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Abstract—Driven by the ever-increasing computing capabil-
ities of mobile devices, the next-generation wireless networks
are evolving toward a distributed networking and computing
platform, which enables in-network computing and unified re-
source/service provisioning. The evolution leads to a growing
research interest in wireless computing networks that operate
under both the high dynamics of the wireless environment and
the resource heterogeneity, which complicates resource allocation,
scheduling among network flows, and overall optimization. In
this paper, we aim to study a low-complexity efficient solution to
jointly allocate both networking resources (e.g., links to forward
packets between connected computing nodes) and computing
resources (e.g., computing power at each node for packet process-
ing). We propose a novel network utility maximization problem
under computing and networking resource constraints and de-
velop an enhanced backpressure-based dynamic scheduling and
routing algorithm. Finally, we verify the effectiveness of the
algorithm with extensive simulations.

I. INTRODUCTION

In evolving towards the fifth generation (5G) and beyond,
wireless networks have been experiencing a paradigm shift
from a pure communication network to a distributed comput-
ing platform, representing a convergence of wireless network-
ing and computing. This is mainly due to the ever-increasing
computing power of clients and devices, the emergence of
machine-learning-centric applications, and the wide utilization
of virtualization and service-oriented principles in various
emerging edge/cloud technologies [1]. Such a convergence
leads to growing research interests in wireless computing
networks, which allow in-network computation and integrated
resource/function management to realize a unified provisioning
of network and computing services. The wireless computing
networks are envisaged to be a key enabler for emerging
applications such as event detection, real-time control and
decision making, streaming data analysis, and many machine-
learning-centric applications that require both fast local pro-
cessing/storage and low-latency networking.

A wireless computing network can be abstracted as an undi-
rected graph with a set of computing nodes being vertices and
a set of links being edges, where each computing node with
certain storage and computing capacities can host a number
of service functions for data processing (such as network
diminishers for compressing traffic [2] and machine learning
models to process inference requests [3]) and each link with
certain communication capacity can deliver data traffic over a

wireless channel. The wireless computing network is to serve
a set of augmented information (Agl) flows [4]. For each Agl
flow, the destination node is provided with augmented infor-
mation generated during the real-time processing of source
data packets through a chain of multiple service functions.
The service functions are hosted by computing nodes on a
respective routing path, for the Agl flow.

Existing works have investigated how to jointly schedule
the communication and computation resources, i.e., how to
determine where to execute each service function and how
to optimally route the service flows to meet service demands.
The control policies for service function placements and traffic
routing has been investigated in either a static or dynamic
setting. For example, some studies [5]-[8] consider the static
service function placement at computing nodes according to
the computing/communication requirements and packet rout-
ing among the computing nodes. Since the service function
placement and traffic routing are static and computing nodes
are resource-limited, the packet arrival rates for the flows
should be throttled (e.g, by packet dropping) in resource
shortage. On the other hand, dynamic placement of service
functions and traffic rerouting strategies are investigated in [4],
[9], [10] in the presence of resource shortage. Although the
traffic rerouting process can redistribute the computing loads
across the network, it incurs a non-negligible overhead, (e.g.,
delay/cost of link creation and packet retransmission [10],
[11]). The reconfiguration overhead also affects the scheduling
and routing of other service flow packets. Therefore, we
need a proper trade-off between the computing-communication
resource allocation among all the service flows, for example,
through the network utility maximization (NUM) framework.

Wireless computing networks require joint comput-
ing/communication resource allocation policies to satisfy the
service demands of all the service flows with limited informa-
tion exchange among the network components. To meet the se-
vere changes in the service demands, it necessitates decentral-
ized control policies that can reconfigure the service flows in
resource shortage, for example, by exploring multipath-routing
[12], [13]. Different from existing works, we focus on the joint
computing/communication resource allocation problem while
facilitating the low-complexity dynamic flow reconfiguration,
which is still unexplored in the existing literature.

In this paper, we consider an NUM problem for Agl



flows in a wireless computing network through multiple
service function chains. We model the proposed wireless
computing network with a set of generic computing nodes
of limited capacity to compute service functions via virtu-
alization and wireless communication channels to route the
data traffic among computing nodes. We address the joint
computing/communication resource allocation problem in the
wireless computing network by designing a dynamic packet
scheduling mechanism. Specifically, we update the packet state
after completing a functional processing step and promoting
it to the subsequent downstream function residing in the same
computing node, denoted as internal packet forwarding. We
route the unprocessed packets to a neighboring computing
node, denoted as external packet forwarding, resulting in a
dynamic service flow reconfiguration in resource shortage.

The computing nodes backlog the packets based on their
current state and operate these packet-forwarding strate-
gies independently across the network with limited in-
formation exchange among neighboring computing nodes.
Augmenting these packet-forwarding strategies offer a low-
complexity decentralized control policy for a joint comput-
ing/communication resource allocation problem. Moreover,
the state-dependent packet forwarding scheme does not incur
any reconfiguration delay since internal/external forwarding of
some arbitrary packets does not affect any other flow packets.
We formulate a utility maximization problem as a function of
the service flow packet admission rate to guarantee optimal
resource utilization. By utilizing convex duality, the proposed
NUM formulation develops an augmented backpressure-based
decentralized scheduling and routing algorithm. Finally, we
provide extensive simulations to cross-verify the algorithm
performance.

The rest of this paper is organized as follows. In Section
II, we introduce the network model and the NUM problem
formulation. In Section III, we elaborate the design of the
dynamic backpressure-based scheduling and routing algorithm
by decoupling the problem into solvable sub-problems with
solutions. We verify our proposed solutions by simulations in
Section IV and we conclude our paper and discuss the future
works in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model and Packet States

We consider a wireless computing network which consists
of computing nodes in set N and wireless communication
channels. For each service flow, packets arrive at a fixed source
node and packets leave the network at a fixed destination
node. The computing nodes can both process and forward the
packets from a set of service flows R.

Packets from a flow r € R requires a chain of net-
work/computing functions, distributed across the network. Let
packets from flow r be sequentially processed by |K (T)|
network/computing functions. As each function processes the
packets and may update the packets by revising the packet
header/payload, we associate |K(")| functions with |K(")|
packet states. When a packet finishes processing by function
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Fig. 1: Wireless Computing Network: A wireless computing network
with four nodes, |R| = 2 service flows with |K| = 2 states is shown.
Node n = 1 is the source node, and n = 4 is the destination of the
computing network. From n = 3 to n = 4, there are four candidate
queues to externally forward their packets, the algorithm may choose
(r,k) = (1,2) to forward its packets at current slot.

k € K, meaning the packet completes a specific type of
processing, the packet state k is updated, and the packet will be
subsequently processed by downstream functions in the chain.
Here, we index the functions and states analogously by k.

Each computing node n € A can host |K()| functions
for each flow r € R. To support such processing, node n
maintains |K ()| virtual processing queues for each flow r,
indexed by (r, k) pairs, and there are R x K virtual queues at
node n in total. Details are illustrated in Fig. 1.

B. Flow Model

Flow r has an exogenous packet arrival process. Assume
that the packet arrival is ii.d. over time with finite rate
() *1(k=1,n=src), denoting that the packet arrival/source rate
of flow r at the source node n = src and the packet is at its
earliest state & = 1. ' The arrival rate is upper-bounded by
A1) < Amar o0 Additionally, we consider a system with
saturated traffic where the source node can always receive
packets at any time slot [14].

A computing node n € N processes packets from queue

sf’k_l)(t) (i.e., packets of flow r currently on state k — 1, in
a queue indexed by (r, k — 1)) at time slot ¢ with a processing
rate a'"F ™Y and promotes to queue Qg’k)(t) at the same
node by the end of slot ¢. We denote this process as internal
packet forwarding. When the computation load at the node
becomes high, the node can migrate some (r, k) packets to
a neighboring node j € N at rate sf:’jk), denoted as external
packet forwarding. The migrated packets are either stored in
the queue Q§-T’k) (t), for processing in the future time slots,
or externally forwarded to another node. Considering all the

Iwhere 1 is representing an indicator function defined as

_J1 4if (k=1andn = src),
L=tn=sre) = 0 otherwise.



variables, we design a flow conservation constraint for each
(r, k), given by,
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VYneN, VreR, Vkek, (1)

where node n accepts the packet arrivals only at the source
node with packet state & = 1, receives internal packet
forwarding from the same flow (r, k — 1) at rate an k=1 , and
receives external packet forwarding from the upstream (e g,
source node) at rate 3( k) . Similarly, the node can promote the
packets to the next state (e.g., from k& — 1 to k) at rate a(T *)
and internally forwards to the virtual queue ng k“)(t), by
the end of slot t. The node can also externally forward some
packets to the downstream (e.g., toward destination) at rate
sgjk) to balance the computation load. The inequality sign
is because the total arrival rates should be less than or equal
to the total departure rates. We design the associated virtual
queue for every (r, k) pair as

+
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where the virtual queues will create bounded actual data
queues in the network, faithfully implementing the resulting

algorithm with the actual data queues.

1) Computing Resource: Each node has limited CPU pro-
cessing power in CPU cycles/slot, denoted by C,,, for node n.
The functions may require different CPU cycles to process a
single bit of flow packets, denoted by p(""¥) for flow r at state
k. Additionally, we denote the flow packet size by o(") in bits,
which may vary according to flow type 7. The total number of
required CPU cycles for processing function k with rate a(r k)
should not exceed the available resource, i.e.,

ag’k) . J(T)p("k) <C,. 3)

k 1,n= src)( )a 2

2) Communication Resource: When the computation load
in the computing nodes become high, the nodes externally
forward the flow packets to the downstream via the commu-
nication channels. The channel states are time-varying. Node
n € N can forward packets to at most one downstream node
j € N at a given time slot, i.e.,

SOy dfmsn

JEN (r,k)e(R,K)
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The packets are externally forwarded over the link (n, j), t
the downstream at a rate s( J) denoting the actual packet
forwarding rate. We pr0V1de the relationship with potential
packet forwarding rate (the maximum allowable rate facilitated
by the link) p, ; by,

st < 2P () 5)

C. Problem Formulation

To maximize the total packet admission rate of all flows
r € R, we use a network utility function for each flow r as a
concave increasing function of packet admission rate denoted
as U,.(A\")). We define U,.(-) as a concave differentiable
function with at least a continuous first derivative, upper-
bounded by U;() < n(ma®) - Considering all the network
constraints, we formally present the NUM problem:

(T)

7m71.

(PT)

max
Al ,asl"’s’c)

subject to (1), (3>, (4), (5),
VneN, VreR, K=[1,K"],
VEEK,k—1>1,k< K™,

III. DYNAMIC BACKPRESSURE-BASED FRAMEWORK

The utility optimization problem (P1) is a convex opti-
mization problem subject to linear constraints. For simplicity,

we introduce a function h(-) of y,(f’k) to capture the flow

conservation constraint in Eq. (1), given by,

h(yglr,k)) — /\(T) . 1(]@:1,71:57’6) + Z Sg?‘;lk) + aSIT,k—l)
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Therefore, constraint (1) can be rewritten as
h(y M) < 0. ®)

Further, we simplify the sum of utility function in Eq. (6) as
Zf‘:l fr and rewrite utility maximization problem as

R
mf?le fr ©)]
st h(y"*)y<o0, VneN, (10)
(3), ), (5).

In order to solve this non-linear convex problem, we introduce
the Lagrange multiplier 65"*) € R®*K_ The Lagrange dual
problem is written as
(r,k)e(R,K),
N

R
L ):Zfr_
r=1
ne,

s.t. yn €A,

05 - h(y)

2

(1)

where we simplify the constraints by letting (3), (4),(5) = A
(i.e., capacity region). The lagrangian dual problem can be
decoupled into sub-problems based on the decision variables.

> [fr — 6P - n(yR)| (12)
)

(rk)€(RK=1),
n=src

max

(SP1)



In (SP1), we consider n = src,k = 1, and the exogenous
arrival/source rate \(").

In other cases, when n # src and k # 1, then the lagrangian
in Eq. (11) includes the variables sg"jk) and a{"", formulating
joint scheduling and routing problem as

I o S
(r,k)€(R,KL\1),
neN\src
e Eelivoen]
(T;{C)y
D IRED ol e ol I
(r,k), JEN
Proof. Appendix A. 0

We simplify the summation ) . pemr.c\1),() =
neN\src

> (rk),(+). We can solve the resource alloceatign problem in
(SPf) if we can estimate the value of Lagrange multiplier
(e, 65%) from Eq. (13). Updating 65" according to a
virtual queue dynamics (i.e., as 65" (t) = QU™ (t)) from
Eq. (2), provides us an estimation. The details can be found
in [15]. According to our analysis presented by Eq. (12),
and Eq. (13), we can provide the deterministic solutions to
problem (P1) by decoupling it into sub-problems with readily
available solutions. The sub-problems are solved sequentially
and together they provide the joint algorithm to solve initial
problem (P1) as follows.

1) (SPI1): Flow Control:

My _ ok (py . \()
max > {v.UT(A ) = Q" (t) - A (14)
S
st. A e dom(U,)
Remark 1. Since exogenous flows are independent,
max Y (-) = > max(-) in SPI.
The solution to (SP1) is given by,
(T7k) \maz
. / AN
A — |1 "—( 15
v s

We decouple the problem (SP2) into two sub-problems.
2) (SP2A): Internal Forwarding:

o k) {Qg,k)(ﬂ _ ler,lﬁ—l)(t)] (16)

max E
P
™ (rkik+1<K (™M),

neN
s.t. (3) and a{" >0

The solution to this sub problem is given by the following,

(7, k%)
an,

Cn

= argmax (pk) Qﬁf’k)(f) - ngnk—i_l)(t) ’ U(r)p(r,k) a7

3) (SP2B): External Forwarding:
max

E : 5(F)
(rsk) 3

Frd (rk)e(RK<SK ™M)

[Qiﬁf’(t) Qb

(18)
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st (4),(5 and s0°F > 0.

we incorporate a maximum backpressure-based scheduling
between the virtual queues (in between the nodes to down-
stream) and available transmission rates at the given time slot.

sg]k) = argmazy,, Z o wf:jk)(t),
n,jeL
Vj € Neigh(n), (19)
where,
k" rk r.k
wlF(t) = argmaz iy [Q (1) — QP (1),
Vj € Neigh(n),vV(r, k) (20)

The achievable rate u,, ; is given by the matrix p at each
slot. It is important to note that, the actual rate is given

by, s, " = minlu,;, Qi (8) — Q7 (1)), and when
QU (1) — QY (1] < 0. we set iy, ; = 0.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed algorithm
by performing extensive simulations. First, we briefly discuss
the simulation settings and then we present our experimental
results. We control the exogenous packet arrival/source rate at
the source node of the network. Fig. 2a shows the achievable
utility by accommodating packet arrivals from 3 different
flows in the network under different value of the scaling
parameter V, according to the Eq. (15). We use log(1 + A("))
as our system utility metric. In the experiment, we fixed
maximum achievable packet arrival/source rates of flowI-flow3
as A = [9,8,7]. We also set A\"") = 0, when V = 0
according to Eq. (15). The source rate A("") increases very
sharply with the increment of V, with large value, (e.g.,
V' = 40000, 50000) the source rates converge to the maximum
achievable rates.

The proposed algorithm stabilizes the network utility to a
level while maintaining fairness among the different flows. We
experiment on the convergence of network utilities over T' =
12000 time slots with a fixed V' = 20000. We compute the
time-average flow rates during ¢ = 600 time slots, showing the
changes in achievable utility during small time windows. The
source queues of the networks are initially empty. Thus, data
queues can accept more packets from the network reservoirs.
The parameter V' regulates the number of flow packets that a
source queue can accept. When V' is very large, source queues,
ie., nggk.;cl ) (t), can allow more flow packets and add them to
the current backlog. Therefore, with sufficiently large enough
V', a source queue can accept the number of packets to its
maximum limit, i.e., A]"%".
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With time progression, the queue backlogs become large
since the system can accommodate limited internal/external
packet forwarding due to resource limitations. Therefore to
avoid congestion and instability, the source nodes regulate
the admission of flow packets over time. As a result, the
admission/source rates in the network decrease over time until
the rates converge to stability. The simulations presented in
Fig. 2b-2d demonstrate the aforementioned trends in admission
rates. Along with the time-average rate, we present a detailed
speculation of the utility dynamics over each time slot (e.g.,
t = [9200 — 9800)). Utility dynamics in the region show that
source rates do not fluctuate significantly, varying at most at
a range of 0.10.

We perform a comparative experiment on internal/external
packet forwarding rates at each computing node n = [1, 6]
presented in Fig. 3. We fix the computing resource at each
node by some arbitrary rate (e.g., [145, 175, 160, 130, 175, 140]
cycles/slot). We set the packet size of each flow by o(") =
[3,3.5,3]bits. The flow packets require a chain of net-
work/computing function processing distributed across the
network. The functions are specific to the flow type, and
their computing processing loads to process a packet vary.
We assume that each of the flows requires processing by
three functions. For example, the functions of flow!/ require
plr=Lk=1=3) — 19 3 4]cycles/bits to process. The internal
forwarding rate of packets depends on the computational load

at the node. For example, flow r packets currently waitin
in the queue Qslr’k) at node n, will be promoted to QSf’kH
according to Eq. (17) by performing a state update. The node
can externally forward the packets according to Eq. (19) when
the computational load becomes high. The potential external
forwarding rate f,, ; is given by the matrix p (e.g., fin,; =
12 — 19 packets/slot if a directed time-varying wireless
channel exists between nodes n — j, otherwise i, ; = 0,
and pp, = 0). The internal/external forwarding rates do
not directly depend on the parameter V. The rate evolves
depending on computing/communication resources and current
queue backlogs. Fig. 3 shows the internal/forwarding rate
at each node. A node makes the best usage of its comput-
ing/communication resources and at a time slot by choosing
internal/external forwarding of packets with a rate given by
the proposed algorithm.

V. CONCLUSION

We studied a dynamic scheduling and routing problem
in the wireless computing network via packet forwarding
strategies under an NUM framework. The strategies involve
efficient resource allocation decisions with minimum informa-
tion exchange that develops an augmented backpressure-based
algorithm. In the future, we will consider to study the storage
resource allocation with scheduling and routing in Agl service
flows under mobility constraints.
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APPENDIX A

According to Eq. (13), we maximize a negative term:

mar — Z OrF) . p(y (k)
(rk)€(R\K ),
neN\Dst

where, h(yr(f’k)) is given by Eq. (7) and we consider the
internal and external packet forwarding.

Z 9 r,k) { Z S(r k) aslr,k) _ Z Sg,rék) + aslr,k—l)}

(r k) JEN ieN

— Z Q;T,k) |:a$lr,k) - aglr,k:—l):|
(r,k),
+ Z 95:«,1@) [ Z ng’f) - Z Z(rnk):|.

n
(r,k), JEN 1EN
n

We rewrite the above terms by performing trivial algebraic
manipulations [15]-[17], also it is important to note that, we
can rewrite the first term as, [95{0’@ - 97({0"1671)} = [Gr(f’k) -

95?’““)], since we are collecting the difference between

two adjacent lagrange multipliers, which in practice can be
modeled as the backpressure difference between two queues.
Therefore, with a little change in index-terms, i.e., (r,k + 1)
such that k+1 < K, we collect the backpressure difference:

3 ol {eg,k) _ 67(:7164-1)]
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(r,k), JEN
n
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The last term equals the right-hand-term of the Eq. (13), and
therefore completes the proof.



