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Abstract— Software defined networking (SDN) and network
function virtualization (NFV) are key enabling technologies in
fifth generation (5G) communication networks for embedding
service-level customized network slices in a network infrastruc-
ture, based on statistical resource demands to satisfy long-term
quality of service (QoS) requirements. However, traffic loads
in different slices are subject to changes over time, resulting
in challenges for consistent QoS provisioning. In this paper,
a dynamic flow migration problem for embedded services is
studied, to meet end-to-end (E2E) delay requirements with
time-varying traffic. A multi-objective mixed integer optimization
problem is formulated, addressing the trade-off between load
balancing and reconfiguration overhead. The problem is trans-
formed to a tractable mixed integer quadratically constrained
programming (MIQCP) problem. It is proved that there is
no optimality gap between the two problems; hence, we can
obtain the optimum of the original problem by solving the
MIQCP problem with some post-processing. To reduce time
complexity, a heuristic algorithm based on redistribution of hop
delay bounds is proposed to find an efficient solution. Numerical
results are presented to demonstrate the aforementioned trade-
off, the benefit from flow migration in terms of E2E delay
guarantee, as well as the effectiveness and efficiency of the
heuristic solution.

Index Terms— Service function chaining (SFC), network slic-
ing, dynamic flow migration, end-to-end (E2E) delay, VNF state
transfer, SDN/NFV-enabled 5G networks.

I. INTRODUCTION

THE service-oriented fifth generation (5G) networks
will support new use cases and diverse services with

multi-dimensional performance requirements, which cannot
be supported by the legacy one-size-fits-all network architec-
ture [2]. Network slicing is a promising solution to accom-
modate the broad range of services over a common network
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infrastructure, and provides service-level performance guar-
antees [3]. The emerging software defined networking (SDN)
and network function virtualization (NFV) technologies create
new opportunities for a flexible and programmable network
architecture, which supports network slicing [4]–[7]. SDN
decouples network control from data plane into a centralized
control module, which enables a global network view and
facilitates centralized network management. End-to-end (E2E)
data delivery paths can be established by an SDN controller,
by configuring forwarding rules in SDN-enabled switches
via southbound protocols such as Openflow [8]. NFV sepa-
rates network functions from dedicated hardware to software
instances, referred to as virtual network functions (VNFs),
hosted in NFV nodes such as commodity servers and data
centers. NFV enables cost-effective VNF placement and elastic
VNF capacity scaling.

With new business models introduced in 5G networks,
a tenant such as a service provider requests a set of network
services in the form of service function chains (SFCs), from
an infrastructure provider (InP). An SFC is composed of
multiple VNFs in a predefined order, to fulfill a composite
service in E2E data delivery. Each VNF supports a dedicated
packet processing functionality such as intrusion detection
system (IDS) and network address translation (NAT). Many
VNFs are state-dependent, and states are updated together with
packet header or payload processing, to guarantee accurate
packet processing. For example, a virtual IDS belonging to
an SFC keeps track of pattern matchings for accurate attack
detection in subsequent packets. VNF states are stored and
updated locally in associate VNFs. Packets processed by a
VNF are transmitted to next VNF in the same SFC for further
processing, generating traffic between consecutive VNFs, until
the last VNF. We refer to an SFC flow as the aggregate traffic
flow traversing an SFC, and an inter-VNF subflow as the traffic
between two consecutive VNFs in the same SFC.

The InP customizes network services over the network
infrastructure, generating service-level network slices. For
each service (SFC), VNFs are embedded on NFV nodes, and
inter-VNF subflows are routed over physical paths between
the corresponding upstream and downstream VNFs. Here,
a physical path is a series of SDN-enabled switches and
links. The VNFs and subflows are allocated certain processing
resources and transmission resources respectively, according
to long-term traffic statistics and quality of service (QoS)
requirements. This process is referred to as SFC embed-
ding [9]–[11]. We call a logical abstraction of all embedded
physical paths between two NFV nodes as a virtual link.
After SFC embedding, processing resources of NFV nodes
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are virtualized and distributed among VNFs, and virtual links
are established among NFV nodes and are allocated with
transmission resources.

We consider a single tenant with multiple network slices
under its management [3]. The slices are required to be
mutually isolated from each other in terms of service per-
formance, e.g., E2E delay [12], [13]. However, during the
operation of network slices, traffic arrivals of each service
fluctuate over time, due to dynamic user subscription and
time-varying traffic flows from source nodes, which results
in imbalanced resource usage on NFV nodes and virtual links
from time to time. The mismatch between traffic load and
resource availability is detrimental to both service performance
and resource utilization. Allocating dedicated resources to
each slice according to peak demands guarantees performance
isolation at the cost of resource overprovisioning. For efficient
resource utilization, resource sharing among slices is desired,
i.e., processing resources at NFV nodes and transmission
resources on virtual links are shared among traffic flows of
multiple services. Due to the chaining nature of SFCs, one
service can share resources with different services at different
NFV nodes and virtual links traversed along its E2E path,
making performance isolation challenging to achieve. Within
an NFV-MANO reference architecture, a resource orchestra-
tor (RO) is responsible for orchestrating resources among
slices, on behalf of the tenant [3]. Each slice is subject to
resource capacity scaling via a network service orchestrator
(NSO) [3]. Hence, a dynamic resource management scheme
is required for the RO to accommodate traffic dynamics and
provide continuous QoS performance guarantees for multiple
services.

In this paper, we study a delay-aware flow migration
problem for delay-sensitive services in a processing resource
limited network, to guarantee average delay isolation among
services within maximal tolerable service downtime. The
placement of VNFs is adjusted over time, with scaled process-
ing resources allocated to each VNF. The associate states
at migrated VNFs are transferred to target NFV nodes for
consistency. For a subflow, if either its upstream or down-
stream VNF migrates to an alternative NFV node, it should be
remapped to an alternative virtual link accordingly. The goal is
to achieve efficient utilization of processing resources at NFV
nodes with minimum transmission resource overhead incurred
by state transfers. With the consideration that not every two
NFV nodes are directly connected by virtual links, the number
of extra virtual links required for flow rerouting is minimized
to reduce signaling overhead. The problem is formulated as
a multi-objective mixed integer optimization problem. For
delay awareness, under the assumption of prior knowledge
of time-varying traffic rates, average E2E delay requirements
are included in constraints based on delay modeling. Due
to several quadratic constraints, an optimal solution to the
problem is difficult to obtain using solvers such as Gurobi [14].
We transform the original problem into a tractable mixed inte-
ger quadratically constrained programming (MIQCP) problem.
Although the two problems are not equivalent, it is proved that
there is a zero optimality gap between them. Given an MIQCP
optimum, the optimum of the original problem is obtained

TABLE I

LIST OF IMPORTANT NOTATIONS

through a proposed mapping algorithm. The MIQCP transfor-
mation, together with the mapping algorithm, gives an optimal
solution, but time complexity is high due to NP-hardness of
the MIQCP problem. Therefore, a low-complexity heuristic
algorithm based on redistribution of hop delay bounds is
proposed to obtain a sub-optimal solution to the original
problem.

The rest of this paper is organized as follows. Section II
gives an overview of background and related work. The system
model is presented in Section III, and a delay-aware flow
migration problem is formulated in Section IV. Section V
presents the MIQCP problem transformation, and derives the
optimality gap between the transformed problem and the
original problem. A low-complexity heuristic algorithm is
proposed in Section VI. Performance evaluation for both the
MIQCP and heuristic solutions is presented in Section VII,
and conclusions are drawn in Section VIII. A list of important
notations is given in Table I.

II. BACKGROUND AND RELATED WORK

Traffic engineering (TE) has been extensively investigated,
to find paths for date delivery from source to destination within
link capacity [15], [16]. A cost function, such as a piece-wise
linear increasing and convex function of link utilization, can
be used to penalize high link utilization near capacity. The tra-
ditional TE ensures that no packets get sent across overloaded
links, by minimizing link utilization costs. Flow migration,
i.e., steering traffic flows of embedded SFCs through alter-
native NFV nodes and virtual links, is a TE approach for
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elastic SFC provisioning [17]. Similarly, maximum loading
on NFV nodes can be minimized, to achieve load balancing
over processing resources. However, traditional TE methods
cannot be directly applied due to the following reasons. First,
candidate paths for an SFC flow must traverse through NFV
nodes for processing. In traditional TE problems, a flow is
a source-destination pair without a predefined sequence of
intermediate processing nodes. Second, the transfer of VNF
states should be considered, since simply rerouting in-progress
flows on a state-dependent VNF to an alternative NFV node
leads to state inconsistency, causing processing inaccuracy.
Some frameworks such as OpenNF are proposed to solve the
state inconsistency problem, by not only migrating packets
of the rerouted flow but also transferring the associate VNF
states [18]–[20]. In Co-Scalar [21], parallel state transfer is
proposed for an SFC with multiple state-dependent VNFs.
Instead of sequentially transferring the states of each VNF,
Co-Scalar transfers all VNF states in parallel, thus greatly
reducing latency at the cost of transmission resources.

Dynamic VNF operations, including horizontal scaling,
vertical scaling, and migration, are widely employed to pro-
vide elastic processing resource provisioning [22]. In this
paper, both vertical scaling and migration are employed to
provide elasticity under the assumption that the total num-
ber of VNF instances is unchanged. In existing studies on
dynamic SFC embedding, the time-varying processing and
transmission resource demands are assumed known a priori,
based on which VNFs are placed on alternative NFV nodes,
and inter-VNF subflows are rerouted to different physical
paths [23]–[25]. QoS requirements are expressed in such a way
that the time-varying resource demands are satisfied without
violating the resource capacity. In [26], both resource capacity
constraints and delay constraints are included in problem
formulation, without load dependent queueing delay. In our
study, queueing delay is considered and the delay isolation
issue with time-varying traffic load is addressed. Existing
studies take into consideration of the reconfiguration overhead
for flow migration, which is modeled as a weighted number of
reconfigured NFV nodes and physical links [24], or the total
revenue loss due to throughput loss within a constant service
downtime [25], or the time duration for all state transfers
associated with flow migration [27]. One performance metric
for migration is the maximum allowable downtime within
certain time duration [28]. Under the assumption that the time
interval for flow migration is much larger than state transfer
time, we consider the total transmission resource overhead
incurred by state transfers, within a maximal tolerable service
downtime in one service interruption.

III. SYSTEM MODEL

A. Physical Network

The physical network consists of links and SDN-enabled
nodes, including switches and NFV nodes. Switches forward
traffic from incoming links to outgoing links. Some switches
act as edge switches for service access. NFV nodes have
both forwarding and processing capabilities, each supporting
multiple VNFs subject to resource constraints. There are a

Fig. 1. A physical network with embedded SFCs.

number of SFCs embedded in the physical network, each for
one service request, as shown in Fig. 1.

B. Service Requests

A time-slotted system is considered, with integer k denoting
the k-th time interval over which a flow migration plan remains
unchanged. Let R denote the set of embedded service requests.
A service request, r ∈ R, is represented in the form of SFC.
It originates from source node a(r) and traverses through Hr

VNFs in sequence towards destination node b(r), with average
E2E delay requirement D(r), maximal tolerable downtime
Δ(r) in one service interruption, average packet size σ(r) in
bit, and time-varying traffic rate λ(r)(k) in packet/s. Under
the assumption that flow migration is not frequent and the
time interval is sufficiently large, traffic arrival of SFC r ∈ R
during time interval k is modeled as Poisson with rate λ(r)(k)
packet/s. Under the assumption that the time interval is much
larger than maxr∈R Δ(r), the experienced service downtime is
much shorter than stable service operation time for any service.
Let Hr = {1, · · · , Hr}, and denote the h-th (h ∈ Hr) VNF
in SFC r as V

(r)
h . Let V

(r)
0 and V

(r)
Hr+1 be dummy VNFs in

SFC r, locating at source node a(r) and destination node b(r)

respectively. Let V be a set containing all VNFs belonging
to different SFCs, with (r, h) ∈ V denoting the h-th VNF in
SFC r. Let A be a set of edge switches hosting all dummy
VNFs. The h-th (h ∈ {0}∪Hr) inter-VNF subflow in SFC r,
i.e., the subflow between upstream (dummy) VNF V

(r)
h and

downstream (dummy) VNF V
(r)
h+1, is denoted as L

(r)
h .

C. Abstraction of Virtual Resource Pool

In SFC embedding, we assume that each VNF is embedded
to a single NFV node, every dummy VNF is hosted at one edge
switch, and every subflow is allowed to be embedded to mul-
tiple physical paths between the locations of its upstream and
downstream (dummy) VNFs. Fig. 1 shows a physical network
with three embedded SFCs in single-path routing. We call a
logical abstraction of all embedded physical paths between two
NFV nodes or between one NFV node and one edge switch
as a virtual link. A virtual resource pool is abstracted from
the physical network with embedded SFCs, represented as a
directed graph G = {I ∪ A,L}, where I is a set of all NFV
nodes, A is a set of edge switches hosting dummy VNFs, and
L is a set of virtual links. For virtual link l ∈ L, we use
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Fig. 2. A CPU polling scheme with two flows.

binary parameters, {βl
i} and {ϕl

i}, to describe its location and
direction, with βl

i = 1 if i ∈ I ∪ A is its starting point
and ϕl

i = 1 if i ∈ I ∪ A is its ending point. It is possible
that G is not fully connected. Assume that there are suffi-
cient transmission resources in the physical network. We can
increase resources on existing virtual links, and find paths with
enough resources for extra virtual links. Hence, we consider
a processing resource limited virtual resource pool.

D. Processing Resource Sharing

The processing resource capacity Ci of NFV node i ∈ I is
its maximum supporting CPU processing rate in cycle/s. For
one packet/s of processing rate, the CPU resource demand on
a certain NFV node depends on many factors, including the
packet size, the type of function, the packet I/O scheme, and
the virtualization technology [29]–[31]. We summarize all the
factors into two categories: VNF dependent, and NFV node
dependent. We define processing density of NFV node i for
VNF V

(r)
h as P rh

i (in cycle/bit), which is the CPU resource
demand (in cycle/s) of VNF V

(r)
h on NFV node i for one

bit/s of processing rate. Accordingly, P rh
i σ(r) is the process-

ing density of NFV node i for VNF V
(r)
h in cycle/packet.

A CPU polling scheme is employed for resource sharing
among multiple flows, as illustrated in Fig. 2, in which two
flow-specific processing queues are polled for service. Each
queue gets a portion of CPU resources which is linear with
its allocated CPU time share in a polling period. The polling
scheme introduces multi-task context switching time overhead,
due to extra CPU time spent on saving and loading contexts
between every two consecutive tasks [32]. Here, processing
packets from a certain processing queue is a task. The polling
period Ti and the context switching time overhead W in NFV
node i are constants. Under the assumption that resources
are infinitely divisible, generalized processor sharing (GPS)
is a benchmark resource allocation scheme to achieve QoS
isolation and multiplexing gain among flows [12], [13]. Based
on GPS discipline, the two flows are guaranteed mini-
mum processing rates (in packet/s) of μ1 = t1 Ci

TiP 1
i σ(1) and

μ2 = t2 Ci

TiP 2
i σ(2) respectively, where t1 + t2 + 2W = Ti − tR,

and tR is the residual time share in a polling period. Define
loading factor of NFV node i, denoted by ηi, as the percentage
of allocated time shares plus context switching time overhead
in a polling period of NFV node i.

E. Reconfiguration Overhead

When an SFC flow migrates at a state-dependent VNF,
the VNF is remapped to an alternative NFV node, with

Fig. 3. An illustration for flow migration and state transfer.

the associate states transferred to the target NFV node.
Fig. 3 illustrates the flow migration and associate state trans-
fers, where two VNFs are remapped, and two state transfers
are triggered correspondingly. Packet processing is halted
during state transfer, incurring a service downtime. Let Z

(r)
h (k)

(in bit) be the time-varying state size of VNF V
(r)
h , whose

value at time interval k is monitored by the SDN controller.
For a state transfer at VNF V

(r)
h , Z

(r)
h (k) is the product

of state transfer delay and consumed transmission resources
(in bit/s) [27]. For a remapped SFC with multiple state
transfers, we use parallel state transfer in data plane in which
all state transfers can take place simultaneously [21]. Then,
the service downtime, which is the maximum state transfer
delay along the E2E path, is much less than that of sequential
state transfer, at the cost of transmission resources. Within
a maximal tolerable service downtime, the total transmission
resource overhead incurred by state transfers should be mini-
mized. We assume that the transmission resource overhead for
each state transfer is not less than Bmin = min(Z

(r)
h (k))

max(Δ(r))
.

For a subflow, if its upstream or downstream VNF migrates
to an alternative NFV node, the subflow should be remapped
to an alternative virtual link accordingly. After a successful
remapping, transmission resources allocated to the subflow are
released from the old virtual link. However, it is possible that
NFV nodes in the virtual resource pool are not fully connected.
Assume that the SDN controller can find physical paths with
enough resources for an extra virtual link. Forwarding rule
configuration along the physical paths incurs signaling over-
head between the SDN controller and SDN-enabled switches.

In summary, the reconfiguration overhead due to flow migra-
tion is described in two parts: the total transmission resource
overhead incurred by state transfers, and the total signaling
overhead for configuring extra virtual links required for flow
rerouting. The latter is assumed to be linear with the total
number of extra virtual links required for flow rerouting.

IV. PROBLEM FORMULATION

Problem 1: Consider a processing resource limited virtual
resource pool. Assume that packet processing time at an
NFV node for an SFC is exponentially distributed [33], [34].
During time interval k, traffic arrival of SFC r ∈ R is Poisson
with rate λ(r)(k) packet/s. The rate can be predicted at the end
of time interval (k−1) based on measurements and historical
information [17], [35]. A delay-aware flow migration problem
is to 1) find the remapping between VNFs and NFV nodes in
time interval k, based on the old mapping in time interval
(k − 1), and 2) scale the processing resources allocated to
VNFs, to satisfy average E2E delay requirements without
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violating processing resource constraints. The objective, for
time interval k, is to achieve load balancing among NFV
nodes, with minimal reconfiguration overhead:

O(k) = α1η(k) + α2

∑
(r,h)∈V

∑
i,j∈I

Brh
i,j(k)

Bmin

+ α3

∑
r∈R

∑
h∈{0}∪Hr

∑
i,j∈I∪A

yrh
ij (k). (1)

In objective function (1), there are several decision variables
for time interval k: 1) continuous variable η(k) ∈ [0, 1]
for maximum loading factor among all NFV nodes during
interval k; 2) nonnegative continuous variable set B(k) =
{Brh

i,j(k)}, with Brh
i,j(k) being the transmission resource over-

head to transfer the state of VNF V
(r)
h from NFV node i ∈ I

during interval (k − 1) to NFV node j ∈ I during interval k;
3) binary variable set y(k) = {yrh

ij (k)}, with yrh
ij (k) = 1 if

subflow L
(r)
h is mapped to an extra virtual link between i,

j ∈ I ∪A during interval k, and yrh
ij (k) = 0 otherwise. Note

that α1, α2, α3 are tunable weights to control the priority of the
three components, with α1+α2+α3 = 1. In the right hand side
of (1), the first term is the cost for imbalanced loading among
NFV nodes since minimizing η(k) achieves load balancing
among all the NFV nodes, the second term is the cost for the
overall normalized transmission resource overhead due to state
transfers with a normalization ratio of 1

Bmin
, the third term

is the cost for extra virtual links required by flow rerouting.
The normalization makes the three components in objective
function (1) comparable, based on which α1, α2, α3 can be
selected on the same order of magnitude. A component in (1)
is ignored if the corresponding weight is set to 0. If all weights
are positive, all components in (1) are jointly optimized.

In terms of constraints, we start from node mapping con-
straints. Define binary decision variable set x(k) = {xrh

i (k)}
for interval k, with xrh

i (k) = 1 if (dummy) VNF V
(r)
h is

mapped to node i ∈ I ∪A during interval k, and xrh
i (k) = 0

otherwise. As VNF V
(r)
h should be mapped to exactly one

NFV node in I, we have∑
i∈I

xrh
i (k) = 1, ∀(r, h) ∈ V . (2)

For dummy VNFs, i.e., source and destination nodes, their
physical locations are fixed and confined by

xr0
a(r)(k) = 1, r ∈ R (3a)

xr0
i (k) = 0, r ∈ R, i ∈ I ∪ A\a(r) (3b)

x
r(Hr+1)

b(r) (k) = 1, r ∈ R (3c)

x
r(Hr+1)
i (k) = 0, r ∈ R, i ∈ I ∪ A\b(r). (3d)

The next constraints are related to transmission resource
overhead for state transfer. From interval (k−1) to interval k,
the set representing VNF to NFV node mapping changes from
x(k−1) = {xrh

i (k−1)} to x(k) = {xrh
i (k)}, where x(k−1)

is known in interval k. We introduce binary decision variable
set m(k) = {mrh

i,j(k)} for interval k, with mrh
i,j(k) = 1 if the

mapped NFV node for VNF V
(r)
h changes from NFV node

i ∈ I during interval (k − 1) to NFV node j ∈ I during

interval k, and mrh
i,j(k) = 0 otherwise. Hence, there is a

relationship constraint among {mrh
i,j(k)} (i �= j), {xrh

i (k−1)}
and {xrh

j (k)}, given by

mrh
i,j(k)=xrh

i (k−1)xrh
j (k), ∀(r,h)∈V , ∀i∈I, ∀j∈I\{i}.

(4)

Also, we have

mrh
i,i(k) = 0, ∀(r, h) ∈ V , ∀i ∈ I. (5)

According to the definition of Brh
i,j(k), we have

0 ≤ Brh
i,j(k) ≤ mrh

i,j(k)M, ∀(r, h) ∈ V , ∀i, j ∈ I (6)

where M is a big-M constant to guarantee that Brh
i,j(k)=0 if

mrh
i,j(k) = 0. Let τ (k) = {τrh

i,j (k)} be a positive continuous
decision variable set for interval k, with τrh

i,j (k) denoting

the (dummy) delay to transfer state of VNF V
(r)
h from NFV

node i ∈ I during interval (k− 1) to NFV node j ∈ I during
interval k. It follows that

τrh
i,j (k) =

Z
(r)
h (k)

Brh
i,j(k) + ε

, ∀(r, h) ∈ V , ∀i, j ∈ I (7)

where 0 < ε � 1 is a constant to avoid τrh
i,j (k)

being undetermined, and τrh
i,j (k) is a dummy delay only if

mrh
i,j(k) = 0. Moreover, τrh

i,j (k) has an upper bound

0 < τrh
i,j (k) ≤ mrh

i,j(k)Δ(r) +
[
1 − mrh

i,j(k)
] Z

(r)
h (k)

ε
,

∀(r, h) ∈ V , ∀i, j ∈ I. (8)

If mrh
i,j(k) = 1, the upper bound is the corresponding maximal

tolerable service downtime Δ(r); otherwise, it is Z
(r)
h (k)

ε .
For constraints related to processing resource scaling, let

μ(k) = {μrh
i (k)} be a nonnegative continuous decision vari-

able set for interval k, with μrh
i (k) being the processing rate

in packet/s allocated to VNF V
(r)
h by NFV node i ∈ I during

interval k. It should be lower bounded by xrh
i (k)λ(r)(k) due to

the queue stability requirement and upper bounded by xrh
i (k)Ci

P rh
i σ(r)

due to the limited processing capacity, given by

xrh
i (k)λ(r)(k)≤μrh

i (k)≤ xrh
i (k)Ci

P rh
i σ(r)

, ∀(r, h)∈V , ∀i∈I.

(9)

Let wi(k) be a binary decision variable with wi(k) = 1 if
context switching happens at NFV node i during interval k,
i.e., there are at least two VNFs mapped to NFV node i, and
wi(k) = 0 otherwise. The loading factor of NFV node i during
interval k, denoted by ηi(k), consists of two parts, with a
maximum value equal η(k), which is upper bounded by a
predefined constant ηU (0 < ηU ≤ 1), given by

∑
(r,h)∈V

[
P rh

i σ(r)μrh
i (k)

Ci
+

wi(k)xrh
i (k)W
Ti

]
≤η(k)≤ηU , ∀i∈I

(10)

where both useful time and context switching time overhead of
CPU resources in a polling period are taken into consideration.
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The left hand side of (10) is the expression for ηi(k). The
value of wi(k) is confined by an inequality constraint of∑

(r,h)∈V xrh
i (k)−1

|V| ≤wi(k)≤
∑

(r,h)∈V xrh
i (k)

A
, ∀i ∈ I

(11)

where A is an arbitrary value from (1, 2].
For average E2E delay constraints, let d(k) = {drh

i (k)}
be a positive continuous decision variable set for interval k,
with drh

i (k) denoting the average (dummy) delay on the queue
associated with VNF V

(r)
h at NFV node i. With Poisson traffic

arrival and exponential packet processing time, the processing
system is an M/M/1 queue. Then, drh

i (k) is given by

drh
i (k)=

1
μrh

i (k)−xrh
i (k)λ(r)(k)+ε

, ∀(r, h)∈V , ∀i∈I
(12)

where drh
i (k) is a dummy delay only if xrh

i (k) = 0. There is
an upper bound constraint for drh

i (k), explicitly showing its
relationship with xrh

i (k):

0<drh
i (k)≤xrh

i (k)D(r)+
[
1−xrh

i (k)
]1
ε
, ∀(r,h)∈V , ∀i∈I.

(13)

For QoS satisfaction, the average E2E delay of SFC r ∈ R
should not exceed upper bound D(r),∑

h∈Hr

∑
i∈I

xrh
i (k)drh

i (k) ≤ D(r), ∀r ∈ R. (14)

To decide whether a subflow should be mapped to an extra
virtual link, we consider two cases. In the first case, we have

yrh
ij (k) = 1 −

∑
l∈L

βl
i ϕ

l
j xrh

i (k)xr(h+1)
j (k),

∀r ∈ R, ∀h ∈ {0} ∪ Hr, ∀i ∈ I ∪A, ∀j ∈ I ∪ A\{i}
(15)

to ensure that yrh
ij (k) equal 0 if (dummy) VNF V

(r)
h

and (dummy) VNF V
(r)
h+1 are mapped to node i ∈ I ∪ A

and node j ∈ I ∪ A\{i} between which a virtual link exists.
In the second case, we have

yrh
ii (k)=1−xrh

i (k)xr(h+1)
i (k), ∀r∈R, ∀h∈{0}∪Hr, ∀i∈I∪A

(16)

to ensure that yrh
ii (k) equal 0 if (dummy) VNF V

(r)
h

and (dummy) VNF V
(r)
h+1 are mapped to the same node i ∈

I ∪ A.
In summary, the optimization problem is

min
η(k),B(k),y(k),x(k),m(k),
τ(k),μ(k),w(k),d(k)

O(k)
(17a)

s.t. (2) − (16) (17b)

d(k), τ (k) > 0, (17c)

x(k), w(k), m(k), y(k) ∈ {0, 1}. (17d)

Remark 1: Problem (17) is non-convex due to constraints
(7), (10), (12), (14), (15), and (16).

V. OPTIMAL MIQCP SOLUTION

In problem (17), quadratic constraints (10), (14) (15),
and (16) can be transformed to equivalent linear forms using
the big-M method. Quadratic constraints (7) and (12) cannot
be linearized due to product terms of two continuous variables,
but they can be replaced by combinations of linear constraints
and rotated quadratic cone constraints. The new problem with
transformed and replaced constraints is an MIQCP problem,
which is not equivalent to the original problem. In this section,
we discuss the relationship between both problems.

By introducing an auxiliary nonnegative continuous deci-
sion variable set, θ(k) = {θi(k)}, we linearize constraint (10)
based on the big-M method with M = |V|, given by

∑
(r,h)∈V

P rh
i σ(r)μrh

i (k)
Ci

Ti + θi(k)W ≤ η(k)Ti, ∀i ∈ I

(18a)∑
(r,h)∈V

xrh
i (k)−|V|[1−wi(k)]≤θi(k)≤

∑
(r,h)∈V

xrh
i (k), ∀i∈I

(18b)

0 ≤ θi(k) ≤ |V|wi(k), ∀i ∈ I. (18c)

By introducing an auxiliary nonnegative continuous
decision variable set, γ(k) = {γrh

i (k)}, we linearize
constraint (14) based on the big-M method with M = 1

ε as∑
h∈Hr

∑
i∈I

γrh
i (k) ≤ D(r), ∀r ∈ R (19a)

drh
i (k)− 1

ε

[
1−xrh

i (k)
]≤γrh

i (k)≤drh
i (k), ∀(r,h)∈V , ∀i∈I

(19b)

0 ≤ γrh
i (k) ≤ 1

ε
xrh

i (k), ∀(r, h) ∈ V , ∀i ∈ I. (19c)

By introducing an auxiliary binary decision variable set,
ξ(k) = {ξrh

ij (k)}, we get an equivalent linear form of
constraint (15) and constraint (16) for ∀r ∈ R, ∀h ∈ {0}∪Hr,
and ∀i ∈ I ∪A, given by

ξrh
ij (k) ≤ xrh

i (k), ∀j ∈ I ∪A (20a)

ξrh
ij (k) ≤ x

r(h+1)
j (k), ∀j ∈ I ∪A (20b)

ξrh
ij (k) ≥ xrh

i (k) + x
r(h+1)
j (k) − 1, ∀j ∈ I ∪ A (20c)

yrh
ij (k) = 1 −

∑
l∈L

βl
iϕ

l
j ξrh

ij (k), ∀j ∈ I ∪ A\{i} (20d)

yrh
ii (k) = 1 − ξrh

ii (k). (20e)

Proposition 1: With linearized constraints (18a), (19a)
and (20a), problem (17) can be transformed to an MIQCP
problem, if constraint (7) is replaced by

ρrh
i,j(k) = Brh

i,j(k) + ε, ∀(r, h) ∈ V , i, j ∈ I (21a)

ρrh
i,j(k) ≥ ε, ∀(r, h) ∈ V , i, j ∈ I (21b)

τrh
i,j (k)ρrh

i,j(k) ≥ z
(r)
h (k)2, ∀(r, h) ∈ V , i, j ∈ I (21c)

z
(r)
h (k) =

√
Z

(r)
h (k), ∀(r, h) ∈ V (21d)

where ρrh
i,j(k) = {ρrh

i,j(k)} and z
(r)
h (k) = {z(r)

h (k)} are aux-
iliary continuous decision variable sets, and if constraint (12)
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is replaced by

πrh
i (k)=μrh

i (k)−xrh
i (k)λ(r)(k)+ε, ∀(r,h)∈V , ∀i∈I

(22a)

πrh
i (k) ≥ ε, ∀(r, h) ∈ V , ∀i ∈ I (22b)

drh
i (k)πrh

i (k) ≥ c2, ∀(r, h) ∈ V , ∀i ∈ I (22c)

c = 1 (22d)

where π(k) = {πrh
i (k)} is an auxiliary continuous decision

variable set and c is an auxiliary continuous decision variable.
The optimality gap between the two problems is zero, i.e., an
optimum of problem (17) is either a unique optimum or one
of multiple optimal solutions to the MIQCP problem. Given
an MIQCP optimum (“�”), an optimum of problem (17) (“∗”)
can be obtained by Algorithm 1.

Proof: The fundamental difference between the MIQCP
problem and problem (17) lies in “≥” signs in rotated
quadratic cone constraints (21c) and (22c). If both constraints
are active in an MIQCP optimum, i.e., all the “≥” signs
achieve equality, the MIQCP optimum is also an optimum
of problem (17). Next, we discuss how the “≥” signs affect
the optimum.

First, assume that there is an inactive constraint (21c) in
an MIQCP optimum, i.e., τrh

i,j
�(k)

[
Brh

i,j
�(k) + ε

]
> Z

(r)
h (k).

If Brh
i,j

�(k)=0, it does not affect the objective value. Thus,
we consider only the case with Brh

i,j
�(k) > 0. If Brh

i,j
�(k)

is replaced by Brh
i,j

◦(k), with Brh
i,j

◦(k) < Brh
i,j

�(k) and

τrh
i,j

�(k)
[
Brh

i,j
◦(k)+ε

]
= Z

(r)
h (k), all constraints are still sat-

isfied. The objective value is unchanged if α2 =0, in which
case [τrh

i,j
�(k), Brh

i,j
◦(k)] is an optimal pair in another MIQCP

optimum. Otherwise (α2 > 0), the objective value can be
further reduced, inferring that the assumption must be false.

Second, assume that there is an inactive
constraint (22c) in an MIQCP optimum, then
drh

i
�(k)

[
μrh

i
�(k) − xrh

i
�(k)λ(r)(k) + ε

]
> 1. Similarly,

we consider only the constraint with xrh
i

�(k) = 1. There are
four cases, depending on α1 and ηi(k).

Case 1: α1 >0, and NFV node i is the only one with a load-
ing factor of η�(k) (i.e., dominating NFV node). If μrh

i
�(k) is

replaced by μrh
i

◦(k), with drh
i

�(k)[μrh
i

◦(k)−xrh
i

�(k)λ(r)(k)+
ε] = 1, all constraints are satisfied but η�(k) can be further
reduced. Hence, the assumption must be false;

Case 2: α1 > 0 and ηi(k) < η�(k) (i.e., non-dominating
NFV node). If drh

i
�(k) is replaced by drh

i
◦(k), with

drh
i

◦(k)[μrh
i

�(k)−xrh
i

�(k)λ(r)(k)+ε] = 1, all constraints are
satisfied with the objective value unchanged. Thus, [drh

i
◦(k),

μrh
i

�(k)] is an optimal pair in another MIQCP optimum;
Case 3: α1 > 0, and there is more than one NFV node

including NFV node i with loading factor η�(k). There must
be at least one of them satisfying an active constraint (22c).
One such NFV node is selected as the dominating NFV node,
and others are seen as non-dominating NFV nodes;

Case 4: α1 = 0, and η(k) is not optimized. If we replace
μrh

i
�(k) by μrh

i
◦(k), all constraints are satisfied and the

objective value is unchanged. Thus, [drh
i

�(k), μrh
i

◦(k)] is an
optimal pair in another MIQCP optimum.

Algorithm 1: Post-Processing to MIQCP Optimum

1 Input: η�, B�, y�, x�, m�, τ �, μ�, w�, d�.
2 Initialization (∗ = �).
3 for (r, h) ∈ V , i, j ∈ I do
4 if τrh

i,j
�(k)ρrh

i,j
�(k) > (z(r)

h (k)�)2 and Brh
i,j

�(k) > 0,

then Brh
i,j

∗(k) = Z
(r)
h (k)

τrh
i,j

�(k)
− ε

5 for (r, h) ∈ V , i ∈ I do
6 if drh

i
�(k)πrh

i
�(k) > (c�)2 and xrh

i
�(k) == 1, then

7 if α1 > 0, then
8 drh

i
∗(k) = 1

μrh
i

�(k)−xrh
i

�(k)λ(r)(k)+ε

9 if α1 == 0, then
10 μrh

i
∗(k) = 1

drh
i

�(k)
+ xrh

i
�(k)λ(r)(k) − ε

11 if α1 == 0, then calculate η∗(k)
12 Output: η∗, B∗, y∗, x∗, m∗, τ ∗, μ∗, w∗, d∗.

In summary, an MIQCP optimum with inactive constraints
in (21c) and (22c) can always be mapped to another MIQCP
optimum with active constraints in (21c) and (22c), without
affecting other constraints and the objective value. The mapped
MIQCP optimum is also the optimum of problem (17). The
mapping algorithm is provided in Algorithm 1. �

Remark 2: The MIQCP problem is NP-hard.
Proof: To prove the NP-hardness, it is sufficient to

consider a special case in which services with D(r) → ∞ are
embedded in a fully-connected virtual resource pool. We also
consider zero VNF state size, zero context switching time
overhead, and sufficiently large processing resource capacity
for each NFV node holding all VNFs without overloading [23],
[25]. In such a case, the MIQCP problem can be reduced from
a multiprocessor scheduling problem [36]. The multiprocessor
scheduling problem minimizes the maximum load among a
number of processors which are assigned with a number of
tasks with different loads, which is proved to be NP-hard. �

VI. HEURISTIC SOLUTION

Although problem (17) can be solved by the optimal
MIQCP solution according to Proposition 1, the computational
time is high due to NP-hardness of the MIQCP problem.
In this section, we propose a low-complexity modular heuristic
solution to problem (17). We consider only the case where all
components in objective function (1) are jointly optimized,
i.e., α1, α2, α3 > 0. In this case, we assume that one
VNF migration is penalized more than imbalanced loading
(i.e., η(k) reaching its upper bound ηU ). Then, the condition
of α1ηU < α2 should be satisfied in the worst case, if all VNF
migrations incur the same transmission resource overhead for
state transfer and require no extra virtual links for flow rerout-
ing. Accordingly, in the proposed algorithm, we first minimize
the number of overloaded NFV nodes with loading factors
greater than ηU , and make migration decisions at overloaded
NFV nodes, after which η(k) is equal to ηU . Afterwards,
η(k) is further reduced for load balancing. The algorithm is
insensitive to α1 but sensitive to α2

α3
, due to reconfiguration
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overhead aware migration decisions. Therefore, it provides a
sub-optimal solution to problem (17) with α1ηU < α2.

A. Overview

The heuristic algorithm is to determine a migration and
resource allocation plan for interval k in the presence of pre-
dicted traffic variations (i.e., from {λ(r)(k−1)} to {λ(r)(k)}).
We first find if and where NFV node resource overloading
would happen due to traffic variations, based on three factors.
The first is node mapping, denoted by {xrh

i (k)}; the second
is hop (VNF) delay bounds, denoted by {Drh(k)}, with∑

h∈Hr
Drh(k) = D(r); the third is NFV node loading

factor threshold, denoted by ηth. With current node mapping
and hop delay bounds, i.e., xrh

i (k) = xrh
i (k − 1) and

Drh(k) =
∑

i∈I xrh
i (k − 1)drh

i (k − 1), we calculate NFV
node loading factors with traffic rates, {λ(r)(k)}, based on the
M/M/1 queueing model. By comparing the NFV node loading
factors with threshold ηth (initial value set as ηU ), a set of
overloaded NFV nodes is identified as potential bottlenecks.

1) Reconfiguration Overhead Reduction: Even if potential
bottlenecks are identified, it is possible that migration is not
necessary. For a given ηth value, how an E2E delay require-
ment is decomposed into hop delay bounds makes a difference
on the number of overloaded NFV nodes. By making hop
delay bounds less stringent on overloaded NFV nodes and
more stringent on underloaded NFV nodes, it is possible
to reduce the number of overloaded NFV nodes. The basic
idea is as follows. If an SFC traverses both overloaded and
underloaded NFV nodes, loading factors of the underloaded
ones are increased to ηth, by shrinking corresponding hop
delay bounds, and loading factors of the overloaded ones
are decreased, by enlarging corresponding hop delay bounds.
The strategy is referred to as delay scaling. Delay scaling is
performed iteratively, until there is no SFC traversing both
overloaded and underloaded NFV nodes. The iterative delay
scaling procedure with given threshold, ηth, is referred to as
redistribution of hop delay bounds.

If the number of overloaded NFV nodes is reduced to
zero after redistribution of hop delay bounds, no migration
is required. Otherwise, migration is necessary to overcome
resource overloading. Migration decisions are made sequen-
tially, i.e., only a pair of variables in set {xrh

i (k)} is updated
in one migration decision, each followed by a redistribution
of hop delay bounds, until no more migration is required.

With alternate migration decision and redistribution of hop
delay bounds, reconfiguration overhead is greedily reduced in
two ways. One is the potential reduction of overloaded NFV
nodes by redistribution of hop delay bounds. The other is con-
sideration of reconfiguration overhead in migration decision.

2) Load Balancing: If no potential bottlenecks are detected
or all detected potential bottlenecks are removed by migration
and redistribution of hop delay bounds, load balancing is
the only remaining objective. NFV node loading factors are
gradually balanced by iterative redistribution of hop delay
bounds with threshold updating. The threshold, ηth, is updated
from binary search, until it reaches sufficient precision.

More details on redistribution of hop delay bounds are
given in Subsection VI-B, with pseudo code presented

Algorithm 2: Redistribution of Hop Delay Bounds

1 Input: ηth, {xrh
i (k)}, {Drh(k)}

2 Calculate {ηi(k)}, O, UU , UO , Q, {f (r)
1 }, {f (r)

2 }.
3 Loop index n = 0.

4 while UO �= ∅ and
∑

r∈R f
(r)
1 > 0 do

5 {δi(k)} = 1; {β(r)(k)} = 1.
6 if n == 0, then
7 Vertical delay scaling at NFV nodes in UU .
8 Horizontal delay scaling for SFC category III at

NFV nodes in UO.
9 Update {ηi(k)}.

10 Vertical delay scaling at NFV nodes in UO.
11 Horizontal delay scaling for SFC category II at NFV

nodes in O.
12 Update {ηi(k)}, O, UU , UO, Q, {f (r)

1 }, {f (r)
2 }.

13 n = n + 1

14 Output: {Drh(k)}, {ηi(k)}, O, O1, {f (r)
1 }.

in Algorithm 2. Migration decision is discussed in
Subsection VI-C, and threshold updating is discussed in
Subsection VI-D. Finally, the heuristic algorithm is presented
in Algorithm 3.

B. Redistribution of Hop Delay Bounds

Classification: With given threshold ηth and a given set
of {Drh(k)}, the loading factor of NFV node i ∈ I in the
presence of traffic variations is calculated as

ηi(k) =
∑

(r,h)∈V

(
P rh

i σ(r)μrh
i (k)

Ci
+

wi(k)xrh
i (k)W
Ti

)
(23)

where wi(k) is calculated from (11) and μrh
i (k) is given by

μrh
i (k) =

(
λ(r)(k) +

1
Drh(k)

)
xrh

i (k). (24)

Three sets of NFV nodes are identified: O = {i ∈ I |ηi(k) >
ηth} consisting of overloaded NFV nodes, U = {i ∈
I |ηi(k) < ηth} for underloaded NFV nodes, and Q =
{i ∈ I |ηi(k) = ηth}. Let binary variable X

(r)
i (k) indicate

whether SFC r traverses NFV node i during interval k,
with X

(r)
i (k) = 1 if

∑
h∈Hr

xrh
i (k) > 0, and X

(r)
i (k) = 0

otherwise. Let f
(r)
1 be a binary flag indicating whether SFC

r traverses any overloaded NFV nodes, with f
(r)
1 = 1 if∑

i∈O X
(r)
i (k)> 0, and f

(r)
1 = 0 otherwise. Set U is divided

into two subsets, i.e., U = UU ∪ UO, where UU = {i ∈
U | ∑r∈R X

(r)
i (k)f (r)

1 = 0} is a set of underloaded NFV
nodes on which no SFCs traverse other overloaded NFV
nodes, and UO = {i ∈ U | ∑r∈R X

(r)
i (k)f (r)

1 > 0} is a
set of underloaded NFV nodes on which at least one SFC
traverses other overloaded NFV nodes. Let f

(r)
2 be a binary

flag indicating whether SFC r traverses any NFV nodes in UO,
with f

(r)
2 = 1 if

∑
i∈UO

X
(r)
i (k) > 0, and f

(r)
2 =0 otherwise.

Accordingly, SFCs are classified into four categories: SFC
category I with f

(r)
1 = 1 and f

(r)
2 = 0, SFC category II with
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Fig. 4. Four SFC categories based on NFV node loading factors.

f
(r)
1 = f

(r)
2 = 1, SFC category III with f

(r)
1 =0 and f

(r)
2 =1,

and SFC category IV with f
(r)
1 =f

(r)
2 =0, as shown in Fig. 4.

Update and Iteration: Define two sets of delay scaling
factors, with initial values of 1, vertical delay scaling factors
{δi(k)} and horizontal delay scaling factors {β(r)(k)}. A two-
step delay scaling strategy is proposed as follows.

1) Step I - Delay scaling for SFC Category III: Hop delay
bounds for SFC category III are relaxed on NFV nodes in UO,
to release resources for SFC category II, by making hop delay
bounds more stringent on NFV nodes in UU .

First, the loading factor of NFV node i ∈ UU is increased
to ηth, by shrinking hop delay bounds for SFC category III on
NFV node i by a positive factor, δi(k), less than 1, as derived
in Appendix and given by

δi(k)=

∑
(r,h)∈V

P rh
i σ(r)

Drh(k)
xrh

i (k)f (r)
2

[ηth −ηi(k)] Ci+
∑

(r,h)∈V
P rh

i σ(r)

Drh(k)
xrh

i (k)f (r)
2

. (25)

The preceding delay scaling, called vertical delay scaling,
is applied to multiple SFCs belonging to category III on NFV
node i ∈ UU . Then, hop delay bounds for SFC r in category
III on NFV nodes in UO are relaxed by a factor, β(r)(k), larger
than 1, given by

β(r)(k)=
D(r)−∑

h∈Hr

(
Drh(k)

∑
i∈UU∪Q xrh

i (k)
)

D(r)−∑
h∈Hr

(
Drh

p (k)
∑

i∈UU∪Q xrh
i (k)

) (26)

where Drh
p (k) is the old value of Drh(k) before vertical delay

scaling. The preceding delay scaling, called horizontal delay
scaling, is applied to multiple hops in an SFC affected by
vertical delay scaling. Based on (23), {ηi(k)} is updated.

2) Step II - Delay Scaling for SFC Category II: More
resources available at NFV nodes in UO from Step I are
allocated to SFC category II. First, vertical delay scaling is
applied to NFV nodes in UO to increase their loading factors
to ηth, through scaling hop delay bounds for SFC category II
on it by a vertical scaling factor. Then, horizontal delay scaling
is applied to SFC category II, by relaxing hop delay bounds
for SFC r in category II on NFV nodes in O by a horizontal
scaling factor. The scaling factors are similar to that in Step I,
and details are omitted.

After the delay scaling procedures, NFV node loading fac-
tors, NFV node classification and SFC categories are updated.
If UO �= ∅ and

∑
r∈R f

(r)
1 > 0, i.e., there is at least

one SFC in category II, it is possible to further reduce the
number of overloaded NFV nodes through Step II, so Step II
is performed iteratively until the condition is violated. The
outputs of Algorithm 2 are shown in line 14, where O1 =
{i ∈ O|∑r∈R X

(r)
i (k) = 1} denotes a set of overloaded

NFV nodes traversed by a single SFC.

C. Migration Decision

When one migration is required, a migration decision pro-
cedure is to select one bottleneck NFV node, one SFC to
migrate, and one target NFV node. Migration decisions are
made greedily to reduce the reconfiguration overhead. First,
a candidate bottleneck NFV node set, B, with |B| = |R|,
is determined. For an SFC, the traversed NFV node with
largest hop delay bound is selected as a candidate bottleneck.
Then, bottleneck NFV node, ib, is determined in three cases.
In the first case with B∩O �= ∅, an NFV node in B∩O with
the largest number of SFCs is selected, given by

ib = argmax
i∈B∩O

∑
r∈R

X
(r)
i (k). (27)

In the second case with B ∩ O =∅ and O\O1 �=∅, ib is an
NFV node in O\O1 with the largest loading factor,

ib = argmax
i∈O\O1

ηi(k). (28)

In the third case with B ∩ O = O\O1 = ∅, an NFV node
in B whose SFCs traverse the largest number of overloaded
NFV nodes is selected, given by

ib = argmax
i∈B

∑
r∈R

⎛
⎝X

(r)
i (k)

∑
j∈O

X
(r)
j (k)

⎞
⎠. (29)

Next, an SFC to migrate from ib and a target NFV node
to accommodate the migrated SFC are jointly selected to
minimize the reconfiguration overhead, i.e., the weighted sum
of normalized transmission resource overhead for state transfer
and number of extra virtual links for flow rerouting. In this
way, α2 and α3 are considered in the heuristic algorithm.
If there are multiple choices, an SFC with the largest resource
demand is migrated to the closest target NFV node.

D. Coordination With Threshold Update

Let binary variable, κ, indicate whether migration is
required to overcome resource overloading. It is set as 0 ini-
tially and updated iteratively. Let ζ be a step size to update ηth,
with initial value ζ0 and updated before each ηth update.
A precision, ε, for ζ is set as a stop condition.

After initialization in Algorithm 3 (lines 2-3), a redistri-
bution of hop delay bounds is performed to check whether
migration is required. Based on outputs of Algorithm 2, κ,
ηth and ζ are updated in three cases, as shown in lines 8-12.

1) Update for κ and ηth: In the first case, there are no
remaining overloaded NFV nodes, i.e.,

∑
r∈R f

(r)
1 = 0. Then

κ = 0, and ηth is reduced by a step. In the other two cases,
there are still overloaded NFV nodes but UO = ∅, meaning
that delay scaling is not sufficient to deal with resource
overloading on NFV nodes, but either at least one migration
or increasing ηth by a step is required, depending on the
ηth value. In the second case with ηth = ηU , at least one
migration is needed, i.e., κ = 1, and ηth should remain ηU to
check whether more migrations are required after a migration
decision is made. In the third case with ηth < ηU , no more
migrations are required since ηth has been reduced by at least
one step in previous updates, thus κ = 0 and ηth is increased
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Algorithm 3: Heuristic Algorithm for Problem (17)

1 Input: Step size ζ0, precision ε
2 Initialize: {xrh

i (k)}, {Drh(k)}
3 Let: κ = 0, ηth = ηU , ζ = ζ0

4 while κ == 1 or ζ > ε do
5 if κ == 1, then
6 Update {xrh

i (k)} according to the migration
decision making procedure.

7 Update {Drh(k)}, {ηi(k)}, O, O1, {f (r)
1 } according

to Algorithm 2.
8 if

∑
r∈R f

(r)
1 == 0, then

9 if ζ �= ζ0, then ζ = ζ/2
10 ηth = ηth − ζ, κ = 0

11 else if ηth == ηU , then κ = 1
12 else ζ = ζ/2, ηth = ηth + ζ, κ = 0

13 Output: Sub-optimal solution to problem (17).

by a step. With the updates for κ and ηth, redistribution of hop
delay bounds is performed iteratively until no more migrations
are required and the precision of ζ reaches ε.

2) Update for ζ: Step size ζ plays a key role in guaranteeing
algorithm convergence. For example, a constant ζ equal to ε
guarantees precision but makes the algorithm slow to converge
due to a potential oscillation of ηth around its optimal value.
Therefore, we employ the following strategy to update ζ.
If the outputs of Algorithm 2 fall into the second case where
a migration is required, ζ remains a constant equal to ζ0.
After all migrations are performed, the outputs of Algorithm 2
correspond to the first case, and ηth should be reduced by a
constant step size ζ equal to ζ0. Until the first time that the
outputs of Algorithm 2 fall into the third case, ζ starts to be
reduced by half before each ηth update.

E. Complexity Analysis
We first analyze the time complexity of Algorithm 2. Delay

scaling for SFC category III is performed once, using at
most O(

∑
i∈I |V|) time. Delay scaling for SFC category II

is performed iteratively until there are no new NFV nodes
in UO or there are no overloaded SFCs. The worst case
happens when each round of delay scaling for SFC category II
transforms a single NFV node in O to a new NFV node in UO,
consuming O(

∑
i∈O

∑
i∈I |V|) time. Thus, the complexity

of Algorithm 2 is O(
∑

i∈O
∑

i∈I |V|), upper bounded by
O(|I|2|V|). The complexity of the migration decision pro-
cedure is dominated by the selection of SFC to migrate in
the third case, which requires a running time of O(|I||R|2).
In Algorithm 3, at most |V| sequential migration decisions are
performed followed by [ 1

ζ0 + log2( ζ0

ε )] iterations of threshold
updating. In each iteration, hop delay bounds are readjusted.
Therefore, the worst case running time of Algorithm 3 is
|V|[O(|I||R|2) + O(|I|2|V|)] + [ 1

ζ0 + log2( ζ0

ε )]O(|I|2|V|),
which is simplified to O(|I|2|V|2) when |R|2 < |I||V|.

VII. PERFORMANCE EVALUATION

In this section, simulation results are presented to evalu-
ate the MIQCP and heuristic solutions for the delay-aware

flow migration problem. Two time intervals are considered:
(k−1) and k, representing the current and next time intervals
respectively. We use two mesh networks with 64 NFV nodes
and 256 NFV nodes to represent the virtual resource pool.
Virtual links exist only between neighboring NFV nodes.
In the 64-node network, we consider fixed SFC mapping for
time interval (k − 1), with three SFCs initially mapped to
the virtual resource pool. Specifically, SFC 3 shares two NFV
nodes with SFC 1 and one of them also with SFC 2. In the
256-node network, we consider different numbers of SFCs,
with [3, 5] VNFs in each one, randomly distributed in the
network during time interval (k − 1). In the CPU polling
scheme, we set a ratio of 0.01 between the context switching
time and the polling period. The upper bound, ηU , for η(k),
is 0.95. The average E2E delay requirement for each SFC is
0.02 s, and the maximal tolerable service downtime is 0.005 s.
For VNF states, the size is a constant, equal to 10 bytes,
thus requiring at least a transmission rate Bmin of 16 kbit/s
for a state transfer. Under the simulation setup, the total
normalized transmission resource overhead for state transfer is
equal to the total number of migrations. For the weights, we set
α2 = 2α3. Then, α1 < 2

3ηU+2 = 0.4123 should be satisfied
to penalize migration more than imbalanced loading. In this
case, 0.4123 is the worst-case boundary for α1, to guarantee
the penalization preference if α1 is less than the boundary.
We implement both the MIQCP and heuristic solutions in
python. We use NetworkX to simulate the network scenario,
and Gurobi python interface to solve the MIQCP problem.

A. Load Balancing and Reconfiguration Overhead Trade-Off

We use the 64-node network with three initially mapped
SFCs to evaluate the performance of the MIQCP solution
with varying traffic load under three sets of weights in (1),
and investigate the trade-off between load balancing and
reconfiguration overhead. For traffic load during interval k,
we have λ(1)(k) = 600 packet/s, λ(2)(k) = 200 packet/s,
and vary λ(3)(k) from 200 packet/s to 740 packet/s. Beyond
740 packet/s, the problem becomes infeasible due to process-
ing resource constraints and average E2E delay constraints.
Performance metrics are the maximum NFV node loading fac-
tor, η(k), the number of migrations, N(k), and the number of
extra virtual links, S(k), for flow rerouting. We explore three
sets of weights. For {α1, α2, α3} = {1, 0, 0}, the reconfigura-
tion overhead is not optimized but load balancing is the focus,
corresponding to a load balancing flow migration (LBFM)
strategy. For {α1, α2, α3} = {0, 2

3 , 1
3}, η(k) is not optimized

but reconfiguration overhead reduction is emphasized, corre-
sponding to a minimum overhead flow migration (MOFM)
strategy. For {α1, α2, α3} = {0.4, 0.4, 0.2}, both load bal-
ancing and reconfiguration overhead reduction are important,
corresponding to a hybrid flow migration (HFM) strategy.
Fig. 5 shows performance of three strategies with the increase
of λ(3)(k).

LBFM strategy: It is observed that η(k) is dominated by
SFC 1 when λ(3)(k) is relatively small, showing a flat trend
first, but turns to be dominated by SFC 3 with the increase
of λ(3)(k). Both N(k) and S(k) are high and vary with the
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Fig. 5. Performance of three flow migration strategies with the increase of traffic load λ(3)(k), for ηU = 0.95.

traffic load, since they are not optimized. SFCs separate from
each other even at a relatively low traffic load to balance traffic
loads in the virtual resource pool.

MOFM strategy: Both N(k) and S(k) show a step-wise
increasing trend with the increase of λ(3)(k). However, η(k)
is fixed at ηU , since it is not optimized.

HFM strategy: A trade-off among performance metrics is
observed. With the increase of λ(3)(k), η(k) drops sharply
when N(k) or S(k) is increased by 1. When N(k) and S(k)
stay stable, η(k) shows either a linear increasing or a flat trend.
Compared with LBFM and MOFM strategies, HFM strategy
approaches to the lower bounds of N(k) and S(k) determined
by the MOFM strategy, while keeping η(k) at a medium level.

B. Average End-to-End Delay Performance

We carry out packet-level simulations using network simu-
lator OMNeT++ to evaluate average E2E delay of SFC 3
with and without flow migration, under the same network
and SFC settings as in Subsection VII-A. For average traffic
rates, we set λ(1)(k) = λ(2)(k) = 200 packet/s and increase
λ(3)(k) from 200 packet/s. To verify the effectiveness and
accuracy of our flow migration model in the presence of traffic
burstiness, not only Poisson but also MMPP packet arrivals
are simulated. For each traffic arrival pattern, we collect
sufficient packet delay information to estimate the average E2E
delay. We use a two-state MMPP model with same transition
rate between states and an average rate of λ(3)(k). We use
“MMPP-q1-q2” to represent the MMPP traffic model, where
q1 and q2 are ratios between state-dependent rates and λ(3)(k),
with q1 + q2 = 2. For example, for “MMPP-1.6-0.4” traffic
model with λ(3)(k) = 500 packet/s, the state-dependent rates
are 800 packet/s and 200 packet/s respectively.

Fig. 6 shows the average E2E delay without flow migration,
in which a flat trend is observed, followed by an exponential
increasing trend, for Poisson traffic arrival with increasing
rate from 200 packet/s to 425 packet/s. The flat trend cor-
responds to feasible traffic rates for E2E delay guarantee
with local processing resource scaling. Beyond 360 packet/s,
local resources are not sufficient, resulting in an exponential
increase of E2E delay. Fig. 7 shows the average E2E delay
with flow migration. We observe that the E2E delay require-
ment is satisfied for Poisson traffic with rate in [200, 700]
packet/s, inferring that more traffic can be accommodated

Fig. 6. Average E2E delay without flow migration.

Fig. 7. Average E2E delay comparison with flow migration.

from services which originally share some NFV nodes on
their E2E paths, with joint flow migration and processing
resource scaling. At a certain average rate, the E2E delay
performance degrades with more traffic burstiness. However,
even “MMPP-1.6-0.4” for average rate in [400, 700] packet/s
with flow migration performs much better than Poisson traffic
arrival for average rate larger than 360 packet/s without
flow migration, indicating that our flow migration model can
accommodate some traffic burstiness without a significant
degradation on E2E delay.

C. Comparison Between MIQCP and Heuristic Solutions

1) Cost Sensitivity to Different Weights: Under the 64-node
network setup with three SFCs, we compare the MIQCP and
heuristic solutions in terms of their cost sensitivity to different
weights in (1). With α2 = 2α3 and α1 + α2 + α3 = 1,
three cost metrics including the maximum NFV node loading
factor, η(k), the reconfiguration overhead, 2N(k) + S(k),
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Fig. 8. Costs with respect to weight α1 in objective function, for α2 = 2α3 .

and the total cost, α1η(k) + (1 − α1)(2N(k) + S(k)), are
evaluated. The first two costs are partial costs. Although the
heuristic solution is in principle insensitive to α1, we use
the same definition of total cost for a fair comparison. The
three cost metrics with respect to α1 for both the MIQCP
and heuristic solutions are given in Fig. 8. In both solutions,
the total cost approaches to the reconfiguration overhead, for
α1 close to 0, and approaches to the maximum NFV node
loading factor, for α1 close to 1. For the heuristic solution,
we observe constant partial costs with respect to α1, which is
consistent with the design principle. For the MIQCP solution,
both partial costs show a stable trend for small and medium
values of α1 in a range larger than the theoretical worst-case
range (0, 0.4123). For large values of α1, the reconfiguration
overhead of the MIQCP solution increases with α1, while the
maximum NFV node loading factor decreases with α1, since
much more penalization is placed on imbalanced loading than
migrations.

2) Cost Efficiency and Time Efficiency: We use a 256-node
mesh network to compare the cost and time efficiency between
the MIQCP and heuristic solutions. The comparison is per-
formed with fixed weights in (1), under the condition of
α1ηU < α2. Specifically, we have {α1, α2, α3} = {0.4,
0.4, 0.2}. Eight groups of experiments are implemented with
10, 15, 20, 25, 30, 35, 40 and 45 SFCs respectively. The
total cost and running time for each group are evaluated
at different traffic rates from 200 to 740 packet/s. In each
experiment, all SFCs have the same traffic rate, denoted
by λ(k). The initial step size, ζ0, and the precision, ε, are
set to 0.1 and 0.0001 respectively. Fig. 9 shows the average
total cost with respect to the number of SFCs (|R|). It shows
that the total cost obtained from both solutions increases
with |R|. Adding more SFCs tends to increase the number
of overloaded NFV nodes, especially when the traffic rate
is high and the added SFCs share some NFV nodes with
others. Hence, more migrations tend to be triggered with more
SFCs added, incurring more cost. Fig. 10 shows the average
running time with respect to |R|. We can see an almost expo-
nential increasing trend for the running time of the MIQCP
solution. In comparison, the time complexity of the heuristic
solution is much less, and the increasing trend is much less
significant.

Fig. 9. Total cost with respect to the number of SFCs.

Fig. 10. Running time with respect to the number of SFCs.

Fig. 11. Threshold update in the heuristic algorithm, for ηU = 0.95.

D. Convergence of Heuristic Algorithm

To evaluate convergence of the proposed heuristic algo-
rithm, we plot the updating process of the threshold ηth, in the
45-SFC experiments with different traffic rates λ(k), as shown
in Fig. 11, in which η(k) is the maximum NFV node loading
factor after convergence. On each threshold updating curve
corresponding to a specific traffic rate, we see that ηth first
remains ηU due to several sequential migration decisions at the
beginning and then drops with the initial step size of 0.1 until
a turning point at the lower bound. After the turning point,
the step size is reduced by half with each iteration until it
is below the required precision 0.0001. With the increase
of traffic rate to 500 packet/s, more migrations happen to
gradually decouple the SFCs from each other, and more extra
virtual links are observed. When the traffic rate grows larger
than 500 packet/s, all SFCs are completely decoupled, with
no resource sharing on NFV nodes, thus N(k) and S(k) are
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stabilized but η(k) increases. When the traffic rate is smaller
than 500 packet/s, η(k) is close to ηU , while less migrations
and extra virtual links are observed, showing a trade-off
between load balancing and reconfiguration overhead.

VIII. CONCLUSION

In this paper, we study a delay-aware flow migration
problem for embedded SFCs sharing a common physical
network in SDN/NFV-enabled 5G communication systems.
A mixed integer optimization problem is formulated based on
an abstraction of virtual resource pool, addressing the trade-off
between load balancing and reconfiguration overhead. The
problem is non-convex and difficult to solve using optimization
solvers. Hence, we reformulate a tractable MIQCP problem
based on which the optimum of the original problem can
be obtained. Numerical results show that the proposed model
accommodates more traffic from services, in comparison with
an SFC configuration without flow migrations. Moreover,
a flow migration strategy with similar priority in load balanc-
ing and migration reduction achieves medium load balancing,
as compared with flow migration strategies with a priority on
either goal. Nevertheless, it achieves approximately as good
performance in terms of the reconfiguration overhead as a
flow migration strategy which aims at migration reduction.
This result indicates the benefit of joint consideration of the
two goals. A performance comparison between the MIQCP
and heuristic solutions demonstrates the effectiveness and time
efficiency of the heuristic solution. Under the assumption that
flow migrations do not take place frequently and a time interval
is sufficiently large, traffic arrival of SFCs is modeled as Pois-
son with different rates across time intervals. Correspondingly,
the M/M/1 queueing model is employed in both the MIQCP
and heuristic solutions, for performance modeling and predic-
tion with predicted traffic variations. In reality, traffic can be
highly dynamic especially in 5G new use cases. Motivated
by the limitation of Poisson traffic model, we are working on
an extension of this work for adaptive flow migration, using
promising model-free techniques such as machine learning.

APPENDIX

DERIVATION OF δi(k)

Let ηrh
i (k) denote a ratio between resources occupied by

VNF V
(r)
h and resource capacity of NFV node i, given by

ηrh
i (k) =

P rh
i σ(r)

Ci

(
λ(r)(k) +

1
Drh(k)

)
xrh

i (k). (A1)

VNF set V is divided into two subsets, i.e., V = V1 ∪ V2,
where V1 = {(r, h) ∈ V |xrh

i (k) = f
(r)
2 = 1} is a set of

VNFs belonging to SFC category III on NFV node i, and V2

is a set of all other VNFs. Vertical delay scaling is applied
to only VNFs in V1. Before delay scaling, resource usage at
NFV node i is composed of three parts, given by

ηi(k) =
∑

(r,h)∈V1∪V2

ηrh
i (k) +

∑
(r,h)∈V1∪V2

wi(k)xrh
i (k)W
Ti

.

(A2)

The ratio of resources occupied by VNFs in V1 before vertical
delay scaling is given by

∑
(r,h)∈V1

ηrh
i (k)=

∑
(r,h)∈V1

P rh
i σ(r)

Ci

(
λ(r)(k) +

1
Drh(k)

)
.

(A3)

For a vertical delay scaling by a positive coefficient δi(k) to
increase loading factor of NFV node i from ηi(k) to ηth,
we have the following relationship among parameters,
given by

ηth −
∑

(r,h)∈V2

ηrh
i (k) −

∑
(r,h)∈V1∪V2

wi(k)xrh
i (k)W
Ti

=
∑

(r,h)∈V1

P rh
i σ(r)

Ci

(
λ(r)(k) +

1
δi(k)Drh(k)

)
. (A4)

Subtracting (A3) from (A4) and arranging items, we obtain

δi(k) =

∑
(r,h)∈V1

P rh
i σ(r)

Drh(k)

[ηth −ηi(k)] Ci +
∑

(r,h)∈V1

P rh
i σ(r)

Drh(k)

(A5)

which is equivalent to (25).
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