
Joint Caching and Computing Resource Reservation for
Edge-Assisted Location-Aware Augmented Reality

Yingying Pei∗, Mushu Li≀, Huaqing Wu†, Qiang Ye‡, Conghao Zhou∗, Shisheng Hu∗, and Xuemin (Sherman) Shen∗
∗ Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

≀ Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Canada
† Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
‡ Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada

Email: {y32pei, c89zhou, s97hu, sshen}@uwaterloo.ca, mushu1.li@ryerson.ca, huaqing.wu1@ucalgary.ca, qiangy@mun.ca

Abstract—In this paper, we investigate joint caching and
computing resource reservation for supporting location-aware
augmented reality (AR) applications in an edge-assisted two-tier
radio access network. We aim at minimizing the caching and
computing resource consumption while satisfying the AR service
delay requirement. Specifically, to capture the spatio-temporal
AR service dynamics, the resource consumption minimization
problem is formulated as a long-term stochastic optimization
problem. Due to the time-varying service demands and tightly
coupled multi-resource reservation decisions, we propose a novel
resource reservation algorithm based on the Lyapunov optimiza-
tion technique to solve the problem. We first transform the
original long-term problem into multiple one-shot optimization
problems, each of which is then solved by our designed iterative
algorithm in an online manner. Simulation results demonstrate
that the proposed algorithm can significantly reduce the overall
resource consumption compared to benchmark algorithms.

I. INTRODUCTION

The sixth-generation (6G) networks are envisioned to sup-
port myriads of new applications, including Industrial Internet-
of-Things, vehicle-to-everything, extended reality, etc. [1].
Augmented reality (AR), as one of the representative appli-
cations in 6G, provides users with interactive and immersive
experiences by overlaying virtual information onto real-world
environments. In AR applications, hardware sensors (e.g.,
cameras) first capture real-world environments and gener-
ate video frames [2]. Then, the captured video frames are
integrated with virtual information (e.g., texts, 2D videos,
or 3D models), in which real-time image processing (e.g.,
object detection, depth estimation) is required to create a truly
immersive and engaging AR experience.

However, performing image processing tasks is challenging
due to the following reasons. First, state-of-the-art image
processing techniques for AR typically use large deep neural
network (DNN) models. Running these computation-intensive
models on resource-constrained mobile AR devices (e.g., AR
glasses or handheld mobile phones) would generate excessive
heat and quickly discharge their batteries. Second, the virtual
information to be overlaid onto the captured frames is location-
aware, i.e., highly dependent on the location where the frames
are captured. For example, in AR tourism, a traveler can view
a historical landmark with augmented information about its
history by using AR glasses. The location-aware data are
usually stored in the databases of computing servers [3], if

the image processing tasks are processed on local devices,
the location-aware data need to be retrieved from computing
servers frequently, which results in significant communication
delay and overheads.

To support real-time location-aware AR applications, a fea-
sible way is to offload AR tasks to computing servers near the
edge of the network, i.e., edge computing. Edge computing is a
computing paradigm that deploys servers connected to wireless
base stations or access points to process tasks offloaded from
nearby mobile users. In edge-assisted AR, computing and
caching resources at edge servers can be leveraged to process
AR tasks (e.g., conducting DNN inference with low latency)
and cache location-aware data. Despite the potential of edge
computing for supporting AR applications, there are still some
research challenges that need to be overcome.

First, the computing demands from AR devices can vary
spatially and temporally. Correspondingly, the caching poli-
cies among edge servers should be adjusted dynamically to
maximize resource utilization. Some existing works on edge
caching determined content placement policies with a fixed
caching size given the spatially distributed service demands
and fixed content popularity, with the objective of maximizing
system utility [4] or maximizing the total content hit rate [5].
In addition, works [6], [7] adjusted the content placement
policies to adapt to time-varying content popularity under the
limited caching size. These existing content placement policies
with fixed caching sizes are not suitable for location-aware ap-
plications, which require dynamic caching size adjustment to
adapt to the spatially and temporally varying service demands.

The second challenge is the complex decision-making in
multi-resource management. The performance of AR appli-
cations is jointly affected by the task offloading, and the
amount of multiple resources among edge servers. Obtain-
ing globally optimized decisions every few milliseconds is
not feasible due to the extensive signaling exchange among
multiple edge servers [8]. Therefore, a scalable approach, i.e.,
resource reservation, can be used to tackle this challenge
and support location-aware AR services. In this approach,
network resources are proactively determined on large time
scales (e.g., several minutes to hours) to support future service
demands, thus simplifying the real-time resource allocation for
individual AR devices. Existing works in [9], [10] focused on



resource reservation, e.g., joint radio and computing resource
reservations, for satisfying the requirements of different net-
work services. In location-aware AR applications, however,
the caching resource reservation, i.e., cache size deployment,
is highly related to the spatial distribution of service demands
and task offloading decisions. Therefore, the coupling relations
among caching, computing, and radio resource reservation
require further investigation.

To address the aforementioned challenges, we investigate
multi-resource reservation for location-aware AR applications
while adapting to spatio-temporal service demands. The ob-
jective is to minimize the resource consumption for AR
applications while meeting an average AR delay requirement.
To capture the dynamic service demands from different lo-
cations, a stochastic optimization problem is formulated to
determine the task offloading probability, caching, computing,
and radio resource reservation over all time slots. The major
contributions of this paper are as follows:

1) We tailor a resource reservation algorithm for AR applica-
tions, where the caching, computing, and radio resources
are jointly reserved to adapt to the spatio-temporal vary-
ing location-aware service demands.

2) The proposed algorithm can solve the resource consump-
tion minimization problem for AR applications in an
online manner based on real-time service demands.

II. SYSTEM MODEL

A. Network Model

Fig. 1. A two-tier RAN to support location-aware AR services

As shown in Fig. 1, we consider a two-tier radio access
network (RAN) to support location-aware AR applications
(e.g., AR tourism) for multiple AR devices. A macro base
station (MBS) is deployed in the upper network tier and
underlaid by I non-overlapped small base stations (SBSs).
Denote the set of all BSs by I = {0, 1, 2, ..., I}, and let
index 0 denote the MBS and index i ∈ I\{0} denote SBS
i. Each BS is co-located with an edge server which is capable
of computing and caching. Under the service coverage of SBS
i, a set of location sites (e.g., tourist attractions) is selected

by the AR service provider and deployed with augmented
services. Each AR device is covered by both the MBS and
one SBS. The AR devices continuously generate video frames.
Keyframes will be offloaded to either the MBS or the SBS that
covers the corresponding device for real-time frame processing
and virtual content generation. For brevity, a computing task
refers to the process of processing and generating virtual
content from a keyframe. Let the AR service delay be the
total time from a keyframe leaving the AR device until the
corresponding virtual content arrives, which should be less
than a predefined threshold, denoted by τ , to ensure an
immersive AR experience.

Processing the location-aware computing tasks requires
location-aware context data, which can be stored at edge
servers in advance. Due to the proximity to AR devices,
SBSs are used as the primary place for computing AR tasks.
Therefore, each SBS server stores whole context files related
to the location sites under its coverage, while the MBS server
stores partial context files to assist in task processing when
traffic surges. To fully utilize the caching resources (we use
caching and storage interchangeably) reserved at the MBS,
both caching and computing resources should be reserved at
the MBS server due to their coupling relation. Furthermore,
due to the wide service coverage, the MBS has to process
computing tasks for other applications. Therefore, we aim to
minimize the total caching and computing resources reserved
for the AR application at the MBS server.

A network controller is located at the MBS, making de-
cisions in fixed-duration time slots, indexed by t and t ∈
T = {1, 2, ..., T}. Decisions include radio resource reservation
among BSs, computing and caching resource reservation at
the MBS, and task offloading among SBSs. At each time
slot t, the number of tasks generated from each AR device
is assumed to follow a Poisson process. Thus, the aggregated
number of generated tasks under the service coverage of SBS
i also follows a Poisson process [9], and the generation rate
is denoted by λi(t). Furthermore, due to the stochastic task
generation, a probabilistic task offloading policy is adopted,
where αi(t) ∈ [0, 1] is the probability of tasks generated under
the service coverage of SBS i to be offloaded to the SBS i.

B. Communication Model

The total system spectrum, denoted by B, is divided into M
orthogonal subchannels, and they are grouped into two parts:

M = S0(t) + S1(t), (1)

where S0(t) is the number of subchannels reserved for the
MBS at slot t, while all SBSs reuse the remaining S1(t)
subchannels to exploit the resource multiplexing gain under
acceptable inter-cell interference level [10]. Assume that each
offloaded frame has a fixed and identical size, denoted by χ
(in the unit of bits). Let Ri(t) (in the unit of Mbps) represent
the average uplink transmission rate from AR devices that
are under the coverage of BS i to BS i. The average uplink



transmission time of one task offloaded to BS i, denoted by
dTi (t), is given by

dTi (t) =
χβi(t)

Si(t)Ri(t)
, (2)

where Si(t) = S1(t) if i ∈ {1, 2, ..., I}, and βi(t) denotes the
task arrival rate at BS i, given by

βi(t) =

{
λi(t)αi(t), i = 1, 2, ..., I∑I

j=1 λj(t)(1− αj(t)), i = 0.
(3)

Here we do not consider the downlink result delivery since
the generated virtual information has a small data size, and
the downlink transmission rate is generally much higher than
the uplink ones [11].

C. Caching Model

Let Ci = {1, ..., Ci} and pi(t) = {pi1(t), ..., piCi
(t)} be

the set of context files related to the locations covered by
SBS i and the corresponding file popularity, where ci is
the file index and pici(t) is the probability that the file ci
will be used for computing at slot t. Note that the files
are stored in descending order according to popularity. Let
q(t) = [q1(t), q2(t), ..., qI(t)] denote the caching decision
at the MBS, where qi(t) ∈ Z is the number of context
files selected from set Ci. Given the caching decision q(t),
the MBS always caches the most popular files for maximal
resource utilization [6]. In other words, for the context files
related to SBS i, the top qi(t) most popular context files are
selected from set Ci and then stored at the MBS server. We
consider that all files have the same file size (in the unit of
bits), denoted by F . Then, the total caching space required at
the MBS can be calculated as

Uc(t) = F

I∑
i=1

qi(t). (4)

When a computing task is generated under the coverage of
SBS i and offloaded to the MBS, the corresponding context
files may not be cached at the MBS in advance and need to
be retrieved from SBS i upon needed. Let Pi(t) denote the
retrieval probability, which can be calculated as

Pi(t) = 1−
qi(t)∑
ci=1

pici(t). (5)

Note that a retrieved context file will not be cached in the MBS
after processing the corresponding task since the caching space
and caching contents are proactively determined.

Denote the wired transmission delay of one context file from
any SBS to the MBS by d0, we can calculate the expected
accumulated retrieval delay at slot t as

dR(t) =

I∑
i=1

λi(t)(1− αi(t))Pi(t)d0. (6)

D. Computing Model

Let Li(t) (in the unit of CPU cycles per second) be the
computing capacities of BS i, where L0(t) is a decision
variable at slot t while Li(t) (i ∈ {1, 2, ..., I}) does not change
with t. Given that each computing task requires O CPU cycles,
the computing service rate at BS i, denoted by µi(t), is given
by

µi(t) =
Li(t)

O
. (7)

The arrived tasks at BS i are placed in a waiting queue until
being processed. Since the computation intensity per task is
identical and the task processing rate is deterministic, we
model the task computing process at each edge server as
an M/D/1 queue [12], and hence the average waiting and
processing delay of one task at BS i is given by

dCi (t) =
1

µi(t)
+

βi(t)

2µi(t)(µi(t)− βi(t))
. (8)

Here the constraint of
βi(t)

µi(t)
≤ 1,∀i ∈ I, (9)

should hold to ensure the stability of the task computing queue
at BS i.

E. Problem Formulation

With the average task transmission delay, i.e., dTi (t), accu-
mulated retrieval delay, i.e., dR(t), and average task waiting
and processing delay, i.e., dCi (t), we can obtain the average
service delay of an AR task at time slot t, denoted by d(t),
as follows

d(t) =

∑I
i=0 βi(t)(d

T
i (t) + dCi (t)) + dR(t)∑I
i=1 λi(t)

. (10)

As mobile AR users may move across multiple tourist
attractions, the service demands among BSs vary spatially and
temporally. Therefore, it is crucial to adjust the multi-resource
reservation decision dynamically to ensure a satisfactory qual-
ity of service for AR users. Our objective is to minimize
the long-term resource consumption, i.e., the weighted sum
of caching and computing resources reserved at the MBS,
while ensuring that the average service delay does not exceed a
predefined threshold τ . The problem is formulated as follows:

P0 : min
α(t),S(t),q(t),L0(t),t∈T

1

T

T∑
t=1

(Uc(t) + γL0(t))

s.t. (a)
1

T

T∑
t=1

d(t) ≤ τ

(b) 0 ≤ αi(t) ≤ 1,∀i ∈ I \ {0}
(c) 0 ≤ L0(t) ≤ Lmax

0

(d) 0 ≤ qi(t) ≤ Ci,∀i ∈ I \ {0}
(1), (9),

(11)



where γ weights the relative cost of computing resource
compared to the caching resource, S(t) = [S0(t), S1(t)] is
the radio resource reservation decision at slot t, and Lmax

0

is the maximum computing capacity of the MBS server. We
jointly determine caching and computing resource reservation
at the MBS, i.e., q(t) and L0(t), the radio resources reserved
among BSs, i.e., S(t), and task offloading probability, i.e.,
α(t), to minimize the long-term resource consumption. Con-
straint (11a) ensures that the average long-term service delay
should not exceed a predefined value, i.e., τ . Constraint (11b)
ensures that the task offloading decision under each SBS is
feasible. Constraints (11c), (11d), and (1) are resource capacity
constraints to guarantee that the total amount of reserved
subchannels, computing capacity, and caching space cannot
exceed the amount of resources available at BSs. Constraint (9)
ensures the stability of computing queues at all BSs.

III. LYAPUNOV-BASED ONLINE RESOURCE RESERVATION

Due to the coupling relation among decisions at different
time slots, finding the globally optimal solution to P0 is
challenging. To obtain the optimal solution, we first introduce
the Lyapunov optimization technique to transform the original
long-term problem into multiple one-shot optimization prob-
lems. Then, an iterative algorithm is designed to solve the
one-shot optimization problem.

A. Problem Transformation

The key idea of the Lyapunov optimization technique is to
satisfy the time-average constraints by maintaining the stability
of queues.

1) Virtual Queues: We first define a virtual queue Q, which
evolves over time slots t ∈ {1, 2, ..., T}. The evolution of the
virtual queue can be modeled as

Q(t+ 1) = max{Q(t) + d(t)− τ, 0}, (12)

where Q(0) = 0. The virtual queue length Q(t) indicates
that until the current slot t, how good or bad the average
delay performance is compared with the required delay τ .
From [13], the virtual queue is rate stable if limt→∞

Q(t)
t =

0 with probability 1.

Lemma 1. By enforcing the stability of Q(t), constraint (11a)
can be satisfied.

Proof. According to Eq. (12), we have Q(t + 1) ≥ Q(t) +
d(t) − τ . Subtracting Q(t) from both sides of the inequality,
we have Q(t + 1) − Q(t) ≥ d(t) − τ. Then, we sum up the
equations among all slots and let both sides of the equation
be divided by T . We have

Q(T )−Q(0)

T
≥ 1

T

T−1∑
t=0

d(t)− τ. (13)

By enforcing the stability of Q(t), we have limT→∞
Q(T )
T = 0

with probability 1. Therefore, given that Q(0) = 0, we have
0 ≥ limT→∞

1
T

∑T−1
t=0 d(t)− τ. Thus, constraint (11a) can be

satisfied by maintaining queue stability in the long run.

2) Queue Stability: To maintain queue stability, we first
introduce the Lyapunov function and Lyapunov drift. A
quadratic Lyapunov function, i.e., Y (Q(t)), is defined as [13]

Y (Q(t)) =
1

2
Q2(t). (14)

This function is always non-negative, and it is equal to zero
if and only if Q(t) is zero. Next, we define the one slot
conditional Lyapunov drift, denoted by ∆(t), as

∆(t) = E[Y (Q(t+ 1))− Y (Q(t)) | Q(t)], (15)

which indicates the expected change in the Lyapunov function
at slot t. According to [13], by minimizing Lyapunov drift
∆(t) at every slot t, the queue length is consistently reduced,
which potentially maintains the queue stability to satisfy
constraint (11a).

3) Minimizing the Drift-Plus-Penalty: According to the
Lyapunov optimization theorem, we can greedily minimize the
drift-plus-penalty to stabilize the queue while optimizing the
objective. The drift-plus-penalty Π(t) is given by

Π(t) = ∆(t) + V E[Uc(t) + γL0(t) | Q(t)] (16)

where V is a non-negative parameter that balances the av-
erage service delay and the resource consumption trade-off.
Specifically, the larger V we choose, the fewer computing
and caching resources are reserved at the MBS, resulting in a
longer average service delay. Next, we give an upper bound
of the drift-plus-penalty. From Eq. (14) and (15), we have

∆(t) ≤ 1

2
(d(t)− τ)2 +Q(t)(d(t)− τ). (17)

Let Λ be a positive constant that bounds the first term of the
above inequality, i.e., 1

2 (d(t)− τ)2. Then, we have

Λ ≥ 1

2
E[(d(t)− τ)2 | Q(t)]. (18)

Thus, the upper bound for the drift-plus-penalty is

Π(t) ≤ Λ +Q(t)(d(t)− τ) + V (Uc(t) + γL0(t)). (19)

According to [13], minimizing the above right-hand-side
expression is equivalent to minimizing Π(t). Therefore, P0 is
equivalent to solving the following optimization problem at
each time slot t:

P1 : min
α(t),S(t),q(t),L0(t)

Q(t)(d(t)− τ) + V (Uc(t) + γL0(t))

s.t. (11b), (11c), (11d), (1), (9).

B. Online Algorithm Design

Problem P1 is still challenging due to the tightly-coupled
integer and continuous variables. Given α(t) and S(t), the
computing and caching resource reservation decisions can be
easily derived. Therefore, we decompose P1 into the following
two subproblems.

P2 : min
α(t),S(t)

d(t)

s.t. (11b), (1), (9),
(20)



and

P3 : min
q(t),L0(t)

Q(t)(d(t)− τ) + V (Uc(t) + γL0(t))

s.t. (11c), (11d).
(21)

P2 is a radio resource reservation and task offloading sub-
problem, which can be solved with given q(t) and L0(t). P3

is a caching and computing resource reservation subproblem,
which can be solved with the result of P2. Next, we will
discuss how to solve P2 and P3 in detail and design an
algorithm to solve them iteratively.

1) Radio Resource Reservation and Task Offloading: Each
SBS i determines αi(t) in a distributed manner to minimize
its transmission delay d

T

i (t), given by

d
T

i (t) = αi(t)d
T
i (t) + (1− αi(t))d

T
0 (t). (22)

Note that the total number of subchannels is M . Therefore,
there are M possible values of S(t). With any given value of
S(t), α(t) can be easily solved by minimizing Eq. (22).

2) Computing and Caching Resource Reservation: We
rewrite P3 as follows:

P4 : min
q(t),L0(t)

h(S(t),α(t)) + f(L0(t)) + g(q(t))

s.t. (11c), (11d).
(23)

where h(S(t),α(t)) = Q(t)
∑I

i=0 βi(t)d
T
i (t)∑I

i=1 λi(t)
represents the

communication component in the objective function in P4, and
f(L0(t)) = γV L0(t) + Q(t)

∑I
i=0 βi(t)d

C
i (t)∑I

i=1 λi(t)
is the computing

component, and g(q(t)) = V F
∑I

i=1 qi(t) + Q(t) dR(t)∑I
i=1 λi(t)

refers to the caching component. The minimization of P4 is
equivalent to minimizing each component of the objective
function separately.

In terms of the communication component, h(S(t),α(t))
is a constant given the result of P2. For the computing
component, due to the convexity of f(L0(t)), the optimal
L0(t) can be obtained by the first-order derivation. We can
calculate the first order derivation of f(L0(t)), given by

df(L0(t))

dL0(t)
= V γ− Q(t)O2∑I

i=1 λi(t)

[
1

2L2
0(t)

+
1

2(L0(t)−Oλ0)2

]
.

(24)
The optimal value of L0(t) is discussed in the following two
cases:

1) Q(t) = 0. The value of (24) is always positive, the
optimal value is achieved at L0(t) = Oλ0.

2) Q(t) > 0. Due to constraint (9), the value of (24)
increases with L0(t) given L0(t) ∈ [Oλ0, L

max
0 ] when

Q(t) ≥ 0. If df(L0(t))
dL0(t)

|L0(t)=Lmax
0

≤ 0, the opti-
mal L0(t) can be achieved at L0(t) = Lmax

0 ; if
df(L0(t))
dL0(t)

|L0(t)=Lmax
0

≤ 0, the optimal L0(t) can be

obtained by letting df(L0(t))
dL0(t)

= 0.

For the caching component, V F
∑I

i=1 qi(t) linearly in-
creases as the caching size F

∑I
i=1 qi(t) increases. However,

when adding a file ci from SBS i, the benefits of reduced

Algorithm 1 Computing and Caching Resource Optimization
Input: S(t),α(t)
1: Compute L0(t) based on the Eq. (24).
2: Compute ψ(t) = V F .
3: for all i ∈ {1, 2, ..., I} and ci ∈ {1, 2, ..., Ci} do
4: Compute M i

ci(t)
5: If M i

ci(t) > ψ(t), let aici(t) = 1; otherwise aici(t) = 0.
6: end for
7: for all i ∈ {1, 2, ..., I} do
8: Calculate qi(t) =

∑Ci

ci=1 a
i
ci .

9: end for
Output: q(t), L0(t)

retrieval delay M i
ci(t) is given by

M i
ci(t) =

Q(t)λi(t)(1− αi(t))p
i
ci(t)d0∑I

i=1 λi(t)
, (25)

which diminishes as more files are added. Therefore, a file
should not be cached if its caching cost is larger than the
benefits of reduced retrieval delay. Based on this idea, we
design Algorithm 1 to solve P3. Based on the above analysis,
we solve the above two subproblems iteratively to obtain the
solution of P1. Specifically, L0(t) and q(t) are first set to be
0 and 0, respectively, to solve P2. After obtaining the radio
resource reservation decision and the task offloading decision,
the results are used to solve P3 to update L0(t) and q(t). By
iteratively solving P2 and P3 until convergence, P1 can be
optimized. The detailed process of the proposed Lyapunov-
Based Online Resource Reservation algorithm to solve the
original Problem P0 is shown in Algorithm 2.

Algorithm 2 Lyapunov-Based Online Resource Reservation
Input: Q(t− 1), λi(t), d(t− 1)
1: q(t) = 0, L0(t) = 0, update Q(t) with Eq. (12).
2: while ϵ ≥ 0.01 do
3: for S0(t) = 0 :M do
4: Compute d

T

i (t) and α(t) based on Eq. (22).
5: end for
6: Find {α(t),S(t)} = argmin{α(t),S(t)} d

T

i (t).
7: Compute q(t), L0(t) using Algorithm 1.
8: Update d(t).
9: Calculate the Euclidean distance ϵ between two consec-

utive delay values ϵ = ∥d(t)− d(t− 1)∥2.
10: end while
Output: d(t), Q(t), q(t), L0(t),α(t),S(t)

IV. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the per-
formance of the proposed algorithm. The simulation scenario
includes one MBS and two SBSs for AR task processing.
Under the coverage of each SBS, several AR devices con-
tinuously generate computing tasks, and the average delay
requirement τ is 50 ms. The size and computing intensity of



115 120 125 130

Numbers of AR devices

0

50

100

150

200

250

300

350

400

R
e
so

u
rc

e
 c

o
n
su

m
p
tio

n

Propposed algorithm

TCS

FCS

Fig. 2. Resource consumption with various numbers of AR devices in each
SBS.

each task is set to be χ = 160 kbit and O = 1.6 × 107

cycles, respectively. In terms of radio resources, there are
M = 10 subchannels for task offloading, and the data rate
for each subchannel follows a Gaussian distribution N (9, 3).
In terms of the wired transmission, the retrieval delay for
a file from each SBS to the MBS is d0 = 10 ms. The
processing rate for each SBS server is Li = 7 × 108 cycles
per second, where i ∈ {1, 2}, and the maximum processing
rate for the MBS is Lmax

0 = 3.2 × 109 cycles per second.
For each SBS, the number of associated context files is
Ci = 20, where i ∈ {1, 2}, and the request probability for
each file is randomly generated and normalized with a total
probability of 1. We choose two benchmark algorithms. The
first benchmark, referred to as FCS, keeps a fixed caching size
and considers the spatially distributed computing demand. The
second benchmark uses a time-varying caching size, which
does not consider the spatial-varying computing demands, and
we refer to it as TCS.

First, we evaluate resource consumption when using differ-
ent algorithms. As shown in Fig. 2, the resource consumption
increases with the number of AR users for all algorithms,
and the proposed algorithm outperforms the benchmark al-
gorithms. The reason is that the proposed algorithm can
dynamically adjust the reserved caching size and computing
resources based on the spatially and temporally varied service
demands to maintain a low resource consumption. Specifically,
the proposed algorithm is even more efficient when the number
of AR devices increases. As more tasks are generated, dynami-
cally changing the caching and computing resource reservation
decisions become more important.

Next, we evaluate the resource consumption and the delay
performance trade-off by tuning parameter V . Fig. 3 shows
that for all algorithms, the resource consumption (blue lines)
decreases as parameter V increases, whereas the average task
delay (orange lines) increases. This is because, as V increases,
a higher weight is applied to the resource consumption cost.
Thus, the one-shot decision tends to use fewer resources while
tolerating a longer task processing delay.

V. CONCLUSION

In this paper, we have studied a multi-resource reservation
problem for a two-tier RAN to support AR applications. To
adapt to the dynamic service demands, a long-term resource
consumption minimization problem has been formulated and
solved by our proposed Lyapunov-based online resource reser-

0.004 0.006 0.008 0.01 0.012 0.014

Parameter V

80

100

120

140

160

180

200

R
e
so

u
rc

e
 c

o
n
su

m
p
tio

n

48.6

48.8

49

49.2

49.4

49.6

49.8

50

50.2

50.4

A
ve

ra
g
e
 d

e
la

y 
(m

s)

Proposed algorithm (Cost) TCS (Cost) FCS (Cost)

Proposed algorithm (Delay) TCS (Delay) FCS (Delay)

Fig. 3. Resource consumption and delay performance versus parameter V

vation algorithm. Simulation results have shown that the
proposed algorithm reduces the overall resource consumption
while satisfying the delay requirement for AR applications.
The proposed solution can also be applied to other location-
aware applications generating latency-critical computing tasks.
For future work, we will investigate the interplay of re-
source management schemes in different timescales, where a
large-timescale resource reservation correlates with a small-
timescale adaptive task offloading for further reducing the
average service delay.

REFERENCES

[1] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for 6G,” IEEE
Commun. Surveys Tuts., vol. 24, no. 1, pp. 1–30, 2021.

[2] J. Ren, L. Gao, X. Wang, M. Ma, G. Qiu, H. Wang, J. Zheng,
and Z. Wang, “Adaptive computation offloading for mobile augmented
reality,” Proc. ACM IMWUT, vol. 5, no. 4, pp. 1–30, 2021.

[3] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator
for mobile augmented reality,” in Proc. IEEE INFOCOM, Honolulu, HI,
USA, Apr. 2018.

[4] L. Liu, Y. Zhou, J. Yuan, W. Zhuang, and Y. Wang, “Economically
optimal MS association for multimedia content delivery in cache-
enabled heterogeneous cloud radio access networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 7, pp. 1584–1593, 2019.

[5] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching,
computing, and radio resources for fog-enabled IoT using natural actor–
critic deep reinforcement learning,” IEEE Internet of Things J., vol. 6,
no. 2, pp. 2061–2073, 2018.

[6] C. Tang, C. Zhu, H. Wu, Q. Li, and J. J. Rodrigues, “Toward response
time minimization considering energy consumption in caching-assisted
vehicular edge computing,” IEEE Internet of Things J., vol. 9, no. 7, pp.
5051–5064, 2021.

[7] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and
R. Y. Kwok, “Intelligent edge computing in internet of vehicles: a
joint computation offloading and caching solution,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 4, pp. 2212–2225, 2020.

[8] H. Zhang and V. W. Wong, “A two-timescale approach for network
slicing in C-RAN,” Trans. Veh. Technol., vol. 69, no. 6, pp. 6656–6669,
2020.

[9] W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, and X. Li,
“Dynamic RAN slicing for service-oriented vehicular networks via
constrained learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp.
2076–2089, 2020.

[10] Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang, and X. Shen, “Joint RAN
slicing and computation offloading for autonomous vehicular networks:
a learning-assisted hierarchical approach,” IEEE Open J. Vehic. Tech.,
vol. 2, pp. 272–288, 2021.

[11] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy
efficient task caching and offloading for mobile edge computing,” IEEE
Access, vol. 6, pp. 11 365–11 373, 2018.

[12] D. G. Kendall, “Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded markov chain,” Ann.
Math. Stat., vol. 24, no. 3, pp. 338–354, 1953.

[13] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synth. Lect. Commun., vol. 3,
no. 1, pp. 1–211, 2010.


