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a b s t r a c t

High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous
vehicles by mining knowledge from the Internet of Vehicles (IoVs). However, it is challenging to ensure
high efficiency of local data learning models while preventing privacy leakage in a high mobility environ-
ment. In order to protect data privacy and improve data learning efficiency in knowledge sharing, we pro-
pose an asynchronous federated broad learning (FBL) framework that integrates broad learning (BL) into
federated learning (FL). In FBL, we design a broad fully connected model (BFCM) as a local model for train-
ing client data. To enhance the wireless channel quality for knowledge sharing and reduce the commu-
nication and computation cost of participating clients, we construct a joint resource allocation and
reconfigurable intelligent surface (RIS) configuration optimization framework for FBL. The problem is
decoupled into two convex subproblems. Aiming to improve the resource scheduling efficiency in FBL,
a double Davidon–Fletcher–Powell (DDFP) algorithm is presented to solve the time slot allocation and
RIS configuration problem. Based on the results of resource scheduling, we design a reward-allocation
algorithm based on federated incentive learning (FIL) in FBL to compensate clients for their costs. The
simulation results show that the proposed FBL framework achieves better performance than the compar-
ison models in terms of efficiency, accuracy, and cost for knowledge sharing in the IoV.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the increasing popularity of the Internet of Vehicles (IoVs),
various types of data generated for the IoV can be used to support
diversified vehicular services (e.g., augmented reality (AR) naviga-
tion and traffic control) and customized vehicular operations [1,2].
With onboard communication and computing units, vehicles can
process, analyze, and share data with other vehicles to improve
the utility of data mining. However, it is easy for raw data sharing
to deepen the networking burden and cause data leakage in the
IoV. Thus, artificial intelligence (AI) models are used to extract
the hidden representation information of the original data and
share the data indirectly by sharing the knowledge of the models,
which can increase the network bandwidth and improve data
security [3]. The knowledge in these data reflects autonomous
driving applications (e.g., high-precision map positioning, real-
time road condition analysis, etc.), which are inseparable from
the learning and sharing of knowledge in the IoV.

Expanding the coverage of knowledge sharing can improve the
learning experience and capacity of intelligent vehicles [4]. How-
ever, data-driven knowledge sharing also increases the risk of pri-
vacy leakage, making it important to ensure the security of client
data and reduce the cost of knowledge sharing. Efficient knowledge
sharing depends on reliable data transmission to meet the require-
ments of low delay and high accuracy. Transmission links are vul-
nerable to interferers and obstacles in pluralized environments. To
solve this problem, a reconfigurable intelligent surface (RIS) [5]
-Aided
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technology can be employed. Deploying an RIS on the surface of
urban buildings or along the road actively reshapes the wireless
environment [6] to establish communication links between source
and destination nodes that bypass interference objects in order to
improve channel quality [7] and reduce the communication over-
head of parameter exchange. With RIS, the communication perfor-
mance between vehicles and road side units (RSUs) can be
improved [8].

Knowledge sharing provide a learning experience based on
vehicular behavior data. Sharing data directly can cause privacy
leakage, since the raw data of vehicles includes information on tra-
vel history and driving habits. Federated learning (FL) [9] is an AI
technique that can protect client data privacy while sharing knowl-
edge. An intelligent FL model can be customized through a central
server connected to multiple clients, where the clients train local
model parameters in a distributed way, and a global model is real-
ized through the aggregation of local model parameters [10,11]. In
this way, the original training datasets from clients are not directly
sent to third parties, in order to protect data privacy.

Efficient knowledge sharing is easily affected by the mobility of
vehicles and the synchronization problem of FL. It is necessary to
establish an FL framework with high efficiency and long-term
stable benefits for both clients and service servers in order to
encourage clients to actively participate in knowledge sharing.
Conventional FL frameworks are established based on distributed
model training and global aggregation. Local AI model structures
(e.g., deep neural networks) can be complex, and their parameter
adjustment can be difficult. However, future IoV services require
more efficient learning in real-time changing environments. Thus,
we employ a novel machine learning paradigm called broad learn-
ing (BL) [12], which uses an incremental learning approach to train
model parameters instead of using the gradient descent method.
Clients adopt the BL model as their local training model to improve
the knowledge learning efficiency [13], which is suitable for a
large-scale and highly dynamic network.

In this paper, we propose an asynchronous federated BL (FBL)
framework to protect data privacy in knowledge sharing. To
improve the efficiency of real-time data learning, we design an effi-
cient knowledge learning model—namely, the broad fully con-
nected model (BFCM)—to learn vehicular data knowledge based
on BL. To improve resource utilization for FL, we formulate a joint
optimization problem of intelligent reflection regulation and
resource allocation, which is further decoupled into two sub-
problems: uplink/downlink transmission rate optimization and
phase shift parameter configuration in the RIS. We then present a
double Davidon–Fletcher–Powell (DDFP) algorithm as the problem
solution to configure the RIS and allocate transmission bandwidth
to improve the channel quality between the RSU and vehicles. An
RIS-assisted FL (RFL) is proposed to provide rewards to vehicle cli-
ents according to their FL contribution in the process of knowledge
sharing, based on a federated incentive learning (FIL) algorithm
[14]. The contributions of this work are summarized as follows:

(1) An FL framework design. We introduce BL and propose an
asynchronous FBL framework for knowledge sharing among vehi-
cles, in which an improved BL framework is designed for local data
training.

(2) Joint RIS configuration and resource allocation.We estab-
lish an optimization framework to allocate communication
resources and RIS parameters in order to improve the performance
of FBL; we also design a DDFP algorithm to solve the optimization
problem.

(3) An FIL algorithm. To improve resource utilization, we con-
struct RIS-assisted FL based on an FIL algorithm for vehicle–RIS–
RSU for knowledge sharing.

The rest of this paper is organized as follows: Section 2 reviews
existing works on RFL and BL. Section 3 presents preliminaries on
2

BL, FL, and the building of a cost model in detail. Section 4 presents
our proposed FBL framework and BFCM, while the designed RFL
and DDFP for FBL are introduced in Section 5. Section 6 presents
the simulation results. Section 7 presents concluding remarks
and discusses our future work.
2. Related work

2.1. RIS-assisted wireless communications

During knowledge sharing, parameter exchanging requires
high-capacity communication channels. In general, RIS can
improve the wireless channels between clients and the server dur-
ing FL [15]. Ni et al. [10] proposed a resource allocation approach
for the performance of global aggregation for RIS-assisted channels
for FL. Li et al. [16] proposed a distributed algorithm based on FL
for configuring all RIS parameters. Wang et al. [17] proposed an
RFL approach for over-the-air computation to reduce the mean
squared error. Because RIS has the characteristic of intelligent con-
trol, when solving a resource allocation problem, the optimization
problem is generally decomposed into two subproblems: resource
allocation and RIS phase-shift control [18]. Liu et al. [19] greatly
improved resource utilization by exploring the available computa-
tion resources of vehicles. Most of the works described above
decouple a complex resource allocation problem with coupled
resource variables into multiple subproblems. Deep learning (DL)
or convex optimization techniques are usually used to solve these
subproblems.

2.2. FL and BL

As a newmachine learning technology, BL has been widely used
in text classification, image recognition, and other fields [20]. Peng
et al. [21] proposed a fog-assisted BL algorithm for traffic data anal-
ysis, which saves bandwidth resources. Guo et al. [22] used broad
learning system (BLS) for semi-supervised vehicle type classifica-
tion. Wei et al. [23] combined BL and reinforcement learning to
solve the problem of traffic-light control. These studies show that
a BL-based data analysis model in the IoV can efficiently solve
the problems of image classification and traffic data analysis in
autonomous driving.

FL is an emerging technology to preserve data privacy in dis-
tributed machine learning for the IoV [24,25]. Traditional FL para-
digms are based on DL models to learn the data generated by the
IoV for knowledge sharing. For example, Lu et al. [26] proposed
an asynchronous FL scheme for data sharing in the IoV, which
can select vehicular nodes according to the quality of learning. Chai
et al. [3] proposed a hierarchical knowledge-sharing framework in
which an RSU can be used as either a server or a client. However,
large-scale mobile data training under the conventional FL archi-
tecture cannot meet the requirements of low latency and high effi-
ciency. Thus, some research works have studied the integration of
BL with FL for networking [12,27]. However, the question of how to
efficiently allocate transmission resources to improve FL perfor-
mance requires further investigation.

2.3. Incentive mechanisms for FL

During FL, the most important role is the client, so the cost of FL
usually comes from the model training of the client [8]. In order to
reduce the cost of the system, the main research efforts focus on
how to improve the utilization of resources and compress the
model [25]. To improve the gain from the client perspective, some
researchers add incentive mechanisms to FL—that is, FIL [14]. Le
et al. [28] proposed an FIL algorithm based on the auction
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approach, which can ensure individual rationality, truthfulness,
and efficiency during FL. Liu et al. [29] proposed a privacy-
preserving FIL approach that can balance the tradeoff between pri-
vate data leakage and the model accuracy problem according to the
contribution of local model uploading.

3. The FBL framework

The integration of BL and FL can better solve the model training
and data privacy leakage problem [13,27]. Considering the channel
blocking between vehicles and buildings, RIS is introduced to
improve channel quality [30]. Fig. 1 shows the data flow and com-
munication components in FBL for the IoV, in which our asyn-
chronous FBL integrates FL, BL, and RIS. We assume that the set of
vehicles is V ¼ 1; :::;Vf g, where V is the number of vehicles. The
set of local BL model learnable parameters is defined as
W1; :::;Wkf g, where client vehicle k 2 V . The benefit is defined asbu1 tð Þ; :::; buk tð Þ� �

at time slot t. With the help of an edge computing
(EC) server, the RSU can configure the RIS, aggregate parameters,
and allocate benefits and resources. To avoid physical
interference—such as buildings and other obstacles—interfering
with the wireless communication channel, we establish a knowl-
edge sharing channel among the vehicle, RIS, and RSU. The RIS con-
troller can configure the RIS under the EC server and allocate
resources to vehicles. The revenues obtained are also allocated by
the EC server. Thus, the five main functions of the system model
are as follows:

(1) Local model training. In each vehicle, we set the BL model
as the data learning model. When a user completes the model
training, the user will upload the model parameters to the server.

(2) Parameter aggregation. The server receives all local models
and adopts the given parameter aggregation method to calculate
the global model. Finally, it will send the global model to each local
client.

(3) Resource allocation. Before the next training round, the
server can allocate the rewards according to the contribution of
each user. In this part, the main purpose of the resource allocation
is to allocate the bandwidth during FL.

(4) RIS configuration. Because of the high mobility, the RIS
parameters should be configured to adapt to the current environ-
ment. Thus, we should be able to intelligently control the parame-
ters related to RIS to improve channel performance [31].

(5) Reward allocation. During FL, each client needs a certain
amount of computation and communication overhead, so we
Fig. 1. The proposed asynch
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design a reward mechanism based on FIL. This increases the enthu-
siasm of the client to share knowledge, while giving the client the
opportunity to receive benefits.

The detailed processes for knowledge extraction, federated
aggregation, and RIS-aided channels for parameter uploading and
downloading in FBL are provided below.

3.1. Knowledge extraction from data based on BL

The data collected or generated by vehicles contain valuable
driving behavior information and potential driving experience
knowledge. Traditional DL models require a considerable amount
of training time to extract the information using the gradient des-
cent method. Compared with DL, BL focuses on the increment of
features. The generalized BL model includes two layers: the feature
mapping layer F and the enhancement node layer E. F mainly uses
different weights to map the input data set X into multiple hidden
nodes, and the mapped feature Z of the hidden node is the hidden
information of X. The enhancement node layer mainly enhances
the mapped features of the feature mapping layer to further extract
the features’ correlation of the training set. In generalized BL, it is
assumed that the feature mapping layer outputs n feature map-
pings and each mapping could generate l nodes. The relationship
between node i and input data set X is given by the following:

Zi ¼ / XWei þ bei

� �
ð1Þ

where Wei refers to the random generated weights of node i in F,
and bei

refers to the biases of the node i in F. ei refers to the proper
dimension of node i. / is the mapping function in the feature map-
ping layer. Zi achieved by Eq. (1) is mapping features of i
i ¼ 1;2;3; :::;nð Þ group nodes in F layer. The combination of all out-
put in F is Zn ¼ Z1;Z2; :::;Znf g.

Then, we assume that the number of mapping features in E ism.
Zn undergoes a nonlinear transformation in E to obtain output fea-
tures. Just like the last layer, Hj j ¼ 1;2;3; :::;mð Þ is the correspond-
ing randomly generated mapping features of node j in E. The
relationship between the output of F and the output of E is given
by the following:

Hj ¼ n ZnWhj þ bhj

� �
ð2Þ

where Whj refers to the weights of enhancement node j with h

dimensions in E, and bhj
refers to the biases of node j in E. n is the
ronous FBL framework.
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mapping function in the enhancement node layer. hj refers to the
proper dimension of node j. i and j could be different according to
the complexity of tasks.

We assume that A is Z1; :::;ZnjH1; :::;Hm½ �, that is the output
combination matrix of the feature mapping layer and the enhance-
ment node layer; then, the output Y is obtained as follows:

Y ¼ Z1; :::;ZnjH1; :::;Hm½ �Wo ¼ AWo ð3Þ
where Wo are the connecting weights for the broad structure that
can be updated by incremental learning. The training time is spent
in solving Wo, and the solution of Wo is more efficient than the gra-
dient descent method [32]. Therefore, deploying BL in FL will
greatly improve the efficiency of vehicular task learning.

3.2. The local model

In an FL environment, the global model is set in an EC server,
which has powerful computation resources [33]. Some data and
tasks to be accessed frequently in the IoV are delegated to the EC
server close to clients for execution. At the same time, each provi-
der also has its own model to train data. The parameters of the
local model will be shared among clients. In FL, the key is how to
aggregate the BL model parameters effectively. In general, the
weighted average method is used to aggregate parameters, as
follows:

Wg eð Þ ¼
XV
k¼1

size Dkð Þ
size Dð Þ Wk eð Þ ð4Þ

where Wg(e) refers to the parameters of the global model at the eth
training round in the EC server; Wk (e) refers to the parameters of
the BL model in client k; Dk is local raw data of client k while D is
the set of local raw data sets including all clients (D = {D1, D2,. . .,
Dk}); size (Dk) refers to the size of local raw data of client k; and
size(D) denotes the size of all raw data.

The purpose of the conventional integration of FL and BL is to
learn the weight of the connection between the input and output
Wo, which refers to the attribution information of the dataset. Each
local model uses the aggregated parameter Wg(e) to continue
training by means of incremental learning. In the BL model, there
are two main forms of incremental learning: adding feature nodes
and adding enhancement nodes. Thus, in each epoch training, the
parameters are updated by incremental learning. That is:

A0
� �þ ¼ Að Þþ � DBT

BT

" #
ð5Þ

where A0 is the updated output combination matrix of the feature
mapping layer and the enhancement node layer in incremental
learning.

BT ¼
Cð Þþ; if C–0

1þ DTD
� ��1

DT Að Þþ; if C ¼ 0

8<: ð6Þ

and

C ¼
Znþ1jn Znþ1Wh1 þ bh1

� �
; :::; n Znþ1Whm þ bhm

� �� 	� AD; conditon 1

n ZnWhmþ1 þ bhmþ1

� �
� AD; conditon 2

8<:
ð7Þ

where condition 1 refers to adding the (n + 1)th feature node and
condition 2 refers to adding the (m + 1)th enhancement node,
resulting in:

D ¼ Að Þþn ZnWhmþ1 þ bhmþ1

� �
Að Þþ Znþ1jn Znþ1Wh1 þ bh1

� �
; :::; n Znþ1Whm þ bhm

� �� 	
8<: ð8Þ
4

where B, C, and D are temporary variables and Zn ¼ Z1; :::;Zn½ �.
Whmþ1 and bhmþ1 are random parameters.

Thus, before the next FBL training round, the new weight W 0
g is

updated as follows:

W 0
g ¼

Wg � DBTY

BTY

" #
ð9Þ

where W 0
g is a matrix change with respect to Wg while Wg is the

global weight. It is related to local weights of all previously
received clients and also the clients in the next round aggregation.
This incremental learning ensures that the knowledge originally
learned by the model will not be forgotten [27].

3.3. RIS-aided parameter uploading and downloading

Client k also has the cost of computation and communication.
With the help of RIS, the channel gain can be increased by reducing
the obstacle interference [34]. The transmission rate of the uplink
Rup
k;s between client k and the server is given by the following:

Rup
k;s tð Þ ¼ Bup

k;s tð Þlog2 1þ pup
k tð Þ wH

k tð Þhk tð Þ

 

2PV
k¼1p

up
k tð Þ wH

k tð Þhk tð Þ

 

2 þ N0 tð Þ

 !
ð10Þ

where Bup
k;s is the uplink bandwidth. wk tð Þ is the beamforming

weights [18] (i.e. wk tð ÞfwH
k tð Þ ¼ 1), N0 tð Þ is white Gaussian noise.

pup
k tð Þ is the uplink transmission power between client k and the

server. hk tð Þ is the total channel gain between vehicle k and the ser-
ver. The total channel gain between client k and the server is given
by the following:

hk tð Þ ¼ hk;s tð Þ þ G tð ÞH tð Þhr;s tð Þ ð11Þ
where H tð Þ is the diagonal matrix.
H tð Þ ¼ diag a1e

jh1 tð Þ;a2e
jh2 tð Þ; :::;aNe

jhN tð Þ� �
, where hN and aN denote

the phase shifts and amplitude reflection coefficient of element e
(e = 1, 2, ..., #) of RIS, respectively. # is the RIS parameter scale.
G tð Þ is the channel gain matrix between RIS and vehicle k. hr;s tð Þ
is the channel gain between RIS and the server. hk;s tð Þ is the direct
channel gain between vehicle k and the server.

The delay of client k’s uploading transmission Lupk;s and down-

loading transmission Ldown
k;s can be expressed as follows:

Lupk;s tð Þ ¼ size Wk tð Þð Þ
Rup
k;s tð Þ ð12Þ

Ldown
k;s tð Þ ¼ size Wg tð Þ� �

Rdown
k;s tð Þ

ð13Þ

where Wk is parameters of the BL model to be uploaded of client k.
Wg is global parameters of the BL model. size Wkð Þ refers to the size
of Wk and size Wg

� �
refers to the size of Wg.

The transmission rate of the downlink Rdown
k;s is expressed as

follows:

Rdown
k;s tð Þ ¼ Bdown

k;s tð Þlog2 1þ pdown
k tð Þ wH

k tð Þhk tð Þ

 

2PV
k¼1p

down
k tð Þ wH

k tð Þhk tð Þ

 

2 þ N0 tð Þ

 !
ð14Þ

where pdown
k tð Þ is the downlink transmission power between client k

and the server. Bdown
k;s is the downlink bandwidth.

However, traditional FBL presents the problems of asyn-
chronous training, resource allocation, and client incentive. Thus,
we first improve the local training model and design a novel
parameter aggregation approach (Section 4). Then, we formulate
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the optimized problem for resource allocation to increase the
bandwidth and adaptively adjust the RIS parameters. Finally, we
give rewards to clients according to their FL contribution, based
on the FIL algorithm (Section 5).

4. Local model training and asynchronous parameter
aggregation

In this section, we introduce the process of our proposed local
mode, the BFCM. We also introduce our process of federated
parameter aggregation.

4.1. The broad fully connected model

At present, some BL models do not consider the difference of
weight dimensions, which increases the number of nodes to simply
improve the performance of the training process. In a cascade of
feature mapping node BLS (CFBLS), random feature extraction is
only related to the input data, and the dependency between fea-
tures is not considered [35]. A CFBLS with pyramid (CFBLS-
pyramid) pays too much attention to the correlation between the
nodes at each level, ignoring the random characteristics of the
input in F. With the increase of the number of sublayers, the num-
ber of nodes in each sublayer also increases dramatically, resulting
in a decrease in the training efficiency in a CFBLS-pyramid. A CFBLS
dropout can drop some nodes to prevent overfitting of the model
but easily causes a loss-of-feature-information problem [35]. To
solve these problems, we propose a fully connected neural-
network-like architecture: the BFCM, which is based on the struc-
ture of fully connected neural networks in DL.

The main structure of the BFCM is shown in Fig. 2. Compared
with a traditional BL model, each group of nodes in the BFCM is
fully connected to the nodes in the previous group, just like the
fully connected layer in DL. In this model, clients are allowed to
customize the number of hidden neurons in each sublevel. That
is, the number of sub-nodes in each node can differ, and the num-
ber of node groups in each sublevel can also differ. The process of
extracting the features of X is represented as follows:

Zi;j ¼
/ XWei;j þ bei;j

� �
; i ¼ 1; :::;n; j ¼ 1

/ XWei;j þ bei;j

� �
; i ¼ 1; :::;n; j ¼ 2; :::; Lzi

8><>: ð15Þ

where Lzi indicates that node i has Lzi sub-nodes. Zi;j is the mapping
feature in F of node iwhich has j sub-nodes. In each level, the output
of the first nodes group in each node is related to X. Wei;j and bei;j

are

the weights and biases of sub-node j in node i, respectively. Wei;j

and bei;j
can be different among nodes.

Then, the output of F is Z ¼ Z1;1; :::;Z1;Lz1
; :::;Zm;1;Zm;Lzm

h i
. We feed

Z into E and generate all enhancement nodes
Fig. 2. The structure of the BFCM. W: weight.

5

H ¼ H1;1; :::;H1;Lh1
; :::;Hm;1; :::;Hm;Lhm

h i
. The group i, sublayer j node

is obtained as follows:

Hi;j ¼
n ZWhi;j þ bhi;j

� �
; i ¼ 1; :::;m; j ¼ 1

n Hi;j�1Whi;j þ bhi;j

� �
; i ¼ 1; :::;m; j ¼ 2; :::; Lhi

8><>: ð16Þ

where Whi;j and bhi;j
are the random parameters in E. Lhi indicates

that node i has Lhi sub-nodes in E.
Thus, the relationship between the training input X and output

Y is

Y ¼ ZjH½ �W ¼ AW ð17Þ
where the weight W is obtained by ZjH½ �ð ÞþY , and
ZjH½ �ð Þþis thepseudoinversematrix of ZjH½ �.

4.2. The asynchronous incremental learning approach

In BL, the model can adopt incremental learning to achieve
higher performance. As shown in Fig. 3, based on the original
parameters, the model can choose to add nodes in F or E without
reinitializing the parameters, so as to further enhance the learning
ability by retaining the knowledge learned before. Hence, clients
can choose the number of nodes to increase according to their
computing power. Suppose we add a new group to the original N
groups or M groups, we will introduce how to add a new group
Hm+1 or Zn+1 in two parts, that is adding the (m+1)th or (n+1)th
group.

4.2.1. Asynchronously incremental feature nodes in FL
If one client increases the (n + 1)th group in the BFCM, the new

output Zn+1 is given as follows:

Znþ1;j ¼
/ XWei;j þ bei;j

� �
; i ¼ nþ 1; j ¼ 1

/ Zi;j�1Wei;j þ bei;j

� �
; i ¼ nþ 1; j ¼ 2; :::; Lzi

8><>: ð18Þ

where Wenþ1;j and benþ1;j are the new parameters when i ¼ nþ 1.

We assume that client k adds a total of bnk groups. Thus, we
define the new feature node sequence of the global model as
follows:

Wg
e ¼ Concat

max bnk ;:::bnV
� �

i¼1 ConcatL
z
i
j¼1g

Lzi
j¼1

XV
k¼1;Wk

ei;j
2£

Wk
ei;j

ð19Þ

bg
e ¼ Concat

max bnk ;:::bnV
� �

i¼1 ConcatL
z
i
j¼1g

Lzi
j¼1

XV
k¼1;bkei;j2£

bk
ei;j

ð20Þ
Fig. 3. The incremental learning of the BFCM.
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where Concat indicates that the server adds the averaged parame-

ters to sequence Wg
e or bg

e . g
Lzi
j¼1 is an aggregation weight related to

the proportion of the local training data. Because the number of
nodes added by each client is inconsistent, we search the subscript
(i, j) of each client’s parameter sequence, and the retrieval length is
the longest length max bnk; :::; bnV

� �
among the clients’ parameter

sequence. If the parameter of the subscript (i, j) is not empty, it
can participate in aggregation.

After parameter aggregation, the server sends the parameter
sequences bg

e and Wg
e to clients. Thus, the new mapping nodes Z0

of the incremental learning are expressed as follows:

Z0 ¼ Z0nþ1ð Þ;N ; :::;Z
0
nþ1ð Þ;Lznþ1 ; :::;Z

0
max n

^k ;:::;n
^V

� �
;1
; :::;Z0

max n
^k ;:::;n

^V
� �

;Lz

max n
^k

;:::;n
^V

n o
2664

3775 ð21Þ

Since bg
ei;j
2 bg

e and Wg
ei;j
2Wg

e , Eq. (18) can be rewritten as

follows:

Z0nþ1ð Þ;j ¼
/ XWg

ei;j
þ bg

ei;j

� �
; i ¼ nþ 1; j ¼ 1

/ Zi;j�1W
g
ei;j
þ bg

ei;j

� �
; i ¼ nþ 1; j ¼ 2; :::; Lzi

8><>: ð22Þ

Thus, we define the new output of E for incremental nodes as

H0 ¼ H01;1; :::;H
0
1;Lh1

; :::;H0m;1; :::;H
0
m;Lhm

h i
. Each node is obtained by

H0i;j ¼
n Z0nþ1ð Þ;jWhj þ bhi;j

� �
; i ¼ 1; :::;m; j ¼ 1

n H0i;j�1Whi;j þ bhi;j

� �
; i ¼ 1; :::;m; j ¼ 2; :::; Lhi

8><>: ð23Þ

The updated output combination matrix of the feature mapping
layer and the enhancement node layer in incremental learning A0

and its pseudoinversematrix (A0)+ are updated refers to Eqs. (5)–(9).

4.2.2. Asynchronously incremental enhancement nodes in FL
If one client increases the (m + 1)th group in E of the BFCM, the

output Hm+1 is given as follows:

H mþ1ð Þ;j ¼
n ZWhi;j þ bhi;j

� �
; i ¼ mþ 1; j ¼ 1

n Hi;j�1Whi;j þ bhi;j

� �
; i ¼ mþ 1; j ¼ 2; :::; Lhi

8><>: ð24Þ

We assume that client k increases the total bmk groups. Thus, we
define the new enhancement node sequence of the global model as
follows:

Wg
h ¼ Concat

max bmk ;:::;bmV
� �

i¼1 ConcatL
h
i
j¼1g

Lhi
j¼1

XV
k¼1;Wk

hi;j
2£

Wk
hi;j

ð25Þ

b
g
h ¼ Concat

max bmk ;:::;bmV
� �

i¼1 ConcatL
h
i
j¼1g

Lhi
j¼1

XV
k¼1;bkhi;j2£

bk
hi;j

ð26Þ

where Concat indicates that the server adds the averaged parame-

ters to sequence Wg
h or bg

h. g
Lhi
j¼1 is an aggregation weight related to

the proportion of the local training data. Because the number of
nodes added by each client is inconsistent, we search the subscript
(i, j) of each client’s parameter sequence, and the retrieval length is
the longest length max bmk; :::; bmV

� �
among the clients’ parameter

sequence. If the parameter of the subscript (i, j) is not empty, it
can participate in aggregation.

Thus, we define the new output of E for incremental nodes as

follows: H0 ¼ H01;1; :::;H
0
1;Lh1

; :::;H0m;1; :::;H
0
m;Lhm

h i
. Each node is

obtained by
6

H0mþ1ð Þ;j ¼
n ZWg

hi;j
þ bg

hi;j

� �
; i ¼ mþ 1; j ¼ 1

n Hi;j�1W
g
hi;j
þ bg

hi;j

� �
; i ¼ mþ 1; j ¼ 2; :::; Lhi

8><>: ð27Þ

The updated output combination matrix A0 and its pseudoin-
verse matrix (A0)+ are updated refers to Eqs. (5)–(9).

4.2.3. Asynchronous aggregation in FBL
Considering that the client may increase the enhancement

nodes and feature nodes simultaneously, the client k can send

Wk
hi;j
;Wk

ei;j
; bk

hi;j
; bk

ei;j

n o
, and Wk to participate in FBL. Finally, the ser-

ver can packet and send the aggregated parameters
Wg ¼ Wg

e ; b
g
e ;W

g
h; b

g
h;W

� �
to each client. The details are shown in

Algorithm 1.

Algorithm 1. The asynchronous FBL algorithm.

Function ClientProcess (k, Wg):
Update the local model parameters by Wg

for each local incremental feature node group i = 1, 2, ..., bnk

do
Train the local BFCM model by incremental learning

according to Eqs. (18)–(22)
end
for each local incremental enhancement node group i = 1, 2,
..., bmk do
Train the local BFCM model by incremental learning

according to Eqs. (24)–(30)
end

Return Wk
hi;j
;Wk

ei;j
; bkhi;j ; b

k
ei;j

n o
to the server;

End Function
Function server process (t):
Initialize Wg

if t is 1 then
for k = 1, 2, ... do

Wk
hi;j
;Wk

ei;j
; bkhi;j ; b

k
ei;j
;Wk

n o
 ClientProcess (k, Wg):

end
end
else
for k = 1, 2, ... do

Wk
hi;j
;Wk

ei;j
; bkhi;j ; b

k
ei;j
;Wk

n o
 ClientProcess(k, Wk):

end
end

Compute Wg
e according to Eq. (19)

Compute bge according to Eq. (20)
Compute Wg

h according to Eq. (25)

Compute b
g
h according to Eq. (26)

End Function
5. Resource and revenue allocation for FBL

In this section, we use the Davidon–Fletcher–Powell (DFP) [36]
algorithm to solve the resource allocation problem and RIS config-
uration problem involved in FIL. Furthermore, we introduce the
process of our proposed revenue allocation algorithm, which is
based on an FIL algorithm. In FL, the RIS can enhance the channel
quality and reduce the communication cost during FIL [14,37].

5.1. Resource allocation for FBL

According to Eq. (28), the purpose of clients is to maximize
the individual reward, and clients may not care much about the
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network experience. However, for operators, the performance of
the network has an important impact on the effect of FBL, so it is
necessary to attach great importance to overall network perfor-
mance. Thus, improving the transmission rate of clients can ensure
the maximum quality of service (QoS). The optimized function can
be rewritten as two sub-problems P1 and P2.

P1: max
X

Rup
k;s tð Þ

s.t.

C1: he tð Þ 2 0;2p½ �;8e 2 # ð28Þ

C2:
XV
k¼1

Bup
k;s tð Þ � Bup

max tð Þ

C3: ae tð Þ 2 0;1½ �;8e 2 #

where, according to subproblem P1, we should maximize the uplink
rate. C1 ensures the phase shift angular range in RIS, while C2
restricts the total transmission rate so that it cannot be greater than
Bup
max tð Þ at time slot t. C3 limits the amplitude reflection coefficient

value. Bk;s tð Þ, he tð Þ, and ae tð Þ determine the overall transmission rate.
Similarly, according to subproblem P2, we should maximize the

downlink rate. In P2, constraints ensure the resource limitation:

P2: max
X

Rdown
k;s tð Þ

s.t.

C1: he tð Þ 2 0;2p½ �;8e 2 # ð29Þ

C2:
XV
k¼1

Bdown
k;s tð Þ � Bmax

down tð Þ

C3: ae tð Þ 2 0;1½ �;8e 2 #

As shown by the constraints of P1 and P2, P1 and P2 are two
non-convex problems. First, we remove the constraint and trans-
form the original P1 problem into a generalized Lagrange function,
as follows:

minRup tð Þ ¼ min�
XV
k¼1

Rup
k;s tð Þ þ

X#
e¼1

ka;upe he tð Þ � 2pð Þ

þ
X#
e¼1

kb;upe �he tð Þð Þ þ va;up
XV
k¼1

Bup
k;s tð Þ � Bup

max tð Þ

þ vb;up
XV
k¼1
�Bup

k;s tð Þ þ
X#
e¼1

la;up
e ae tð Þ � 2pð Þ

þ
X#
e¼1

lb;up
e �ae tð Þ� �

ð30Þ

where our goal is to minimize Rup tð Þ. ka;upe , kb;upe , va;up, vb;up, la;up
e , and

lb;up
e are penalty factors.
Similarly, the downlink rate should be maximized as follows:

minRdown tð Þ ¼ min�
XV
k¼1

Rdown
k;s tð Þ þ

X#
e¼1

ka;down
e he tð Þ � 2pð Þ

þ
X#
e¼1

kb;down
e �he tð Þð Þ þ va;down

XV
k¼1

Bdown
k;s tð Þ

� Bdown
max tð Þ þ vb;down

XV
k¼1
�Bdown

k;s tð Þ

þ
X#
e¼1

la;down
i ae tð Þ � 2p

� �þX#
e¼1

lb;down
e �ae tð Þ� �

ð31Þ

where ka;down
e , kb;down

e , va;down, vb;down, la;down
e , and lb;down

e are also pen-
alty factors.
7

To sum up, the optimization goal of the total time slot is

minR ¼min
XT
t¼1

Rdown tð Þ þ Rup tð Þ
� �

ð32Þ

where T means the total time slot.
Thus, we define the penalty factors list Pen, RIS controlling

parameters list I, and networking resource parameters list BW as
follows:

Pen ¼ kb;up ; ka;up ;va;up;vb;up ;lb;up ;la;up ; kb;down; ka;down;va;down;vb;down;lb;down ;la;down
n o

I ¼ h;af g ð33Þ

BW ¼ Bup;Bdown
n o

Therefore, our goal is to weigh the performance of FBL against
the revenue of clients by determining the values of Pen, I, and B.
From this analysis, we decouple the problem into an uplink/down-
link problem and an RIS configuration problem. We propose a
DDFP algorithm based on the DFP method [36] to solve these
two problems. First, we fix the reflector coefficients, then we use
a DFP algorithm to solve the optimal transmission bandwidth for
parameter upload and parameter download, respectively. Finally,
according to the resource optimization, we use a DFP algorithm
to solve the optimal RIS coefficient configuration again. The details
are shown in Algorithm 2. We assume the maximum iteration to be
rmax and the maximum incremental node group to be
max bnmax; bmmax

� �
, where bnmax and bmmax represent the maximum

number of feature mapping nodes and feature enhancement nodes
added in all clients, respectively. The total time complexity is
O max TVmax bnmax; bmmax

� �
; Trmax

� �� �
. In the IoV, the value of V will

be large. Thus, TVmax bnmax; bmmax
� �� Trmax, and the total time

complexity is approximately equal to O TVmax bnmax; bmmax
� �� �

. Com-
pared with the DL method for solving the resource allocation prob-
lem, the DFP algorithm does not require large-scale trainable
parameters, which optimizes to a certain extent a large amount
of storage space needed in the implementation of the algorithm.
By decoupling complex problems, the difficulty of problem pro-
cessing is somewhat reduced, and the efficiency of the algorithm
is improved.

Algorithm 2. The DDFP algorithm.

Fix I
Initialize j = 0
Randomize Pen, BW
Calculate the Hessian matrix D(j) of Rup tð Þ� �

Penup;Bup� �
While kg jþ 1ð Þk < do; // / optimize the uplink transmission

rate, g jþ 1ð Þ means the gradient for iteration jþ 1
g jð Þ  r Rup tð Þ� �

Pen;BWð Þ
x jð Þ  Rup tð Þ� �

Pen;BWð Þ
Get x jþ 1ð Þ according to the line search method [1]
Calculate g jþ 1ð Þ
Dg ¼ g jþ 1ð Þ � g jð Þ, Dx ¼ x jþ 1ð Þ � x jð Þ
D jþ 1ð Þ ¼ D jð Þ þ DxDxT

DgTDx
� D jð ÞDgDgTD jð Þ

DgTD jð ÞDg
End

Initialize j = 0
Randomize Pen, BW
Calculate the Hessian matrix D(j) of

Rdown tð Þ
� �

Pendown;Bdown
� �

While kg jþ 1ð Þk < do; // / optimize the downlink

(continued on next page)
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transmission rate

g jð Þ  r Rdown tð Þ
� �

Pen;BWð Þ
x jð Þ  Rdown tð Þ

� �
Pen;BWð Þ

Get x jþ 1ð Þ according to the line search method [1]
Calculate g jþ 1ð Þ
Dg ¼ g jþ 1ð Þ � g jð Þ, Dx ¼ x jþ 1ð Þ � x jð Þ
D jþ 1ð Þ ¼ D jð Þ þ DxDxT

DgTDx� D jð ÞDgDgTD jð Þ
DgTD jð ÞDg

End
If j%r == 0 then; // / optimize the RIS
Initialize j = 0
Calculate the Hessian matrix D(j) of

Rdown tð Þ
� �

Ið Þ þ Rup tð Þ� �
Ið Þ

While kg jþ 1ð Þk < do; // / optimize the uplink transmission
rate

g jð Þ  r Rdown tð Þ
� �

Ið Þ þ Rup tð Þ� �
Ið Þ

� �
x jð Þ  Rdown tð Þ

� �
Ið Þ þ Rup tð Þ� �

Ið Þ
� �

Get x jþ 1ð Þ according to the line search method [1]
Calculate g jþ 1ð Þ
Dg ¼ g jþ 1ð Þ � g jð Þ, Dx ¼ x jþ 1ð Þ � x jð Þ
D jþ 1ð Þ ¼ D jð Þ þ DxDxT

DgTDx� D jð ÞDgDgTD jð Þ
DgTD jð ÞDg

End
5.2. RFL based on FIL for revenue allocation

Due to the unbalanced FL training and high mobility in the IoV,
it is difficult to evaluate the contribution of FL among clients. On
the one hand, service providers hope to acquire high-quality
knowledge and do not want dirty and useless data from clients.
On the other hand, clients consume local computation resources
for model training and communication resources for transmitting
parameters. Therefore, they must make profits to make up for
the expenses caused by knowledge sharing.

According to the RIS-aided channels given in Eqs. (10)–(14), the
delay Lk tð Þ and energy consumption Ek tð Þ of communication and
computation in slot t, respectively, can be determined as follows:

Lk tð Þ ¼ Lupk;s tð Þ þ Ldown
k;s tð Þ þ size Wk tð Þð Þhc

f k tð Þ þ size Wg tð Þ� �
hc

f s tð Þ þ Lwait

ð34Þ

Ek tð Þ ¼ a1L
up
k;s tð Þ þ a2L

down
k;s tð Þ þ a3

size Wk tð Þð Þhc
f k tð Þ þ a4

� size Wg tð Þ� �
hc

f s tð Þ þ a5Lwait ð35Þ

where a1–a5 are the energy factors for energy consumption. We set
a1 and a2 as 0.05, a3 and a4 as 10�21, and a5 as 0.5. The RSU requires
a certain waiting delay to collect all the parameters. Thus, the wait-
ing delay is given as Lwait, which represents the time required to col-
lect all the parameters. In an asynchronous learning process, the
arrival time of the model parameters to the server is inconsistent.
Although the Lwait is much less than the delay required for model
calculation and communication, we still set it to a constant in the
simulation. f k tð Þ is the computation frequency of the user k, and
f s tð Þ is the RSU computation frequency. hc means the calculation
density.

Combined with Eqs. (9)–(12), the total cost ck of client k is
defined as follows:
8

ck tð Þ ¼ nlLk tð Þ þ neEk tð Þ ð36Þ
where Eq. (42) indicates that the cost mainly comes from energy
consumption and delay. nl and ne represent the price factors. To
sum up, the greater the training time, the greater the cost caused
by the client k. This indicates that the costs incurred by clients must
be compensated by the server in order to better motivate clients to
participate in FL and contribute their knowledge as much as
possible.

To encourage clients to participate in FL, the server can give
benefits to clients to download high-quality knowledge in the
IoV. For each client k at time slot t, the benefit to the client is
uk tð Þ, and the client’s contribution to the FL is qk tð Þ. Driverless pro-
cesses are mainly based on image classification or real-time road
condition analysis for vehicular performance evaluation. Thus,
improving the prediction accuracy ACCk of tasks is key in the IoV.
The contribution qk tð Þ is related to the prediction accuracy, so we
define qk tð Þ as follows:

qk tð Þ ¼ ACCk yk;Xk xk;Wkð Þð Þ ð37Þ
where (xk, yk) is the training data of client k under the model param-
eters Wk. Xk �ð Þ means the local BFCM model.

According to Eqs. (35) and (36), we define the expected mar-
ginal revenue function ue

k of client k as follows:

ue
k tð Þ ¼ arctan qk tð Þ � sigmoid ck tð Þð Þð Þ þ bu ð38Þ

where the sigmoid function is primarily adopted to normalize costs
to [0, 1]. Since qk tð Þ is also in the range of [0, 1],
qk tð Þ � sigmoid ck tð Þð Þ is a negative value. The advantage of the arc-
tan function is that the input and output are positively correlated.
Thus, we use arctan to correct the value of qk tð Þ � sigmoid ck tð Þð Þ
to ensure that the output value is greater than 0, so that the output
value is larger, the revenue is greater. bu is the offset we give.

For each client, the FL manager can monitor the client’s reward
for a long time. We define Yk tð Þ as the difference between what the
client k has received so far and what the client should have
received at time slot t:

Yk t þ 1ð Þ ,max Yk tð Þ þ ck tð Þ � buk tð Þ;0� 	 ð45Þ
where the larger Yk tð Þ is, the more compensation client k should
receive.

Because the training times of clients are asynchronous, clients
should receive different benefits. However, because of the limited
funds of the server, some clients may have to wait a long time to
receive their full benefits. Thus, we define the waiting time cost
as Qk tð Þ. The dynamic update of Qk tð Þ can be expressed as follows:

Qk t þ 1ð Þ , max Qk tð Þ þ kk tð Þ � buk tð Þ;0� 	 ð46Þ
where kk tð Þ is related to the historical payoff:

kk tð Þ ¼ bc k; if Yk tð Þ ¼ 0
0;otherwise

(
ð47Þ

We calculate the historical cost based on the exponentially
weighted averages method as follows:

bck ¼Xt
i¼1

bc
i

� �i�1 1� bcð Þick ið Þ ð48Þ

where bc
i is a hyper-parameter. The closer it is to the current time,

the greater the weight that is given to the cost. Also,Eq. (48) can fit
the changing trend of client cost.

Thus, the actual revenue received by client k is

buk tð Þ ¼ uk tð ÞPV
k¼1uk tð Þ ð49Þ
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This equation shows that the actual revenue buk tð Þ of client t is
related to the revenue of Inc(t) and other clients; where Inc(t) rep-
resents the total budget of the FL manager at time slot t. uk tð Þ is
defined as follows:

uk tð Þ ¼ 1
2
xuue

k tð Þ þ Yk tð Þ þ ck tð Þ þ Qk tð Þ þ kk tð Þ� 	 ð50Þ

wherexu is a weight factor, and Eq. (50) shows the expected payoff
of client k at time slot t. However, buk tð Þ is always less than or equal
to uk tð Þ, and we expect buk tð Þ to get close to uk tð Þ. We define the ben-
efit rate as follows:

Urate
k tð Þ ¼ buk tð Þ

uk tð Þ ð51Þ

where Urate
k tð Þ is adopted to evaluate the benefit of client k.

Algorithm 3. FIL for revenue allocation.

For each slot time t = 1, 2, ..., T do
Call Algorithm 1
Call Algorithm 2
For k = 1, 2, ..., V do
Compute ck tð Þ
Compute qk tð Þ
Compute uk tð Þ

End
For k = 1, 2, ..., V dobuk tð Þ  uk tð ÞPV

k¼1uk tð Þ
Inc tð Þ

Compute Y(t + 1), Q(t + 1)
End

Return bu1;:::;buk

� �
End
6. Simulation results

In this section, we use datasets to verify and analyze the perfor-
mance of our proposed algorithms. Then, we analyze the simula-
tion by using different datasets, parameter settings, and
comparison models.
Fig. 4. The vehicular scenario of Qinhuangdao.
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6.1. Parameter settings

As shown in Fig. 4, we use Python 3.7 to simulate the vehicle
operation and channel status in the Qinhuangdao center area,
using an 11th Gen Intel Core i7-11800H@2.30GHz 8 core. The main
reference values of the important parameters are provided in
Table 1.
6.2. Dataset

We use the following datasets:
(1) Mixed National Institute of Standards and Technology

(MNIST). The MNIST dataset is a handwritten numeral recognition
dataset with ten categories (0–9). We set 80% of the dataset as
training data and 20% as testing data.

(2) Car evaluation. The car evaluation dataset directly relates to
the six input attributes of buying, maintenance (maint), doors, per-
sons, luggage_boot (lug_boot), and safety to evaluate the car per-
formance. The car performance has four categories, and the data
type is String, so we adopt the HashCode method to encode the
original data. The details in this dataset are shown in Table 2.
6.3. Performance comparison

We adopt several models to evaluate the prediction perfor-
mance of the proposed algorithms, as follows:

(1) Support vector machine (SVM). An SVM is a supervised
learning algorithm that can be classified nonlinearly via the kernel
method. In an SVM, we use a scikit-learn package to search for the
best optimized parameters: the kernel function and the penalty.

(2) Fully connected network (FCN). An FCN is a network com-
posed of multiple fully connected layers. In an FCN, we set up three
layers of fully connected for MNIST, where the number of features
output from each layer is 120, 84, and 10, respectively. For car eval-
uation, we set up two layers of fully connected, and the number of
features output from each layer is 10 and 4, respectively.

(3) BLS. A traditional BLS includes several feature nodes and
enhancement nodes. The details of the parameter settings are pro-
vided in Tables 3 and 4.

(4) CFBLS. Compared with the BLS, the CFBLS has a cascade
structure in feature nodes. The details of the parameter settings
are provided in Tables 3 and 4.
Table 1
Parameter list.

Parameter Description Reference value

hmax Calculation density 800–1000 cycle�bit�1
fmax Maximum frequency 0.6 � 109–1.0 � 109 Hz
N0 Noise power 10�13 W
Pmax Maximum transmit power 0.6 � 103–1.0 � 103 W
Bmax Maximum transmit bandwidth 0.12 � 106–0.18 � 106 Hz
Inc Total amount of money in the server 2000–3000

Table 2
Description of the car evaluation dataset.

Attribute Value

Buying [vhigh (very high), high, med, low]
Maint [vhigh, high, med (median), low]
Doors [2, 3, 4, 5, more]
Persons [2, 4, more]
Lug_boot [small, med, big]
Safety [low, med, high]



Table 3
Classification accuracy using the MNIST data set for different parameter settings.

Model Number of feature nodes or groups Number of enhancement nodes or groups Testing accuracy Training time (s)

SVM — — 85.32 —
FCN — — 89.21 —
BLS 3000 3000 90.02 36.45
CFBLS 3000 3000 90.33 55.97
CFBLS-pyramid 5500 5000 90.81 85.38
BFCM 1220 1220 91.31 16.69

Table 4
Classification accuracy using the car evaluation dataset for different parameter settings.

Model Number of feature nodes or groups Number of enhancement nodes or groups Testing accuracy Training time (s)

BLS 500 500 91.08 0.45
CFBLS 500 500 89.53 0.45
CFBLS-pyramid 275 50 91.33 0.03
BFCM 250 250 92.17 0.22
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(5) CFBLS-pyramid. Compared with the CFBLS, the CFBLS-
pyramid has a pyramid structure in the feature nodes. The details
of the parameter settings are provided in Tables 3 and 4.

(6) BFCM. If we set the number of feature mapping layers and
feature enhancement layers to 1, BFCM becomes CFBLS. The details
of the parameter settings are provided in Tables 3 and 4.

(7) Federated averaging (FedAVG). This model adopts the
weighted average method to aggregate parameters. In general,
the local model adopts a DL model. In this paper, we use long
short-term memory (LSTM), a convolutional neural network
(CNN), and FCN as local training models to evaluate the perfor-
mance of FedAVG.
Fig. 5. Average accuracy with the MNIST dataset for different numbers of clients.

Fig. 6. Average accuracy with the car evaluation dataset for different numbers of
clients.
6.4. Performance analysis

Table 3 shows the classification accuracy of the MNIST dataset
with different parameter settings. We start with five feature nodes
or groups and five enhancement nodes or groups. After incremen-
tal learning, the last feature nodes of BLS, CFBLS, CFBLS-pyramid,
and BFCM are 3000, 3000, 5500, and 1220, respectively. More
specifically, we define each group of nodes in BFCM as 80, 32,
and 25, respectively. The last enhancement nodes of BLS, CFBLS,
CFBLS-pyramid, and BFCM are 3000, 3000, 5000, and 1220, respec-
tively. Compared with the other models, our proposed model
achieves the best average classification accuracy with the least
total number of nodes in centralized learning.

Table 4 shows the classification accuracy with the car evalua-
tion dataset under different parameter settings. We start with
ten feature nodes or groups and five enhancement nodes or groups.
More specifically, we define each group of nodes in BFCM as 10, 5,
and 10, respectively. After incremental learning, the last feature
nodes of BLS, CFBLS, CFBLS-pyramid, and BFCM are 500, 500, 275,
and 250, respectively. The last enhancement nodes of BLS, CFBLS,
CFBLS-pyramid, and BFCM are 500, 500, 50, and 250, respectively.
The large number of features generated in the middle does not nec-
essarily improve the classification accuracy; on the contrary, it
may produce an overfitting phenomenon. However, our model
can flexibly set the number of feature nodes or enhancement nodes
in each group according to the situation, which improves the gen-
eralization of data learning.

The performance of centralized learning is shown in Tables 3
and 4. Centralized learning allows all client data to be uploaded
to the server. Mastering all the data in a centralized model is ben-
eficial to the training of model parameters. With an increase in the
number of nodes, the mapping features increase, and the classifica-
tion errors caused by the randomness of the parameters increase.
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Figs. 5 and 6 show the performance of FL with different models.
Compared with traditional machine learning or DL, BL has advan-
tages in efficiency and prediction accuracy. Our proposed FBL
adopts an asynchronous parameter aggregation method, which
can effectively solve the problem that the parameters cannot be
aggregated directly due to the inconsistency of the nodes between
models in an asynchronous BL process. However, it is necessary to
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train and aggregate parameters efficiently due to the fast move-
ment of vehicles and the limited-service range of RSU. Traditional
DL algorithms such as CNN, LSTM, or FCN are used as local models.
Due to the long training time or long distance from the service
range, RSU does not receive the client parameters, making FedAVG
not particularly effective. Because of the lightweight characteristic
of the local model, FBL can meet the requirement of frequent
parameter exchange in the IoV and can improve the learning abil-
ity of the global model.

Figs. 7 and 8 show that our proposed FBL can reduce the cost
more than the comparison algorithms. However, the increase in
training time and clients will lead to a gradual increase in the
model training cost. Further analysis shows that the cost of FL usu-
ally stems from frequent parameter exchange, so it is necessary to
allocate the communication resources reasonably. Increasing cli-
ents’ rewards is conducive to increasing clients’ willingness to par-
ticipate in FL activities. Figs. 9 and 10 show the performance under
distributed learning from different numbers of clients. With the
help of RIS, our FBL can allocate resources dynamically according
to the environment to improve the utilization of resources and
encourage clients to contribute to FL. Our FBL can maintain the
yield above 90%, which shows that an efficient local model pro-
motes clients to participate in FL more frequently. More impor-
tantly, the reasonable resource allocation and RIS configuration
algorithm can enhance the channel quality and improve the effi-
ciency of IoV knowledge sharing.

Fig. 11 shows the influence of a different number of reflective
elements on the FBL algorithm. It is clear that an increase in the
reflective elements does indeed improve the overall effect of FBL,
Fig. 7. Average cost for different numbers of clients.

Fig. 8. Average computation delay cost for different numbers of clients.

Fig. 10. Average benefit rate with the car evaluation dataset for different numbers
of clients.

Fig. 11. Average benefit rates for different datasets.
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which is manifested in an increase in the rate of return. More
importantly, with the increase in FL clients, the utilization rate of
resources increases, making the rate of return close to 100%.
7. Conclusions

In this paper, we proposed an asynchronous FBL framework for
knowledge sharing in the IoV. The FBL integrates BL and FL, which
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not only protects data privacy but also accelerates the training effi-
ciency of local models and improves the accuracy of federated aggre-
gation. To enhance the performance of local training, an improved
BFCMwas proposed. To solve the resource allocation and RIS control-
ling problem, we divided it into two convex subproblems. In order to
reduce the communication cost, we used a DDFP algorithm to allo-
cate network bandwidth and configure the RIS between time slots.
An RFL algorithm was proposed to enhance the benefits to clients
in order to compensate for their costs during communication and
computation. The simulation results showed that our algorithm
improves the classification accuracy by at least 2.0% on average,
and the revenue of clients is improved by roughly 2.5% compared
with that from other algorithms. Regarding reward distribution,
our algorithm can approach 100% and maximizes users’ benefits.
Moreover, the efficiency of our algorithm on large-scale data sets is
increased by about six times, with many vehicular nodes. For future
work, we will investigate the client selection problem for FL.
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