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Abstract—In this paper, we propose a mobility-adaptive digital
twin (MADT) framework for network traffic prediction in a post-
disaster scenario where some affected terrestrial base stations
(BSs) are malfunctional, causing unavailable user traffic data
under their coverage areas. The MADT framework consists of
three core modules: 1) DT data construction, 2) DT modeling
for traffic prediction, and 3) DT model calibration. For the
data construction, we generate a distribution of user volumes
over a considered region, where a clustered modular mobility
model (clustered-Mo3) is tailored to characterize the post-
disaster user movements and a spatial-temporal-aware-k-nearest-
neighbors (STAK)-based data imputation technique is applied to
supplement the missing user traffic data under malfunctional
BSs. For traffic prediction, a spatial-temporal graph convolu-
tional network (STGCN) is utilized to establish the DT model
under a sequence-to-sequence (seq2seq) forecasting architecture.
To improve the traffic prediction accuracy, we further develop
a residual calibration (ResCAL) model to estimate and calibrate
the traffic prediction errors. The MADT framework establishes
a complete DT lifecycle, where the DT model performance
is continuously monitored and fed back to trigger the model
update if the network traffic pattern changes. Experimental
results show that the MADT framework outperforms state-of-
the-art spatiotemporal prediction schemes in terms of prediction
accuracy and adaptation to user mobility, achieving performance
comparable to that of the complete-data-trained STGCN (CD-
STGCN).

I. INTRODUCTION

Terrestrial communication infrastructures may experience
severe malfunctions after natural disasters (e.g., earthquakes
and floods), leading to communication disconnections that
impede life-saving rescue operations in disaster-affected re-
gions. Considering the complex network environment and
special user mobility patterns, proactive measures for net-
work reconstruction in a timely and cost-effective manner are
critical. For example, dispatching unmanned aerial vehicles
(UAVs) as temporary communication and computing anchors
to cover the affected areas is one such measure. However,
implementing proactive network recovery solutions demands
an agile, mobility-adaptive, and self-calibrating framework
to accurately estimate post-disaster network traffic variations,
allowing UAVs to be deployed to proper locations for com-
munication and computing support.

To facilitate research on post-disaster communications,
many existing works use customized models for network
traffic load characterization. In [1], a stochastic geometry
framework is developed to model the distribution of oper-
ational terrestrial base stations (BSs) as an inhomogeneous

Poisson point process (IPPP) in a post-disaster scenario. A
uniform distribution is used to describe the locations of users
in [2] and points of interest in [3] after a hazard. The
model-based methods balance the trade-off between complex-
ity and accuracy in characterizing network traffic conditions.
To improve the accuracy of describing the network-level
traffic variations, learning-based traffic prediction methods
are recently proposed by exploring the spatial and temporal
traffic correlations in real-world datasets, e.g., convolutional
long short-term memory (ConvLSTM) [4] and graph-neural-
networks (GNN) [5]. Echo state networks are also considered
to characterize the temporal dynamics of user movements [6].
Traditional prediction schemes usually perform well when the
networks are operational and the user traffic data profiles are
available. However, in a post-disaster scenario, some ground
BSs can be destroyed or become malfunctional, causing inac-
cessibility to user traffic data under their coverage areas. Also,
user behaviors after a disaster exhibit distinctive features that
can deviate from normal patterns, e.g., gathering for rescue
and evacuating for survival, and thus cannot be captured by
historical data. Therefore, without full access to network-
level traffic information, a well-designed user mobility model
providing close estimations of post-disaster user movement
patterns is important for traffic prediction.

Moreover, a traffic prediction model needs to be adaptive to
user mobility patterns in post-disaster scenarios. The exchange
of information between the physical network and the traffic
prediction model for model updates can be realized using
digital twin (DT) technology. The DT framework, featured by
creating the high-fidelity digital replica of the physical network
with real-time synchronization, can generate a digitalized
simulation model for making network management decisions,
which significantly reduces communication overhead. Also,
through synchronizing with the physical network, the DT
model can be periodically refined to adapt to the updated
network environment. The DT-enabled network management
draws significant attention from the research community. A
DT-assisted traffic prediction model proposed in [7] com-
bines deep Q-Learning and generative adversarial networks
to handle the highly dynamic and heterogeneous data in
transportation systems. An enhanced ConvLSTM model is
utilized in [8] to predict the network traffic for load gener-
ation and traffic synchronization in DT networks. To promote
proactive network management in post-disaster scenarios, DT-
assisted network traffic prediction still needs investigation.

979-8-3315-1778-6/24/$31.00 ©2024 IEEE 

20
24

 IE
EE

 1
00

th
 V

eh
ic

ul
ar

 T
ec

hn
ol

og
y 

C
on

fe
re

nc
e 

(V
TC

20
24

-F
al

l) 
| 9

79
-8

-3
31

5-
17

78
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

V
TC

20
24

-F
al

l6
31

53
.2

02
4.

10
75

77
74

Authorized licensed use limited to: University of Calgary. Downloaded on December 04,2024 at 05:56:55 UTC from IEEE Xplore.  Restrictions apply. 



Specifically, how to establish a comprehensive DT model for
traffic prediction with physical-digital information exchange
and performance feedback to achieve a complete DT lifecycle
is an important but challenging issue.

In this paper, we propose a mobility-adaptive digital twin
(MADT) framework with a closed-loop lifecycle for network
traffic prediction in a post-disaster scenario where certain BSs
are malfunctional with inaccessible user traffic information.
A real-world cellular traffic dataset is considered to initialize
the network deployment in an urban region. We employ a
clustered modular mobility model (clustered-Mo3) tailored to
describe the user movement patterns after a disaster. Based
on the customized mobility model, we establish the MADT
framework consisting of three main modules: DT data con-
struction, DT modeling for traffic prediction, and DT model
calibration, which are connected through feedforward and
feedback data flowing directions to form a complete DT lifecy-
cle. Specifically, we conduct partial user traffic data refinement
to construct the DT dataset, and the spatial-temporal-aware-
k-nearest-neighbors (STAK)-based data imputation technique
is then applied to supplement the missing user traffic data
under malfunctional BSs. For the DT modeling, we conduct
spatiotemporal traffic analysis using the sequence-to-sequence
(seq2seq) forecasting architecture, where the spatial-temporal
graph convolutional network (STGCN) is employed for traffic
prediction. The DT model calibration module is developed
to estimate and calibrate the prediction errors. Through ex-
periments with a real-world dataset, we demonstrate that
the established data-driven and closed-loop DT framework
improves traffic prediction accuracy, reduces communication
overhead, and adapts well to user mobility through the feed-
back mechanism.

II. SYSTEM MODEL

A. Network Model
We consider a rectangular urban region, denoted by R,

where a homogeneous set of n (n ∈ Z+) BSs, denoted by
B = {B1, B2, . . . , Bn} are deployed to cover the commu-
nication demands from end users. The locations of the BSs
are chosen according to a real-world urban traffic dataset
which provides information on the BS geographic locations,
the number of users associated with each BS, and the request-
response records retrieved from the traffic handled by each BS
[9]. Each BS is further connected to an edge server, denoted
by Ce, through wired backhaul links and the server is mainly
responsible for monitoring the BS status and controlling the
BS configurations/operations. Based on the locations of the
BSs and user traffic information under each BS, we partition
the region R into non-overlapping Voronoi cells, each repre-
senting the coverage area of its corresponding BS [10]. Given
the number of users under each BS, users associated with Bi
(i = 1, 2, . . . , n) are positioned according to a Poisson Cluster
Process (PCP) [11], where user locations are determined to
form a cluster centered around the location of Bi, subject to the
coverage boundaries and user counts. As shown in Fig. 1(a), an
initial network and user deployment are configured according

(a) (b)

Fig. 1: (a) Pre-disaster network deployment, (b) Post-disaster deployment.

to the real-world BS locations, the Voronoi partitioning, and
the PCP model.

To keep track of user traffic changes, we partition the
system time into a sequence of time slots with an identical
and fixed length denoted by ∆t. For k-th (k = 0, 1, 2, . . . )
slot, the starting and ending instants are denoted by tk and
tk+1, respectively. We assume a natural disaster (e.g., an
earthquake) happens at time slot 0, affecting the entire region
R and resulting in possible malfunction on BSs. For Bi, the
malfunction probability triggered by the disaster is indicated
by ϕi, and we use B = {Bi, i = 1, 2, ..., n} to indicate the
subset of all malfunctional BSs from B. Fig. 1(b) depicts an
illustrative scenario where three BSs become malfunctional
after the disaster happens. As some BSs are malfunctional
without wireless communication capacities, the user traffic
information after slot 0 in those affected areas (shaded in red)
becomes unavailable at both the malfunctional BSs and the
edge server.

B. Mobility Model

To properly characterize the post-disaster user dynamics
for network traffic forecasting, we refer to the modular mo-
bility model (Mo3) [12], which combines multiple human
mobility modules to emulate realistic user mobility patterns
under various settings. Based on that, we further implement
a clustered-Mo3 model to describe the post-disaster traffic
variation as evolving clusters. Due to the intention of user
gathering at rescue muster points or urgent evacuation from
devastated areas, the affected users/victims are likely to move
following cluster patterns, which can experience the process
of construction, drift, and decomposition, demonstrating a
nomadic community mobility pattern. To model this pattern,
we tailor the correlated mobility module in the clustered-
Mo3 model and incorporate other relevant modules from the
original Mo3 model, including individual mobility, collision
avoidance, and upper-bounds enforcement. These modules
are configured with scenario-customized parameters to mimic
user behaviors within a post-disaster environment. Next, we
elaborate on the formulation of the nomadic-community-based
correlated mobility module and the user mobility update
process.
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1) Tailored Correlated Mobility: In the post-disaster sce-
nario, directly applying the correlated mobility module in the
Mo3 model only characterizes the interdependent movements
among users, without considering the influence from BSs.
Therefore, we propose a refined approach that includes the
locations of operational and malfunctional BSs in describing
user movements. Any operational BS Bi acts as a cluster cen-
ter (e.g., a muster point), providing communication connectiv-
ities for transmitting critical rescue information to users under
its coverage and thus attracting users to gather. We define
the corresponding user set Ui under Bi as a reference-based
cluster (RBC). On the other hand, any malfunctional BS Bi
serves as an active cluster center before the disaster. However,
the influence of a malfunctional BS on user movement patterns
weakens over time after the disaster happens, and the user
cluster may exhibit a new cluster centroid. The corresponding
user set Ui under Bi is defined as a user-based cluster (UBC).

To characterize the mobility dynamics of two distinct cluster
types, our customized clustered-Mo3 model incorporates the
location information of BSs and only treats the operational
BSs as reference points guiding user movement. We define two
states of the nomadic community pattern for post-disaster sce-
narios: nomadic moving and evacuating moving. A sparse and
non-symmetric binding matrix, denoted as BM , is configured
to represent these states. An element of BM(u, k) = 1 means
user u follows the movement of user k, establishing user k as
a mate of user u. In the nomadic moving state, for each user
set Ui, the operational BS Bi is the leader of the community,
and any u ∈ Ui tends to move towards Bi, which represents
the scenario of users assembling for rescue. For example, the
binding matrices of one BS (indexed by 0) covering three
users (indexed from 1 to 3) in the settings of RBC and UBC
are represented by BMr and BMu, respectively, which are
expressed as

BMr =


1 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1


,

BMu =


1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1


.

(1)

From (1), the BSs (row 0 in both matrices) are only correlated
with themselves and stay stationary. The users within an RBC
(rows 1 to 3 in BMr) follow both their mates and the BS,
whereas users within a UBC (rows 1 to 3 in BMu) only
correlate with their mates. In cases with multiple user clusters,
we combine all clusters into a single binding matrix, which is
generated according to the user set Ui and the covering BS Bi.
In the evacuating moving state, the binding matrix essentially
becomes an identity matrix, which means each user moves
according to their own intention and the formed user cluster
may drift or disassemble. This state is suitable for illustrating
malfunctional BS Bi, with its users in set Ui venturing for
rescue independently due to disconnections. To demonstrate
how alternating patterns of nomadic moving and evacuating
moving states occupy the time sequence in the proposed
mobility model, we further group the partitioned time slot
sequence, starting from slot 0, into alternating periods, denoted

by ζ = {N0, E1, N2, E3, . . . } where Nl (l = 0, 2, 4, . . . )
represents each nomadic moving period, consisting of Nl slots,
and Ep (p = 1, 3, 5, ...) indicates each evacuating moving
period, consisting of Ep slots.

2) User Mobility Update Process: As mentioned before,
other relevant mobility modules from the Mo3 model are also
incorporated with our tailored correlated mobility module to
collectively determine the position updates of any user u in
every time slot. The speed vector of user u is denoted as
(vu, θu), where vu is the speed value and θu is the moving
direction angle of u. The speed vector update process is
summarized in the following. More details can be found in
[12].

1) Individual Mobility Module: Each user’s speed vector is
fed into this module first, which updates the speed and
direction values independently, subject to the maximum
speed vm, the maximum speed acceleration αm, and the
maximum rotation speed γm.

2) Correlated Mobility Module: For each user u, the speed
vector is then modified if the minimum user grouping
condition ρmin is violated and the user’s distance from
the cluster center is greater than the connected distance
Dc. The speed modifications involve rotating the user’s
direction θu towards the cluster center with the rotation
speed γm and adjusting the speed value vu with the
acceleration factor αm.

3) Collision Avoidance Module: To prevent potential user
collision, this module may further change the speed
vector based on the collision trigger distance dCA and
the minimum safe distance dCAmin.

4) Upper Bounds Enforcement Module: This module con-
strains the user’s linear acceleration and angular accel-
eration within the limits of αm and γm, respectively.

III. DT-ASSISTED TRAFFIC PREDICTION WITH MODEL
CALIBRATION

A. Proposed MADT Framework
As shown in Fig. 2, we propose the MADT framework with

a closed-loop DT lifecycle for predicting the network traffic
in a post-disaster scenario. This framework consists of three
core modules: DT data construction, DT modeling for traffic
prediction, and DT model calibration. These modules integrate
two data flows representing the data-driven DT lifecycle:
feedforward (black solid arrows) and feedback (green dash
arrows). The feedforward data flow illustrates the process of
establishing the main functional components inside each of
the DT modules, including partial data refinement, STAK data
imputation, user traffic analysis based on the STGCN, and
the residual calibration (ResCAL) model. The feedforward
data flow aims to forecast network traffic variations after a
disaster happens, while the feedback data flow leverages the
ResCAL to correct traffic prediction errors from the DT model
and continuously monitors the model’s performance. If the
prediction accuracy drops significantly due to data drift (e.g.,
a significant change in user mobility patterns), the next DT
lifecycle is then triggered to retrain and update the DT model.
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Fig. 2: The proposed framework with a closed-loop DT lifecycle.

The main functional components provided in each of the DT
modules are elaborated in the following.

B. DT Data Construction
1) Partial Data Refinement: To construct the DT dataset,

we generate a distribution of user volumes (i.e., the number
of users) over the considered region R, based on the user
location data obtained through the proposed mobility model.
Specifically, we partition R into a W ×L square grid, where
W and L indicate the total number of square units along the
width and length of the region, respectively. We assume each
square unit is only covered by one BS. At the k-th time slot,
the distribution of user volumes over R is represented by
a two-dimensional matrix H(k). The elements of H(k) are
{Hsi(k), si ∈ Si} and {Hsi(k),si ∈ Si}, indicating the user
volumes in respective square units si and si (i = 1, 2, . . . , n),
where Si andSi denote the sets of units covered by operational
Bi and by malfunctional Bi, respectively.

To reduce the communication cost for data collection, each
data collection interval is set to T (T ∈ Z+) time slots at
the edge server Ce and we assume the data synchronization
from each BS to the edge server can be done within one
time slot. The partial data collection and refinement process
works as follows: For every T time slots, Ce coordinates
each operational BS Bi to collect the user location data. Bi
then generates the user volume distribution by recording the
number of users in each of its covering square units. Finally,
Ce combines the distribution data from each online BS Bi into
one sample. This process repeats for m (m ∈ Z+) collection
intervals to create (m + 1) consecutive samples. However,
for any malfunctional BS Bi ∈ B, the user location data
under Bi are unknown after slot 0, which results in spatially
incomplete samples at the edge server. The user volume data
in those affected square units under Bi are filled with −1.
Therefore, the refined user volume distributions over the first
m consecutive intervals (i.e., mT + 1 slots) are denoted by

ψm = {H(0),H(T ), . . . ,H(mT )} (2)

where the first sample H(0) at slot 0 is complete and all
the other samples have missing data in the areas under the
malfunctional BSs.

2) STAK Data Imputation: It can be challenging to accu-
rately predict a complete network-level traffic variation based

on incomplete user volume distributions. To address this issue,
we propose the STAK data imputation method to enhance the
incomplete time-series data ψm in (2). For any unit si ∈ Si,
we select one square unit sj as its “neighbor” under each
operational BS Bj ∈ B. The selection process is determined
using a similarity-based approach. For each unit sj in the
network, we calculate a tuple of two values relative to its
serving BS Bj (including malfunctional and operational): the
direction angle from Bj to sj , denoted by ϑsj , and the distance
from Bj to sj , denoted by σsj . The tuple is then calculated
as ϑsj = arctan(

ysj−yj
xsj
−xj

)

σsj =
√

(ysj − yj)2 + (xsj − xj)2
(3)

where (xsj , ysj ) is the coordinates of the center of unit sj and
(xj , yj) is the location of Bj . Then, the discrepancy factor
F (si, sj) for two given units si and sj is calculated by

F (si, sj) = λ
|ϑsi − ϑsj |

2π
+ (1− λ)

|σsi − σsj |
D

(4)

where |·| computes the absolute value of a scalar or the
cardinality of a set, D is the diagonal length of the region
R, and λ ∈ (0, 1) is a tunable weighting factor to balance
the importance of the angular difference and the distance
difference between two square units. The unit sj under Bj
with the smallest F (si, sj) is selected as the neighboring unit
for si. The set of all neighbors of si is denoted as Rsi. An
illustrative example is shown in Fig. 3, where the coverage
areas of different BSs are shaded with different colors, and
s1 and s3 under operational BSs B1 and B3 are chosen as
the neighboring units, respectively for unit s2 under B2, based
on (3) and (4). Therefore, with the neighboring set Rsi, the
spatially imputed user volume for unit si at k-th time slot,
denoted by H′si(k), is calculated as

H′si(k) =
1

|Rsi|
∑

sj∈Rsi

Hsj (k) (5)

where Hsj (k) is the user volume within the neighbor unit
sj at the k-th time slot. Once all missing user volumes are
imputed, a spatially complete user volume distribution H′(k)
over region R, is obtained for the k-th (k > 0) time slot.
On the temporal axis, the STAK data imputation starts from
the initial user volume distribution, and calculates subsequent
distributions sequentially, thus producing spatially complete
and temporally continuous data for user traffic prediction.

Fig. 3: A grid partition on the network region for DT data construction.
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C. DT Modeling for Network Traffic Prediction

The DT prediction module leverages the constructed DT
data to forecast the future distributions of user volumes over
the entire region R. We formulate the user traffic predic-
tion problem using a spatiotemporal sequence-to-sequence
(seq2seq) forecasting architecture. This architecture takes a
sequence of user volume distribution samples, denoted by X ∈
ZP×W×L, as input and predicts the future sequence of the user
volume distributions, denoted by Ŷ ∈ ZF×W×L, where Z
indicates the integer number data type for each dimension, P
represents the input sequence length, F is the output sequence
length. To incorporate the location information of BSs into the
prediction architecture, we utilize an STGCN-based approach
to establish the DT model.

1) STGCN-based Traffic Prediction: As shown in the upper
half of Fig. 4, the STGCN model [13] comprises multiple
spatiotemporal blocks (ST blocks) and each block utilizes a
three-layer structure, where one spatial graph convolutional
layer (Spatial Graph-Conv) is wrapped by two temporal gated
convolutional layers (Temporal Gated-Conv). Apart from the
sequence of user volume distribution samples, a graph adja-
cency matrix, denoted by G representing the spatial depen-
dencies of square units, is taken as the input of each ST
block. Multiple ST blocks are arranged sequentially, providing
latent space mappings for the output block, which consists of
a Temporal Gated-Conv and several fully connected layers to
generate the future user volume distribution sequence. All of
these blocks incorporate normalization and dropout layers for
post-processing.

In Spatial Graph-Conv, each square unit within R is treated
as an observation point and the element G(si, sj) in the
adjacency matrix is calculated based on the distance between
unit si and sj . However, this method produces a homogeneous
similarity measurement among all square units, which only
captures spatial relationships without considering the user
distribution patterns and the influence of BSs. To address
this, we use the locations of BSs as centers to compute the
similarity among the square units using the formula introduced
in [13]. This approach results in a sparse and symmetric matrix
G, where only units near BSs have non-zero values, effectively
capturing the impact of BS proximity on unit similarity. To
generate user volume sequences, we use a sliding window
(with the size of P + F ) to partition the DT dataset ψm.
Starting from the first sample H(0), the data samples falling
within the window are considered as one data sequence, which
is further split into the input and target parts for supervised
learning. Then, the window slides forward with a fixed stride
of I samples to create a new sequence. This process repeats
until the window reaches the last element in ψm, producing
m−(P+F )

I + 1 sequences in total. In our approach, we set
F < P to provide a longer length of historical input data
than that of the output predictions. For compensation, a sliding
window inference process is employed. During each inference
step, the model predicts a data sequence of length F as an
intermediate output. The input X then slides forward by F

Fig. 4: Architectures and correlations of the STGCN and ResCAL models.

samples to form a new input sequence for the next prediction.
This process iterates until the total length of the predicted
output sequences reaches the original input length P . These
intermediate outputs are then concatenated on the temporal
dimension to form the final predicted output.
D. DT Model Calibration

To improve the traffic prediction accuracy of the established
DT model, we further develop a DT calibration module based
on ResCAL to estimate and calibrate the traffic prediction
errors [14]. We employ a two-stage training approach: The
DT model is trained in the first stage, and the second stage is
used to train the ResCAL model with the residuals obtained
from the prediction outputs. Similar to the network traffic
prediction, the residual estimation and calibration problem
is formulated using the spatiotemporal seq2seq forecasting
architecture, where the past user volume distributions and the
prediction residuals of length P are taken as input and the
output is a predicted residual sequence of length F .

1) Residual Calibration Model: In the ResCAL model,
ST blocks are also employed to extract the spatiotemporal
correlations to a hidden representation which is then fed to
a regression branch and a quantization branch separately, as
shown in the lower half of Fig. 4. The user volume sequence
and the residual sequence are concatenated on the temporal
dimension as the input data, and the same graph adjacency
matrix is also fed to the ST blocks, similar as in the STGCN
model. The regression branch forecasts the continuous values
of the DT model’s prediction errors, while the quantization
branch provides interpretation of the failures from the DT
model. The output of the regression branch is directly used,
while the output of the quantization branch is passed to a
straight-through Gumbel estimator and is multiplied by a
learnable embedding vector. Finally, the summation of the two
branch outputs is explored by the output layer which produces
the final estimated residuals. Both branches and the output
layer are constructed with point-wise convolutional layers (i.e.,
a convolution layer with a kernel size of 1). More details on
the model structure can be found in [14]. The sliding window
technique is also utilized in the ResCAL model to partition
the training sequences and extend the inference sequences.
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Main Parameters for Mobility Simulation
Maximum speed value (vm) 2 m/s

Maximum speed acceleration (αm) 1 m/s2

Maximum rotation speed (γm) π/2 rad/s
Connected distance (Dc) 300 m

Minimum user grouping density (ρmin) 0.8

Collision trigger distance (dCA) 3 m

Collision minimum safe distance (dCA
min) 1 m

Nomadic moving period (Nl) 80 s
Evacuating moving period (Ep) 800 s

Main Parameters for MADT Framework
Data sample collection interval (T ) 5 s

Square unit size 100× 100 m2

The weighting factor in STAK (λ) 0.5
Input and output sequence length (P , F ) (12, 1)

Number of ST blocks 2
Channels for one ST block [64, 16, 64]

Spatial and temporal kernel size 3
Output channels after ST blocks in ResCAL 128

Batch size 16
Training epochs 60

Learning rate 0.001

TABLE I: Important experiment parameters

IV. EXPERIMENTAL RESULTS

A. Experiment Settings
1) Simulated Network Environment: We consider a real-

world urban region with the size of 6000×6000 m2. There are
12 BSs and 2076 users deployed within the region according
to the real-world dataset1 and the network model specified
in Section II-A. For each BS Bi, we set the malfunction
probability ϕi to 0.25, resulting in 9 operational BSs and
3 malfunctional BSs. Our tailored clustered-Mo3 mobility
model is employed to simulate the user movement patterns
after a disaster. For the considered time-slotted system, we set
each time slot, ∆t, to 1 second and the total simulation time to
14400 seconds. Other important parameters used in simulating
user mobility are detailed in the upper half of Table I.

2) DT Framework: The parameters used in MADT are
listed in the lower half of Table I. Given the sizes of the
region R and square units, each user volume distribution
sample is refined and represented by a 60 × 60 matrix and
is then normalized by a maximum user count of 100. The
DT dataset is further split into a training set of 2660 samples
and a test set of 220 samples. The MADT framework is
built on available user traffic data under operational BSs to
reflect a post-disaster scenario, while the test traffic data are
assumed complete over the entire region for evaluation. The
learning-related hyperparameters apply to both the STGCN
and ResCAL models, which are trained to minimize the
mean absolute error (MAE) using the AdamW optimizer.
Notably, the Spatial Graph-Conv inside each ST block is
implemented with a Chebyshev polynomial approximation to
ensure accurate predictions [13].

B. Performance Evaluation
We first evaluate the accuracy of MADT in predicting the

spatial distribution of the user volumes. The ground truth data
and the predicted user volume distribution over the entire
region are shown using heatmaps in Fig. 5, where we can
see that the MADT prediction output accurately captures the

1https://github.com/caesar0301/city-cellular-traffic-map

(a) (b)

Fig. 5: User volume distribution: (a) Ground truth, (b) MADT prediction.

spatial distribution of user volumes. To assess the accuracy
of using STAK for data imputation under malfunctional BSs,
we show in Fig. 6 a performance comparison between the
MADT framework and the complete-data-trained STGCN
(CD-STGCN) model, which assumes that the user traffic
information under the malfunctional BSs are also available. We
can see that the predicted user volumes from both models are
close to each other over time in areas covered by an operational
BS and by a malfunctional BS, which are also well aligned
with the ground truth data.

Fig. 6: Comparison of user volume prediction in the areas covered by one
operational BS (upper) and one malfunctional BS (lower).

Lastly, we compare the MADT with one state-of-the-art
spatiotemporal traffic forecasting model, i.e., the ConvLSTM
model [4] and with the MADT without residual calibration.
Table II shows a prediction performance comparison by evalu-
ating the prediction errors using the following four metrics: 1)
MAE, the average difference between predicted and observed
values without considering the spatial correlations; 2) Root
mean squared error (RMSE), the quadratic mean of the
differences between the predicted and observed values; 3)
Mean absolute scaled error (MASE), a scaled MAE for
the comparison among different models or scales; 4) Struc-
tural similarity index measure (SSIM), the spatial similarity
between predicted and observed values, with higher values
indicating more similar structures. From Table II, we observe
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Method MAE RMSE MASE SSIM
ConvLSTM 0.0916 0.4816 0.2385 0.9956

MADT without ResCAL 0.0671 0.3803 0.1500 0.9969
MADT 0.0644 0.3735 0.1424 0.9971

CD-STGCN 0.0603 0.3263 0.1396 0.9972

TABLE II: Performance comparison among different prediction approaches.

that the MADT achieves the lowest values of MAE, RMSE,
and MASE among the prediction schemes built on actual
collected data, indicating both the average prediction errors
and the average error deviations are the smallest. The SSIM of
MADT is among the highest, showing a high spatial similarity
between the predicted and real user volume distributions. The
CD-STGCN model, trained on assumed complete data, serves
as a benchmark. Our MADT achieves performance comparable
to CD-STGCN on all metrics, particularly in terms of the
SSIM indicator. Fig. 7 shows a comparison of predicted user
volume distributions over time among different schemes. It

Fig. 7: Comparison of schemes for user volume prediction in areas covered
by one operational BS (upper) and one malfunctioning BS (lower).

can be seen that with model calibration, MADT captures the
overall variations of user traffic better than the one without
residual calibration. By explicitly incorporating the spatial
correlation between user volumes and square units, as well
as the influence of BSs, MADT generates more accurate
prediction results than the ConvLSTM. The advantages are
more notable in the areas covered by operational BSs. The
reasons are 1) the STAK imputed data under malfunctional
BSs have some accuracy gap with the real data and 2) the
input graph structure of STGCN capturing BS locations is
static, whereas the underlying graph structures of user clusters
under malfunctional BSs shift a bit from the BS locations as
time evolves. The observations from Fig. 7 indicate that the
MADT performance is well adapted to traffic variations both
spatially and temporally, compared with the state-of-the-arts.

V. CONCLUSION

In this paper, we have proposed an MADT framework
for network traffic prediction in a post-disaster scenario. The

MADT framework establishes a complete DT lifecycle which
consists of DT data construction, DT modeling for traffic
prediction, and DT model calibration. For data construction,
we refine from a real-world user traffic dataset to generate
spatiotemporal user volume distributions over a considered
network region, by tailoring the clustered-Mo3 to describe
post-disaster user mobility patterns and by using the STAK
to supplement the missing data under the malfunctional BSs.
Based on the DT dataset, we then develop the DT-assisted
traffic prediction module based on the STGCN prediction
architecture where the BS locations are incorporated into the
prediction module. To further improve the prediction accuracy,
the ResCAL model is added to calibrate the traffic prediction
errors. The prediction performance is consistently monitored
and fed back to trigger the DT model update. Experimental
results demonstrate the superiority of our DT model in pre-
diction accuracy and adaptation to user mobility. For future
work, we will investigate how the MADT framework can be
integrated with the design of proactive UAV deployment for
post-disaster network recovery.
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