
We call the iteration time as the cost. In the real-time
scenario, the influence of length of buffer to the detec-
tion rate is shown in Figure 6.

Comparing Figure 6 with Figure 4, we can find that
the real-time detection method is more efficient than

Figure 4. The influence of the length of buffer B to recognition
rate in non-real-time detection (r= 0:3,N= 16, 32, 48).

Figure 5. The influence of the node density N to recognition
rate in non-real-time detection (r= 0:3, B= 50, 100, 200).

Yang et al. 7



the non-real-time detection method. When node density
and communication radius are fixed, real-time detec-
tion can reach the same performance with less buffer
demand. In real-time detection, the abnormal node is
immediately detected when it appears, where most of
the nodes in the network, except the abnormal node
and its neighbor nodes, are still in synchronization.
Hence, the error information from the abnormal node
has not been widely spread and it will be easier to detect
the abnormal node with less time reference samples.

The influence of the length of buffer B to cost is
shown in Figure 7.

It is seen from Figure 7 that the real-time detection
method requires more computation cost, with the

buffer increasing, and the cost of time to detect the
abnormal node would decline.

Node density N. The influence of the node density N to
detection rate and the influence of the node density N

to cost are shown in Figures 8 and 9, respectively.
From Figures 8 and 9, we can find that when the

length of buffer is not large enough, the abnormal
node’s detection rate and computation cost will all
decline as the node density increases. The reason is that
the weight value in the distributed time synchronization
algorithm declines when the node density increases;
thus, the correlation value of time reference between

Figure 6. The influence of the length of buffer B to detection
rate in real-time detection (r= 0:3,N= 16, 50).

Figure 7. The influence of the length of buffer B to cost in
real-time detection (r= 0:3,N= 16, 50).

Figure 8. The influence of the node density N to detection
rate in real-time detection (r= 0:3, B= 15, 50).

Figure 9. The influence of the node density N to cost in real-
time detection (r= 0:3, B= 15, 50).
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neighbor nodes will be smaller. Therefore, more itera-
tion time is required to achieve the detection.

Conclusion

In this article, a novel distributed time synchronization
algorithm has been proposed for CRSNs. The proposed
algorithm can effectively detect the abnormal nodes that
fail to comply with the normal synchronization behavior.
Our algorithm relies on a key insight that the time refer-
ence trace of the abnormal node tends to be linearly
uncorrelated with its neighboring nodes. This insight is
used to design a voting and consensus mechanism to
detect abnormal nodes using linear correlation as a metric.
Simulation results show that the proposed method can
effectively detect the abnormal node in CRSNs in both
the non-real-time and real-time scenarios.
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