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Abstract—In this paper, we establish a multi-access edge com-
puting (MEC)-enabled sea lane monitoring network (MSLMN)
architecture with energy harvesting (EH) to support dynamic ship
tracking, accident forensics, and anti-fouling through real-time
maritime traffic scene monitoring. Under this architecture, the
computation offloading and resource allocation are jointly opti-
mized to maximize the long-term average throughput of MSLMN.
Due to the dynamic environment and unavailable future network
information, we employ the Lyapunov optimization technique to
tackle the optimization problem with large state and action spaces
and formulate a stochastic optimization program subject to queue
stability and energy consumption constraints. We transform the
formulated problem into a deterministic one and decouple the
temporal and spatial variables to obtain asymptotically optimal
solutions. Under the premise of queue stability, we develop a
joint computation offloading and resource allocation (JCORA)
algorithm to maximize the long-term average throughput by
optimizing task offloading, subchannel allocation, computing
resource allocation, and task migration decisions. Simulation
results demonstrate the effectiveness of the proposed scheme over
existing approaches.

Index Terms—Maritime MEC, resource allocation, energy
harvesting, Lyapunov optimization.

I. INTRODUCTION

NOWADAYS, more than 80% of the total international
cargo transportation is carried over the sea. The increas-

ing maritime activities such as maritime transportation, sea
lane monitoring, and marine resource extraction lead to high
demand for maritime information exchange [1]–[5]. On one
hand, the density of marine vessels (especially the ones near
big harbors) is increasing tremendously, which puts forward
higher requirements for inter-vessel connections through ad-
vanced wireless communication technologies (e.g., LTE) for
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information dissemination. On the other hand, the information
sharing from diversified applications to realize the “smart
ocean” often requires high data rates and low transmission
latency. For example, in the sea lane monitoring scenario,
it is necessary to quickly analyze and process the collected
images/videos of sea lanes, to make real-time prediction on
vessel behaviors and provide accurate navigation assistance
and efficient navigation services for vessels. Generally, to
achieve more intelligent and responsive event monitoring,
video perception, and dynamic tracking, a large amount of
data needs to be sensed/collected and processed promptly
which inevitably increases the on-vessel computation burden.
However, due to geographical restrictions, the allocation of
communication and computing resources from terrestrial net-
works to support maritime services is often limited, which
poses significant challenges when supporting massive commu-
nication and computing demands. It is imperative to develop a
more efficient networking and computing solution to achieve
better performance for massive maritime data transmission and
task processing.

Multi-access edge computing (MEC) technology remains
an effective solution, with which the computation-intensive
tasks can be offloaded, through wireless communication net-
works, to onshore/offshore more powerful edge servers for
processing with high efficiency [6]–[9]. In traditional cellular
systems such as 5G and beyond (5G+), a multi-tier networking
architecture, consisting of a macro cell base station (MBS)
underlaid by multiple small cell base stations (SBS), has
been proposed to cope with the massive data and enhance
the communication coverage [10]–[12]. Both SBSs and MBSs
are deployed with MEC servers and the data traffic can
be scheduled towards the MBS and SBS flexibly. Due to
such attractive features, the applications of MEC to maritime
network scenarios have also attracted great attention from
academia. An MEC-based space-air-ground integrated mar-
itime communication network is proposed to support various
maritime applications [13]. For computation-intensive appli-
cations at sea, a voyage-based computation offloading scheme
is proposed with edge nodes deployed on vessels to provide
MEC services for nearby users [14]. A computation offloading
scheme based on an improved Hungarian algorithm for multi-
vessels [15] and a reinforcement learning based intelligent
task offloading algorithm [16] have been proposed to enhance
the maritime MEC performance, such as on delay and energy
consumption. Many existing proposals consider a single layer
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of MEC platform and optimize the computation offloading effi-
ciency between local and edge processing various performance
indicators (such as latency and energy consumption). How-
ever, the impact of communication and computing resource
scheduling on computation offloading performance still needs
further research, especially in maritime MEC with dynamic
environment and limited resources, and how to efficiently
leverage MEC to support the sea lane monitoring requirements
still demands further investigation.

Meanwhile, considering limited accessibility to the ground
power grid for maritime communication networks, how to
resolve energy supply for communications and computing
for long term operations is highly challenging and energy
harvesting (EH) still remains a promising solution [17], [18].
Most existing studies mainly focus on the energy management
for EH-enabled end devices. The use of EH to power small
cell base stations (SBS) has also been proposed to jointly
optimize caching and user-base station association issues [19].
Considering the characteristics of a marine communication
environment, most maritime communication infrastructures are
away from the sea shore, without direct connections to the
power grid through wired cables [20]. The EH technology
provides an effective approach for energy supply of maritime
networks. Offshore energy sources such as wind, solar and
ocean waves can be harvested to power the network equip-
ment to support communication and computing services [21],
[22]. For example, ocean-wave harvested buoys anchored to
the seafloor can help ensure network stability. It has been
observed that one buoy is predicted to continuously generate
electrical power in tens or hundreds of watts from ocean
waves [21], [23], [24]. An experimental research shows that
the power at the level of approximately 25W to 45W can be
acquired within the wave harvesting periods between 1.1s to
1.3s [25] while the Google’s Edge Tensor Processing Unit
(TPU) computing board is capable of performing 4 trillion
operations (tera-operations) per-second (TOPS) with only 2
Watts of power [26], [27]. Thus, the energy generated by
ocean waves may potentially meet the demands of edge
computing. It is energy effective to deploy EH-enabled base
stations with edge computing in offshore areas to fulfill the
maritime communication and computing requirements, such
as the processing of images/videos collected from sea lane
monitoring applications. However, due to the uncertainty and
variability of harvested energy, how to effectively allocate
communication and computing resources and make offloading
decisions for EH-enabled maritime MEC is a difficult problem.
The resource allocation must be performed by considering the
utilization of harvested energy to achieve a sustainable system.

In this paper, we study the joint optimization of task
scheduling and resource allocation in an EH-enabled sea
lane monitoring network based on MEC. Since the channel
states, vessel mobility, task arrivals, and energy charging and
discharging vary over time, it is difficult to accurately acquire
these dynamic network information. Given that the perfor-
mance optimization is challenging in a highly dynamic envi-
ronment, we consider optimizing the long-term task scheduling
and resource allocation strategies to maximize the long-term
average network throughput. The key contributions in this

paper mainly include the following aspects:
• We present a two-tier MEC-based network for a sea lane

monitoring scenario, which is modeled under the dual
constraints on energy consumption and queue stability
by considering the time-varying task arrivals, channel
qualities, and available computing resources.

• To capture the dynamics of network state transitions and
model the interactions between states and policies, we es-
tablish a stochastic optimization problem to maximize the
time averaged network throughput under the constraints
on queue stability and energy budget. We adopt the
Lyapunov optimization framework to achieve a tradeoff
between network throughput and queue stability.

• Based on stochastic optimization, the formulated problem
is decomposed into independent subproblems with low
complexity by minimizing the upper bound of Lyapunov
drift plus penalty function, which are then solved in a
distributed manner, leading to an effective suboptimal
solution.

• We analyze the system performance and verify the
asymptotic optimality of the proposed schemes.

The rest of this paper is organized as follows. Section II
provides a review of related works. The system model is
presented in Section III. The problem formulation and perfor-
mance evaluation are given in Sections IV and V, respectively,
and the conclusion is drawn and future work is discussed in
Section VI. Table I lists the key notations according to the
order in which they first appear in the paper.

II. RELATED WORKS

A. Maritime MEC

As one of the key technologies in next-generation networks,
MEC is considered to be leveraged in different maritime
application scenarios to support the increasing computing
services. Yang et al. [28] mainly focused on proposing a
cognitive network based on MEC for cooperative search
and rescue through UAVs and unmanned ships. Distributed
reinforcement learning was used to identify the channel state
and perform mobile computing to optimize the data throughput
in the communication group. Zeng et al. [29] studied the
communications, computing, and caching technologies for the
maritime networks based on MEC and proposed a response-
based offloading algorithm to optimize task offloading. In
[30], the authors studied a dynamic computation offloading
problem to balance the tradeoff between energy and delay
in offshore communication networks and proposed a two-
stage joint optimal offloading algorithm (JOOA) to optimize
the computation and communication resource allocation under
limited energy and delay constraints. Dai et al. [31] focused
on the unmanned aerial vehicles(UAVs) assisted multi-access
computation offloading via Hybrid NOMA and FDMA in Ma-
rine Networks, aiming at minimizing the energy consumption
of ocean devices.

Existing works often focus on computation offloading or
resource allocation based on one-shot optimization instead
of long-term network performance maximization. In maritime
MEC, the design of computation offloading strategies should
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TABLE I
LIST OF KEY NOTATIONS

Symbol Meaning
Mk The numbedr of TUs under MIS k
τ Slot time

gi(t) The number of tasks generated at TU i at time slot t
Y Task size

gmax Maximum number of task arrivals
α Number of CPU cycles for 1 bit data

T th
i Latency requirement of each task generated by TU i
gi The average task arrival rate of TU i

yi,k(t) Offloading decision variable from MIS k for TU i
zni,k(t) Subchannel allocation decision variable
ri,k(t) The uplink achievable rate at MIS k from TU i
pni,k Transmission power of TU i on the n-th subchannel

hn
i,k(t) The small-scale fading factor
W Subchannel bandwidth of each MIS
σ2 Noise power

βn
i,k(t) The largescale attenuation coefficient

di,k(t) the distance between TU i and MIS k at time slot t
λk,n WaveLength of MIS k
hi The antenna heights above sea level of TU i
hk The antenna heights above sea level of MIS k
Rk The radius of the optimal coverage area of MIS k
d0i (t) The initial location TU i
vi The moving speed TU i

Rk(t) The achievable transmission rate from MIS k to CBS
ρk The radio resource allocation ratio
pk Transmission power of MIS k
Wc Channel bandwidth of CBS
λc,k WaveLength of CBS

βn
k,c(t) The attenuation coefficient from MIS k to CBS
Qi(t) The length of task transmission queue of TU i
θi(t) The number of tasks offloaded in time slot t
Fk The computing frequency of MIS k

fi,k(t) The ratio of computing resources allocated to TU i
Qi,k(t) The buffer length of MIS k for TU i
µi(t) The number of tasks processed in time slot t
mi(t) The number of tasks migrated to CBS in time slot t
Ti The average task latency of TU i

ek(t) The charging rate at MIS k in time slot t
emax
k The maximum charging rate at MIS k

Ek(t) The instantaneous energy level at MIS k in time slot t
Emax The maximum energy storage at MIS k
ck(t) The energy consumption of MIS k in time slot t
ϵ The power coefficient of each MIS

pk,i(t) Processing power of MIS k for TU i

consider the real-time changing environmental dynamics, such
as time-varying channel quality and task arrivals at mobile
terminals. In addition, maritime communication and compu-
tation resources are often limited due to geographical con-
straints, which poses challenges for resource allocation and
task offloading in maritime MEC. To improve the performance
of massive ocean data transmission and task processing, it is
necessary to develop a more efficient network architecture and
computing solutions for maritime MEC.

B. EH-enabled MEC

Due to the technological advances in EH, off-grid renewable
energy, such as solar and wind, has become promising power
supply for various communication and computing networks
[32], [33]. Most research works on EH-enabled MEC mainly
focused on the EH-enabled end devices. Hu et al. [34]
proposed an online mobility-aware offloading and resource

allocation (OMORA) algorithm for EH-enabled IoT. Zhang
et al. [35] proposed online dynamic task offloading based on
the Lyapunov optimization to investigate the tradeoff between
energy consumption and execution delay for a MEC system
with EH. Xu et al. [36] first studied the resource allocation
problems for EH-enabled MEC and proposed an efficient
reinforcement learning (RL) based resource management al-
gorithm to improve the system performance. Besides, Chen
et al. focused on a hybrid energy supply for powering base
stations, including renewable energy and stable energy from
the grid, to optimize task scheduling and energy management
strategies [37]. Mohd et al. demonstrated that a hybrid system
consisting of solar energy and ocean waves can be an effective
way to power offshore equipment [38].

Inspired by the aforementioned studies, we combine solar
and ocean wave energies to provide hybrid energy support for
maritime facilities by considering that they can compensate
each other in light of the seasonal factors [39]. In maritime
scenarios, the intelligent buoys powered by hybrid solar and
ocean wave energies can provide a stable energy supply for
maritime MEC. However, the sustainability of green energy
and the energy limitation of EH-powered devices do affect
the performance of maritime MEC. It is non-trivial to conduct
both the task scheduling and resource allocation judiciously to
prevent network performance degradation caused by limited
resources and network dynamics.

C. Lyapunov optimization in MEC

Lyapunov optimization has been widely applied in solving
stochastic network optimization problems with “time cou-
pling” property in task offloading and energy harvesting to
avoid the prediction of dynamic variables [40]–[45]. Applying
the Lyapunov optimization, Z. Tong et al. [40] proposed a
Lyapunov online energy consumption optimization algorithm
(LOECOA) to balance the system’s queue backlog and en-
ergy consumption. M. Guo et al. [41] proposed Lyapunov-
optimization-based partial computation offloading for mul-
tiuser (LOMUCO) to minimize the energy consumption of all
the MDs while satisfying the constraint of time delay. Mao
et al. [42] exploited an online resource allocation approach
in a multi-devices MEC system, using Gauss Seidel theory
to analyze the best transmit power, but this study did not
consider energy harvesting. J. Mei et al. [43] focused on
the task offloading problem for multiple energy harvesting
devices and designed a maximum task offloading algorithm
to maximize the system throughput based on Lyapunov op-
timization. However, they only simulated the performance
analysis of offloading strategy and computation allocation
without considering communication resource allocation. S. Bi
et al. [44] designed an online offloading scheme to combine
the Lyapunov optimization and deep reinforcement learning
(DRL) method together to maximize the network data pro-
cessing capability. However, they just considered one MEC
server which may not be applicable for multiple users. G. Ma
et al. [45] proposed a linear time complexity algorithm based
on Lyapunov optimization and DRL to maximize the long-
term average throughput under different constraints.
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However, most existing Lyapunov optimization task offload-
ing strategies only consider communication resource allocation
or computing resource allocation during the task offloading
process, and there are few studies that consider both aspects in
joint optimization of task offloading, especially in EH-enabled
MEC. In this paper, we leverage the Lyapunov optimization
method to jointly optimize the communication and compu-
tation resources and maximize the network throughput in
maritime MEC, considering the mobility of vessels, dynamic
channel conditions and limited computing resources in specific
marine scenarios.

III. SYSTEM MODEL

A. Network model

We consider a two-tier MEC-enabled sea lane monitoring
network (MSLMN), as illustrated in Fig. 1. In the first network
tier, a single coastal base station (CBS) centered macro-
cell is deployed along the coastline to provide a wide area
communication coverage for maritime information stations
(MISs) near the sea lanes. In the second network tier, a
set, K = {1, 2, ...,K}, of MISs (e.g., green energy powered
intelligent buoys) are anchored in advance on both sides of sea
lanes within the CBS coverage area. Each MIS is pre-installed
with solar panels and wave energy converters (WECs) to
provide energy supply for communication and computing [38].
All the MISs have non-overlapping communication coverages.
Each MIS, say MIS k, equipped with a local MEC server, is to
provide communication and computing services for terminal
units (TUs) (e.g., vessels) under its coverage, the number of
which is denoted by Mk. All the MISs are powered by solar
and ocean wave energies to maintain normal operation. The
communications between CBS and MISs are based on Long
Term Evolution (LTE) while WiFi is adopted for transmissions
between an MIS and its associated TUs. All the TUs are
randomly distributed and sailing around potentially. Each TU
consistently collects the sea lane state information through
captured images/videos which are further processed or com-
puted, for the purpose of surveillance, object tracking, and
monitoring.

Fig. 1. Network model.

A two-layer edge computing infrastructure is adopted to
provide near-the-TU computing capabilities. In the upper
layer, a main server with abundant computation resources is

connected to CBS to provide highly efficient task processing.
The resources on the server are also virtualized to host
different softwarized network and control functions, such as
centralized radio resource control and baseband processing.
Also, it can share some task processing load with different
MISs through wireless transmissions especially when their
energy and computation capacities are in shortage. In the lower
layer, each MIS is connected with a local MEC server to
provide lightweight computation and each local MEC sever
hosts small-timescale virtualized network functions mainly for
TUs under its coverage, e.g., task scheduling and resource
management.

We consider two timescales of system operations where
the average number of TUs are assumed stationary within
each large time interval (e.g., minutes to hours) for network-
level radio resource reservation under the consideration of
a low vessel mobility scenario. Each large time interval is
discretized into a sequence of scheduling time slots and the
length of each slot is denoted as τ . The task offloading and
resource allocation decisions are made by the MISs at the
beginning of each small time slot according to the dynamic
task generation and the reservation of existing resources. We
assume that each TU has limited computing capability and the
generated tasks in each time slot are either offloaded to an MIS
or migrated to main server connected to CBS for processing
(some TUs may not be covered by CBS). The task processing
results are fed back to corresponding TUs and transmitted to
CBS simultaneously, which is helpful to achieve navigation
efficiency and safety.

B. Task arrival model

The number of tasks generated at the i-th TU at time slot t
is assumed an independent and identically distributed random
variable denoted by gi(t). In each time slot, gi(t) is randomly
drawn within [0, gmax] to capture the temporal variations in
task arrival. We assume that each task has the same size of Y
(in bits) and processing 1 bit of task requires α CPU cycles.
Additionally, each task generated by TU i must be completed
within its latency requirement T th

i . Considering randomness of
task arrivals, we characterize the probability density function
of gi(t) at each slot t as

Pr[gi(t) = g] = pg (1)

where g is a nonnegative integer, g ∈ G = {0, 1, 2, ..., gmax}
and pg ∈ [0, 1]. gmax is the upper bound of the number
of arriving tasks. The average task arrival rate of TU i is
calculated as

gi = lim
T→∞

1

T

T∑
t=0

gi(t) =

gmax∑
g=0

g · pg. (2)

C. Communication model

Before network operation begins, CBS is preconfigured with
a set of orthogonal radio spectrum resources for uplink data
transmission, the amounts of which is denoted by Wc. We
assume that each MIS has N orthogonal subchannels, each
with the radio bandwidth of W . Due to the non-overlapping
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communication coverages, all the MISs reuse the same portion
of radio resources to exploit the resource multiplexing gain
with controlled inter-MIS interference.

At the beginning of each time slot, each MIS makes
decisions on radio resource allocation among TUs under its
coverage. Denote binary indicator yi,k(t) as the offloading
decision from MIS k for TU i at slot t, which equals to 1
when the task is offloaded to MIS k and 0, otherwise. Denote
binary indicator zni,k(t) as the subchannel allocation decision,
which equals to 1 when the subchannel n is allocated to TU
i under MIS k and 0, otherwise. According to the Shannon
capacity theorem, the uplink achievable rate at MIS k from
TU i is given by following the channel model in [39]:

ri,k(t) =

yi,k(t)

N∑
n=0

zni,k(t)W log2

1 +
pni,kβ

n
i,k(t)

∣∣∣hn
i,k(t)

∣∣∣2
γ + σ2

 .

(3)

Considering the offshore environment is relatively open with
stronger direct signals and the main factors affecting the
over-sea radio channels are the multi-path effect caused by
sea volatility and the effect of extreme weather, we employ
Rician fading channels to capture the small-scale fading
characteristics of air-to-sea channels in rough sea conditions
[46], [47]. In (3), pni,k is the transmission power at TU i
on the n-th subchannel of MIS k and hn

i,k(t) indicates the
small-scale fading factor which follows the Rician distribution
with h̃n

i,k(t) =
√

Kr

1+Kr
+
√

1
1+Kr

sni,k(t) where Kr is the
Rician factor and sni,k(t) ∈ CN (0, 1)1. σ2 is the noise
power and γ is the inter-cell interference power calculated as
γ =

∑
q∈K

∑
j∈Mq\q ̸=k yj,q(t)p

n
j,qβ

n
j,q(t), and βn

i,k(t) is the
large-scale attenuation coefficient of maritime communication
expressed as [39]

βn
i,k(t) =

(
λk,n

4πdi,k(t)

)2 [
sin

(
2πhihk

λk,ndi,k(t)

)]2
(4)

where λk,n is the wavelength of the n-th subchannel of MIS
k, hi and hk represent the antenna heights above sea level of
TU i and MIS k, respectively, and di,k(t) denotes the distance
between TU i and MIS k at the t-th time slot, given by

di,k(t) =


√
h2
k +

[
Rk

2 − d0i (t)− vit
]2
, if d0i (t) ≤ Rk

2 ,√
h2
k +

[
Rk

2 − d0i (t) + vit
]2
, if d0i (t) >

Rk

2 ,
(5)

where Rk is the radius of the optimal coverage area of MIS
k, d0i (t) and vi denote the initial location and moving speed
of TU i, respectively.

When the available computing resources of an MIS is insuf-
ficient, portions of tasks are migrated to CBS through wireless
transmissions for processing. The ratio of radio resource
allocated to MIS k from CBS, denoted as ρk, 0 ≤ ρk ≤ 1,
is determined by CBS according to the amount of migrated

1CN (0, 1) is a complex Gaussian distribution.

tasks from different MISs. The achievable transmission rate
from MIS k to CBS is given by

Rk(t) = ρkWc log2

(
1 +

pkβk,c(t)

σ2

)
(6)

where pk is the transmission power of MIS k and βk,c(t) is
the attenuation coefficient from MIS k to CBS.

D. Communication and computation queueing models

The length (i.e. the number of tasks) of task transmission
queue of each TU at time slot t is denoted by Qi(t)(≤ Qmax

i ),
where Qmax

i is the buffer size of the i-th TU. The total number
of tasks that can be offloaded in time slot t is determined as
θi(t) =

⌊
ri,k(t)·τ

Y

⌋
, 0 ≤ θi(t) ≤ θmax

i , and the dynamics of
Qi(t) is given by

Qi(t+ 1) = max[Qi(t)− θi(t), 0] + gi(t). (7)

The computation capacity of MIS k (in the unit of CPU
cycles per second) is denoted as Fk. The ratio of computing
resources allocated to TU i is fi,k(t) ∈ [0, 1], and we have
F(t) = {fi,k(t)i∈Mk

}, where
∑Mk

i=1 fi,k(t) ≤ 1.
Suppose each MIS has a number of processing buffers for

the associated TUs, which are used to accommodate offloaded
tasks to be processed. The buffer length of MIS k for the i-
th TU is denoted as Qi,k(t)(≤ Qmax

i,k ), where Qmax
i,k is the

buffer size allocated to the i-th TU at MIS k [34]. The total
number of tasks processed in the t-th time slot is expressed
as µi(t) =

⌊
fi,k(t)Fk·τ

αY

⌋
(0 ≤ µi(t) ≤ µmax

i ). The number
of tasks migrated to CBS is denoted as mi(t) (0 ≤ mi(t) ≤
θi(t)), and the dynamics of Qi,k(t) is given by

Qi,k(t+ 1) = max[Qi,k(t)− µi(t)−mi(t), 0] + θi(t). (8)

The average queue length of the i-th TU is given by

Qava
i = lim

T→∞

1

T

T∑
t=0

{Qi(t) +Qi,k(t)} . (9)

According to Little’s Law, the average queuing latency is
proportional to the average queue length [35], i.e., T ava

i =
Qava

i

gi
, where gi denotes the task arrival rate. Furthermore, the

average task latency of TU i mainly consists of the average
queuing delay and the average task execution delay (i.e., a
constant T c) [48] [49], given by

Ti =
Qava

i

gi
+ T c. (10)

In this work, we mainly focused on uplink computation
offloading and communication resource allocation and assume
that the downlink transmission time can be neglected consid-
ering each computing result is usually small in size, which is
also a common assumption made in [6], [48] and [49].
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E. Energy model

Considering that in a long run (e.g., over consecutive days)
the energy collection behavior can follow a periodic pattern,
we model the dynamic energy changing process over small-
timescale scheduling slots as a stochastic process to reflect
the dynamics of energy input, where the changing rate at each
slot fluctuates due to the intermittent energy sources, such as
the intensity of solar radiation or wave heights in different
geographic locations. We assume each MIS is equipped with
an energy queue with finite capacity for storing the renewable
energy generated from ocean waves and solar energy. The
energy charging rate of each MIS changes over time depending
on the features of energy sources, such as the intensity of solar
radiation or wave heights in different geographic locations. We
model the energy charging process at each MIS as a stochastic
process where the charging rate at MIS k in the t-th time
slot is assumed to be an independent random variable ek(t),
uniformly distributed within the interval of [0, emax

k ] [50]. The
maximum energy storage of each MIS is denoted by Emax,
then the instantaneous energy level at the t-th time slot is
represented by Ek(t), which is updated over consecutive time
slots, given by [50]

Ek(t+1) = min[max(0, Ek(t)+ ek(t)− ck(t)), Emax] (11)

where Ek(0) = 0. ck(t) is the energy consumption of the
MIS at the t-th time slot, for equipment maintenance, task
transmission, and computation, i.e., given by

ck(t) = cbask (t) + ctrak (t) + ccomk (t). (12)

We use a widely adopted power consumption model for
computing pk,i(t) = ϵ[fi,k(t)Fk]

3 [28], where ϵ is a constant
power coefficient which depends on the chip structure of MIS.
Then the computation energy consumption is given by

ccomk (t) =
∑
i∈Mk

pk,i(t)τ =
∑
i∈Mk

ϵ[fi,k(t)Fk]
3τ. (13)

As CBS has high computation capacity, the processing delay
for each migrated task at an MIS is too small to be negligible
[51]. Then, the transmission energy consumption mainly refers
to the energy consumed by task migration from an MIS to CBS
given by

ctrak (t) = pk ·
∑

i∈Mk
mi(t)Y

Rk(t)
. (14)

IV. PROBLEM FORMULATION

We consider the average network throughput as the opti-
mization objective, which is calculated as the expected aggre-
gate transmission rate of the whole system in each time slot,
given by

H(t) =
∑
k∈K

∑
i∈Mk

ri,k(t), (15)

and the statistical average of H(t) over T time slots is given
by

H(t) = lim
T→∞

1

T

T−1∑
t=0

E {H(t)} . (16)

Mathematically, the problem is formulated as:

(P1) : max
yi,k(t),zn

i,k(t),fi,k(t),mi(t)
H(t),

s.t.

(C1) : 0 ≤ ck(t) ≤ Ek(t),∀k ∈ K, t,

(C2) : Ti ≤ T th
i ,∀i,

(C3) :
∑
i∈Mk

fi,k(t) ≤ 1,∀k, t,

(C4) : fi,k(t) ∈ [0, 1],∀i, k, t,
(C5) : yi,k(t) ∈ {0, 1} ,∀i, k, t,

(C6) :
∑
i∈Mk

zni,k(t) ≤ 1,∀k, n, t,

(C7) : zni,k(t) ∈ {0, 1} ,∀i, k, n, t,
(C8) : 0 ≤ ρk ≤ 1,∀k,
(C9) : 0 ≤ θi(t) ≤ θmax

i ,∀i, t,
(C10) : 0 ≤ µi(t) ≤ µmax

i ,∀i, t,
(C11) : 0 ≤ mi(t) ≤ θi(t)− µi(t),∀i, t. (17)

In (17), (C1) and (C2) are the energy and average latency
constraints. (C3) implies that the per-slot computation load
on each MIS cannot exceed its capacity. (C6) indicates that
a subchannel on MIS k can be occupied by at most one TU
in each time slot. (C11) means that the number of migrated
tasks of each TU under MIS k cannot exceed the number of
arrivals in each time slot.

Problem (P1) is a stochastic optimization problem with
large state and action spaces, where the per-time-slot problem
is also a mixed-integer non-linear program (MINLP) since
it involves binary variables determining task offloading and
communication/computation resource allocation. The major
challenge in deriving the optimal solution of (P1) is the
lack of future information (e.g., task arrivals and dynamic
channel states), which varies over time and is difficult to
predict in advance. In addition, the queue stability constraint
(C2) incurs the coupling of system variables over time. We
leverage the Lyapunov optimization framework to address this
challenge by decomposing (P1) into a series of deterministic
optimization problems at each time slot and obtaining the
asymptotic optimal solutions at the premise of ensuring the
system stability [52].

In (P1), the energy constraint (C1) is a typical temporal
coupling problem, which couples the peer task offloading
decisions across different time slots. Since (C1) is to ensure
that the energy of MIS k at the t-th time slot meets the energy
consumption requirements in the time slot, we construct a
virtual energy queue (denoted as Zk(t)) for (C1) and transform
it into a queue stability problem by employing Lyapunov
optimization method. The dynamics of the virtual queue is
given by

Zk(t+ 1) = max[Zk(t) + ck(t)− Ek(t), 0]. (18)

Obviously, the queue length cannot keep increasing with
time if the energy consumption requirements is satisfied. Then,
(P1) can be transformed to jointly stabilize the queue and
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maxmize the average network throughput, which make it more
tractable.

Theorem 1: If limT→∞
E{Zk(t)}

t = 0, the virtual queue is
stable with the constraint, ck(t) ≤ Ek(t), being satisfied.

The proof of Theorem 1 is provided in APPENDIX A.
Let Θ(t) = [Qi(t), Qi,k(t), Zk(t)]. Define the Lyapunov

function as

L(Θ(t)) =
1

2

∑
k∈K

{
Z2
k(t) +

∑
i∈Mk

[Q2
i (t) +Q2

i,k(t)]

}
. (19)

Then, the Lyapunov drift function can be used to push the
Lyapunov function to a stable state and maintain stability of all
queues [53], i.e., to make the queues stable by minimizing the
upper bound of the Lyapunov drift function, which is defined
as

∆(Θ(t)) = E {L(Θ(t+ 1))− L(Θ(t))|Θ(t)}

≤
(∗)

C +
∑
k∈K

Zk(t)[ck(t)− Ek(t)]

+
∑
k∈K

∑
i∈Mk

Qi(t)[gi(t)− θi(t)]

+
∑
k∈K

∑
i∈Mk

Qi,k(t)[θi(t)− µi(t)−mi(t)], (20)

where C is a constant. The proof of inequality (*) is given in
APPENDIX B.

The objective of (P1) is to maximize the total throughput of
the system. When ri,k(t) increases, the transmitted tasks and
system energy consumption will also increase due to (8) and
(12), which in turn increases the queue length. Therefore, the
two objectives of maintaining queue stability and maximizing
the average network throughput are incompatible and cannot
be optimized at the same time. An alternative solution to this
problem is to merge the two objectives into a single objective
with a utility function, i.e., drift plus penalty function, which
is expressed as

Γ(Θ(t)) = ∆(Θ(t))− V · E {H(t)|Θ(t)}

≤ C − V E {H(t)|Θ(t)}+
∑
k∈K

Zk(t)E[ck(t)− Ek(t)]

+
∑
k∈K

∑
i∈Mk

Qi(t)E[gi(t)− θi(t)]

+
∑
k∈K

∑
i∈Mk

Qi,k(t)E[θi(t)− µi(t)−mi(t)] (21)

where Γ(Θ(t)) indicates the average drift of the Lyapunov
function value and the tradeoff between throughput and queue
length in consecutive time slots, which is used to measure the
stability of the system. The parameter V is a non-negative
constant used to control the weight between queue length and
throughput. By adjusting the value of V , the trade-off between
queue stability and time average throughput can be achieved.

In this way, the long-term queue stability constraint and
the long-term network throughput can be integrated into
one optimization objective. Then the original problem P1
is transformed into a new optimization problem which only
relies on the information of current time slot and next time

slot. To further eliminate the dependence on the next time slot
information, we found the upper bound of Γ(Θ(t)) and shifted
towards minimizing the upper bound instead of minimizing
Γ(Θ(t)). Then, our optimization objective is transformed into
minimizing the upper bound of Γ(Θ(t)) in each time slot.
According to the concept of opportunistically minimizing
an expectation, minimizing f(x) can ensure that E[f(x)] is
minimized [54], we minimize the supremum of Γ(Θ(t)) in
(P2) by removing the conditional expectation of (21).

(P2) : min
yi,k(t),zn

i,k(t),fi,k(t),mi(t)

∑
k∈K

Zk(t)[ck(t)− Ek(t)]

−V
∑
k∈K

∑
i∈Mk

ri,k(t) +
∑
k∈K

∑
i∈Mk

[Qi,k(t)−Qi(t)]θi(t)

+
∑
k∈K

∑
i∈Mk

[Qi(t)gi(t)−Qi,k(t)µi(t)−Qi,k(t)mi(t)],

s.t. (C1)− (C11). (22)

In (22), the terms Qi(t)gi(t) and Zk(t)Ek(t) are indepen-
dent of the decision variables and hence can be ignored in this
optimization problem. We decompose (P2) into (P2.1) and
(P2.2) with the consideration of task transmission and task
processing independently. In (P2.1), yi,k(t) and zni,k(t) are
task offloading and subchannel allocation decision variables,
respectively. In (P2.2), fi,k(t) and mi(t) are task migration
and computing resource allocation decision variables, respec-
tively.

(P2.1) : min
yi,k(t),zn

i,k(t)

∑
k∈K

∑
i∈Mk

{[Qi,k(t)−Qi(t)]θi(t)

−V ri,k(t)} ,

s.t. (C5), (C6), (C7), (C9). (23)

A. Task offloading

By substituting θi(t) with
⌊
ri,k(t)·τ

Y

⌋
in (P2.1), we have

min
yi,k(t),zn

i,k(t)

∑
k∈K

∑
i∈Mk

{
[Qi,k(t)−Qi(t)]

⌊
ri,k(t) · τ

Y

⌋
−V ri,k(t)} ,

s.t. (C5), (C6), (C7), (C9). (24)

For brevity, we let

G(t) =

N∑
n=0

zni,k(t)W log2

(
1 +

pni,kβ
n
i,k(t)

γ + σ2

)
, (25)

and then we have

ri,k(t) = yi,k(t)G(t). (26)

By substituting (26) into (24), we transform (P2.1) into

min
yi,k(t)

∑
k∈K

∑
i∈Mk

{[Qi,k(t)−Qi(t)]

⌊
yi,k(t)G(t) · τ

Y
− V yi,k(t)G(t)

⌋}
,
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s.t. (C5). (27)

We observe that (27) is a linear function of yi,k(t), then we
obtain the optimal solution of the offloading decision as

y∗i,k(t) =

{
1,

[Qi,k(t)−Qi(t)]G(t)·τ
Y − V G(t) ≤ 0,

0, otherwise.
(28)

B. Subchannel allocation

When yi,k(t) is determined, we rewrite (24) as

min
zn
i,k(t)

∑
k∈K

∑
i∈Mk

N∑
n=0

{
[Qi,k(t)−Qi(t)] · τ

Y
− V

}
·

zni,k(t)W log2

(
1 +

pi,kβ
n
i,k(t)

γ + σ2

)
,

s.t. (C6), (C7). (29)

For all k ∈ K, i ∈ Mk and n ∈ N , we let

Wn
i,k(t) =

{
[Qi,k(t)−Qi(t)] · τ

Y
− V

}
·W log2(

1 +
pni,kβ

n
i,k(t)∑

q∈K
∑

j∈Mq(t)\q ̸=k yj,q(t)p
n
j,q(t)β

n
j,q(t) + σ2

)
,

(30)
which represents the weight of TU i on subchannel n.Then, for
the n-th subchannel, we get the subchannel allocation indicator
zni,k(t) as:

zni,k(t) =

{
1, i = argminWn

i,k(t),
0, otherwise.

(31)

Based on this observation, we design a subchannel allo-
cation scheme to meet the communication requirements of
different TUs, as shown in Algorithm 1. We use Ai,k(t) to
represent the set of subchannels allocated to each TU, and
Bk(t) to denote the remaining available subchannel resources
of MIS k.

Algorithm 1 subchannel allocation algorithm.

1: Input:
At the beginning of each time slot t, obtain βn

i,k(t),
Ai,k(t) and Bk(t).

2: while Bk(t) ̸= ∅ do
3: for int k = 0, k ≤Mk, k ++ do
4: Calculate Wn

i,k(t) with formula (30).
5: endfor
6: obtain the optimal i∗ from formula (31).
7: let zni∗,k

∗(t) = 1 if i = argminWn
i,k(t).

8: update:Ai,k(t) = Ai,k(t) ∪ {n∗},
Bk(t) = Bk(t)− {n∗}.

9: endwhile

After solving (P2.1), we attempt to find the optimal
solution to (P2.2), which is expressed as

(P2.2) :

min
fi,k(t),mi(t)

{
Zk(t)ck(t)−

∑
i∈Mk

Qi,k(t)[µi(t) +mi(t)]

}
,

s.t. (C3), (C4), (C8), (C10), (C11). (32)

By substituting µi(t) and ck(t) with µi(t) =
⌊
fi,k(t)Fk·τ

αY

⌋
and (12), we transform (P2.2) into

min
fi,k(t),mi(t)

Zk(t)

{
cbask (t) + pk

∑
i∈Mk

mi(t)Y

Rk(t)

+
∑
i∈Mk

ϵ(fi,k(t)Fk)
3τ

}

−
∑
i∈Mk

{
Qi,k(t)

⌊
fi,k(t)Fk · τ

αY

⌋
+Qi,k(t)mi(t)

}

= min
fi,k(t),mi(t)

∑
i∈Mk

{
Zk(t)pkY

Rk(t)
mi(t)−Qi,k(t)mi(t)

}

+
∑
i∈Mk

{
Zk(t)ϵ(fi,k(t)Fk)

3τ −Qi,k(t)

⌊
fi,k(t)Fk · τ

αY

⌋}

+Zk(t)c
bas
k (t),

s.t. (C3), (C4), (C8), (C10), (C11). (33)

In (33), Zk(t)c
bas
k (t) is independent of decision variable

in this optimization and hence can be ignored. The remaining
items of (33) can be divided into two major problems, i.e., task
migration and computing resource allocation, respectively.

C. Task migration

min
mi(t)

∑
i∈Mk

{
Zk(t)pkY

Rk(t)
mi(t)−Qi,k(t)mi(t)

}
,

s.t. (C8), (C11). (34)

We observe that (34) is a linear program which can be
optimized at each time slot. The optimal solution is

m∗
i (t) =

{
θi(t)− µi(t),

Zk(t)pkY
Rk(t)

−Qi,k(t) ≤ 0

0, otherwise.
(35)

When Zk(t)pkY
Rk(t)

− Qi,k(t) ≤ 0, the task buffer of TU i at
MIS k is large and the channel condition from MIS k to CBS
is better with larger Rk(t). In this case, the best way is to
migrate all the tasks to CBS for computing. Otherwise, it is
preferable to process all the tasks from TU i at MIS k when
the queue length Qi,k(t) is short.
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D. Computing resource allocation

min
fi,k(t)

∑
i∈Mk

{
Zk(t)ϵ(fi,k(t)Fk)

3τ −Qi,k(t)

⌊
fi,k(t)Fk

αY

⌋}
,

s.t. (C3), (C4). (36)

The objective function in (36) is convex which can be
proved by the second-order derivative. Since each fi,k(t) is
mutually independent under one MIS, we can easily obtain the
optimal value for each TU under (C4). However, sometimes
if all the TUs take the optimal value of fi,k(t), (C3) cannot
be satisfied. In this case, we evenly allocate the computing re-
sources under the MIS. Then, the optimal computing resource
allocation variable fi,k(t) for MIS k to process the computing
task of TU i is given by

f∗
i,k(t) =


√

Qi,k(t)

3αY Zk(t)ϵF 2
k
,

∑
i∈Mk

fi,k(t) ≤ 1,
√

Qi,k(t)∑
i∈Mk

√
Qi,k(t)

,
∑

i∈Mk
fi,k(t) > 1.

(37)

On this basis, we propose a computing resource allocation
algorithm to solve (36), which is described in Algorithm 2.

Algorithm 2 Computational resource allocation algorithm.

1: Input: α, Y , τ , ϵ.
2: Initialization: t← 0,

Qk(0) = 0, Qi,k(0) = 0, Zk(0) = 0.
3: while t ≤ T do
4: At the beginning of each time slot t, obtain Qk(t),

Qi,k(t), Zk(t).
5: Determine f∗

i,k(t) with formula (36) and (37).
6: endwhile

By optimizing task offloading, subchannel resource alloca-
tion, task migration and computing resource allocation, we
propose a joint computation offloading and resource allocation
algorithm (JCORA) for the optimization objective. The whole
process is described in Algorithm 3.

Algorithm 3 JCORA: Joint computation offloading and re-
source allocation algorithm.

1: Initialization:t← 0,

Qk(0) = 0, Qi,k(0) = 0, Zk(0) = 0.
2: while t ≤ T do
3: At the beginning of each time slot t, obtain Qk(t),

Qi,k(t), Zk(t).
4: Obtain zni,k(t) by calling Algorithm 1.
5: Determine yi,k(t) with formula (28).

6: Calculate θi(t) by θi(t) =
⌊

ri,k(t)·τ
Y

⌋
.

7: Calculate (34) and get mi(t) with (35).
8: Run Algorithm 2 to determine the computational

resource allocation policy f∗
i,k(t).

9: endwhile
10: Update the queues and t← t+ 1.

Next, we rigorously analyze the performance of JCORA
theoretically. Specifically, we demonstrate that the average
network throughput achieved by JCORA can arbitrarily ap-
proximate the optimal solution and that there exists a supre-
mum bound for the expected average queue length, which are
summarized in Theorem 2.

Theorem 2: For any V > 0, the performance gap between
the optimal solution of the original problem (P1) (denoted as
H∗(t)) and the result of JCORA is represented by

H∗(t)−H(t) ≤ C

V
(38)

and the average queue length is upper bounded by

Q ≤ 1

ξ

{
C + V · [H(t)

max −H(t)
min

]
}
, (39)

where H(t)
max and H(t)

min represent the maximum and
minimum values of the original problem, respectively, ξ is
a real number greater than 0.

The proof of Theorem 2 is provided in APPENDIX C.
Theorem 2 sheds light on an [O( 1

V ), O(V )] tradeoff be-
tween average network throughput and queue length (or,
latency). Formula (38) demonstrates that the gap between the
network throughput of JCORA and the optimal solution is
upper bounded by C

V . If V is sufficiently large, the average
network throughput of JCORA can be asymptotically close
to the optimum value. In (39), the average queue length of
JCORA is proved to be upper bounded, which illustrates that
JCORA can always maintain the stability of all the queues.
Intuitively, the performance of JCORA depends on the control
parameter V , which can be tuned flexibly to improve the
network throughput, but at the price of a larger delay since
the average queue length increases linearly with V . Thus, by
adjusting the control parameter V , we can dexterously reap the
balance between the average network throughput and queue
length.

Then, we give the computational complexity of the proposed
JCORA algorithm which mainly consists of five parts, i.e.,
lines 2–8 in Algorithm 3. Since the task offloading decision is
made by each MIS, its computation overhead is linear with
the number of MIS s, i.e., O(KMk). In Algorithm 1, we
first obtain the computation overhead of subchannel allocation
of which is O(NMk). Thus, the computation overhead of
subchannel allocation is O(KNMk). The Task migration is
calculated with (35) and the computation overhead of which
is liner with the number of TUs, i.e., O(KMk). Similar
to the subchannel allocation, the computation overhead of
computation resource allocation at one MIS is also O(Mk)
since each MIS calculates the CPU-cycle frequency fi,k(t) via
(37). Therefore, the computational complexity of the proposed
JCORA algorithm is O(KMk) + O(NMk) + O(KNMk) +
O(KMk) = O(KNMk).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
JCORA algorithm through simulations, which is done under
different parameters of V , and compared with other three
resource allocation schemes in terms of average throughput
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and average latency. As we mentioned earlier, We consider
the average network throughput as the optimization objective,
which is calculated as the expected aggregate transmission rate
of the whole system in each time slot.

A. Simulation setup

All the simulations are conducted using MATLAB on a PC
configured with a Core i7-10510U 1.80 GHz CPU and 8 GB
of RAM. We consider an offshore network consisting of 1
CBS and 5 MISs which are deployed in a 400 × 400 m2

area, together with 5-30 random sailing TUs. In this system,
MIS is responsible for making resource allocation decisions
for each TU, so as to maximize the network throughput under
the constraints of average latency and power consumption.
The overall spectrum bandwidth of CBS is 100 MHz and
each MIS has 30 subchannels for computation offloading of
its associated TUs. The bandwidth of each subchannel is
1 MHz. The power spectral density of the additive white
Gaussian noise is −174 dBm/Hz. The antenna heights above
sea level of TU i and MIS k are 10m and 50m respectively.
We assume each MIS communicates with the CBS over
LTE and with its associated TUs over WiFi. All the TUs
are randomly distributed and sailing around potentially. We
assume all the MISs reuse the same portion of radio resources
to exploit the resource multiplexing gain with controlled inter-
MIS interference. Other simulation parameters are shown in
Table II.

TABLE II
SIMULATION PARAMETER SETTINGS

Parameters Values
Subchannel bandwidth, W 1MHz

Noise power, σ2 −174dBm/Hz
Transmission power of TU, pni,k 0.1W

Transmission power of MIS k, pk 1W
The maximum energy storage of each MIS, Emax 20J

The computing frequency of MIS, Fk 1G cycles/s
Slot time, τ 0.05s

The power coefficient of each MIS,ϵ 1e− 25
WaveLength of MIS k, λk,n 0.125m
WaveLength of CBS, λc,k 0.02m

Number of CPU cycles for 1 bit data, α 1000cycles/bit
Task size, Y 1000bit

The radio resource allocation ratio, ρk 0.1
Maximum number of task arrivals, gmax 300

B. Performance evaluation

1) Throughput-latency Tradeoff: Fig. 2 illustrates the ef-
fect of control parameter V on the performance of JCORA
algorithm. As V increases, the average network through-
put becomes high, which is consistent with our theoretical
analysis. For a larger V , the algorithm emphasizes on the
network throughput more than on the queue stability, and
thus the maximum network capacity can be reached when V
approaches to 1. JCORA dynamically tunes resource allocation
decisions to improve the average throughput. In addition, the
latency increases with control parameter V , because a large V
implies a heavy weight on achieving high throughput, which

leads to the increase of average queue length and queuing
delay. From Fig. 2, we can see that the proposed algorithm
balances throughput with latency by adjusting the value of V .
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Fig. 2. The average throughput and average latency versus V .

2) Energy Queue Length and Energy Consumption: Fig.
3 shows the change of energy queue length under different
control parameter V . We observe that the energy queue length
tends to decrease with the increase of V . This is because when
V increases, the average throughput of the system becomes
larger, resulting in the increase of system energy consumption
and the decrease of energy queue length. Fig. 4 illustrates
the average energy consumption and the corresponding energy
queue length with respect to different number of time slots.
The results show that the average energy consumption is
always lower than the energy queue length in different time
slots, which satisfies the constraints (C1) in (17). In this way,
the long-term energy constraints of MISs is satisfied.
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Fig. 3. The energy queue length versus time slot.

3) Effect of the Number of TUs: Fig. 5 and Fig. 6 illustrate
the average throughput and average latency of the system with
respect to different number of TUs under different values of
control parameter V . When the number of TUs increases, the
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average throughput is improved at the expense of increased
latency. As seen in Fig. 5 and Fig. 6, JCORA can adapt to
different number of TUs and improve the average network
throughput at a tolerable latency.
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Fig. 5. The average throughput versus number of TUs
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C. Performance comparison

We further compare the performance of JCORA (V is set
to 0.1) with four benchmark algorithms listed as follows.
a) First-in-first-out (FIFO) based resource allocation algo-

rithm (FRA) [30]: The communication and computation
resources of MIS k are allocated to the first packet arrival
sequence of TUs, and the other TUs wait in line following
the M/M/1 queuing process.

b) Latency based resource allocation algorithm (LRA): Un-
der the energy limitation of MIS in each time slot,
fi,k(t) is determined by the latency constraint of each TU
under MIS k. If fi,k(t) exceeds the maximum computing
frequency that MIS k can provide, the optimal resource
allocation solution is the maximum fi,k(t) for each TU
under the maximum tolerance time of TU i [55].

c) Priority based resource allocation algorithm (PRA): Each
TU under MIS k is prioritized by the task arrival rate
gi(t). The higher the task arrival rate, the higher the
priority obtained, and the more advantageous the resource
allocation, then the communication and computation re-
sources are allocated according to the obtained priority
[56].

d) TDMA (time division multiple access) based resource
allocation algorithm (TRA): Multiple TUs can access a
subchannel under one MIS at different times in a time
slot [57].

Fig. 7 demonstrates the average throughput with respect
to the number of TUs for five different algorithms. We
observe that the average throughput of JCORA is the highest
compared with FRA, LRA, PRA and TRA. The reason is
that JCORA can adjust the decisions of task offloading and
resource allocation according to the changes of channel state,
real-time energy state and random task arrivals, etc. In contrast,
LRA, PRA and TRA do not consider the network dynamics
when making resource allocation decisions while FRA allocate
resources to only one TU at a time. Fig. 8 shows a comparison
of average latency with respect to the number of TUs achieved
by different algorithms. We observe that the latency of JCORA
is lower than that of FRA, LRA, PRA and TRA. The latency
of FRA is the largest, because FRA can only process tasks
for one TU at a time slot. The more the TUs, the longer the
queueing delay. In Fig. 7 and Fig. 8, we observe the advantages
of JCORA in improving the average network throughput and
stabilizing the queue length.

We further compare the average throughput and average
latency of the five algorithms under different task arrival rates
in Fig. 9 and Fig. 10. We observe that both the average
throughput and average latency are in a positive correlation
with task arrival rate. Among them the average throughput
of JCORA outperforms the others, because JCORA makes
resource allocation and computation offloading decisions by
adapting to the dynamic network environment. The perfor-
mance of TRA is also superior to the other three algorithms,
as the adopt of TDMA can also achieve better relatively
allocation of communication resources.

Finally, we compare the average throughput of the five
algorithms under different maximal energy charging rates in
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Fig. 7. The average throughput versus number of TUs.
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Fig. 9. The average throughput versus task arrival rate.
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Fig. 11 and Fig. 12. We observe that the performance of
JCORA outperforms the others, and the average throughput
increases when the maximal energy charging rate is larger
while the latency is just the opposite, due to the fact that the
greater the energy obtained by the MIS, the more tasks can be
processed, and the processing speed will also be improved.
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Fig. 11. The average throughput versus maximal energy charging rate.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we have considered a sea lane monitoring
network with MEC and EH and investigated a throughput-
queue stability tradeoff for dynamic computation offloading.
With stable task and energy queues, we have proposed a
JCORA algorithm based on the Lyapunov optimization to
obtain the joint computation offloading and resource allo-
cation decisions. We transform the original problem into
a deterministic program, which is decoupled into multiple
independent subproblems for optimization. The performance
analysis is carried out to reveal the asymptotic optimality
of the proposed algorithms and demonstrate the superiority
over other benchmark schemes. Our study provides a feasible
approach to design future offshore MEC-enabled networks
with renewable energy powered edge servers. For future work,
we will study resource allocation and computation offloading
problems for more complex and dynamic marine scenarios
(e.g., environment monitoring) by exploring machine learning
techniques (e.g., deep reinforcement learning) for decision
making.

APPENDIX A
PROOF OF THEOREM 1

Proof :

Zk(t+ 1) = max[Zk(t) + ck(t)− Ek(t), 0]

≥ Zk(t) + ck(t)− Ek(t), (40)

Zk(t)

t
≥ Zk(0)

t
+

1

t

t−1∑
s=0

[ck(x)− Ek(x)], (41)

E {Zk(t)} − Zk(0)

t
≥ 1

t

t−1∑
s=0

E {ck(x)− Ek(x)} , (42)

lim
t→∞

E {Zk(t)}
t

≥ lim
t→∞

1

t

t−1∑
s=0

E {ck(x)− Ek(x)} . (43)

If Zk(t) is stable, limT→∞
E{Zk(t)}

t = 0, which means that
the constraint(ck(t) ≤ Ek(t)) is satisfied.

APPENDIX B
PROOF OF (*) IN (20)

Proof :

L(Θ(t+ 1))− L(Θ(t)) =
1

2

∑
k∈K

[Z2
k(t+ 1)− Z2

k(t)]

+
1

2

∑
k∈K

∑
i∈Mk

[Q2
i (t+ 1)−Q2

i (t)]

+
1

2

∑
k∈K

∑
i∈Mk

[Q2
i,k(t+ 1)−Q2

i,k(t)]. (44)

Based on the inequality

[max(X−Y, 0)+A]2 ≤ X2+Y 2+A2+2X(A−Y ), (45)

we can obtain

Z2
k(t+ 1)− Z2

k(t) = [Zk(t) + ck(t)− Ek(t)]
2 − [Zk(t)]

2

= [ck(t)]
2 + [Ek(t)]

2 + 2Zk(t)[ck(t)− Ek(t)]− 2ck(t)Ek(t)

≤ [ck(t)]
2 + [Ek(t)]

2 + 2Zk(t)[ck(t)− Ek(t)]. (46)

Similarly, we have

Q2
i (t+ 1)−Q2

i (t)

≤ [θi(t)]
2 + [gi(t)]

2 + 2Qi(t)[gi(t)− θi(t)] (47)

and

Q2
i,k(t+ 1)−Q2

i,k(t) ≤ [θi(t)]
2 + [µi(t)]

2 + [mi(t)]
2

+2Qi,k(t)[θi(t)− µi(t)−mi(t)]. (48)

Combining (46), (47), (48), we have

L(Θ(t+ 1))− L(Θ(t)) ≤ C +
∑
k∈K

Zk(t)[ck(t)− Ek(t)]

+
∑
k∈K

∑
i∈Mk

Qi(t)[gi(t)− θi(t)]

+
∑
k∈K

∑
i∈Mk

Qi,k(t)[θi(t)− µi(t)−mi(t)], (49)

where C can be described as:

C =
1

2

∑
k∈K

ck(t)]
2 + [Ek(t)]

2 +
∑
k∈K

∑
i∈Mk

[θi(t)]
2 + [gi(t)]

2]

+
∑
k∈K

∑
i∈Mk

[θi(t)]
2 + [µi(t)]

2 + [mi(t)]
2] ≤

∑
k∈K

{
E2

max +
∑
i∈Mk

[(θmax
i )2 + (gi)

max)2 +
1

2
(µmax

i )2]

}
.

(50)

APPENDIX C
PROOF OF THEOREM 2

Proof :
According to Caratheodory’s theorem [53], there always

exists an optimal policy π1, which satisfies:

E {H(t)|π1} = H∗(t),

E {ck(t)|π1} ≤ E {Ek(t)|π1} ,

E {gi(t)|π1} ≤ E {θi(t)|π1} ,

E {θi(t)|π1} ≤ E {µi(t) +mi(t)|π1} . (51)

By substituting (51) into (21), we have

∆(Θ(t))− V · E {H(t)|Θ(t)}

≤ C − VH∗(t) +
∑
k∈K

Zk(t)E {[ck(t)− Ek(t)]|π1}

+
∑
k∈K

∑
i∈Mk

Qi(t)E {[gi(t)− θi(t)]|π1}

+
∑
k∈K

∑
i∈Mk

Qi,k(t)E {[θi(t)− µi(t)−mi(t)]|π1}

≤ C − VH∗(t) + 0. (52)
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Then for a stable system, we have

∆(Θ(t))− V · E {H(t)|Θ(t)} ≤ C − VH∗(t) (53)

and
T−1∑
t=0

∆(Θ(t)) = L(Θ(T )) < ∞. (54)

Combining (53) and (54), we have

lim
T→∞

1

T

T−1∑
t=0

∆(Θ(t))− V · lim
T→∞

1

T

T−1∑
t=0

E {H(t)}

= 0− V · lim
T→∞

1

T

T−1∑
t=0

E {H(t)} ≤ C − VH∗(t). (55)

Dividing (55) by V , we can obtain

H∗(t)−H(t) ≤ C

V
(56)

where H(t) = limT→∞
1
T

∑T−1
t=0 E {H(t)}.

We assume that for TU i ∈ Mk , there exists some real
number ξ > 0 under policy π2, satisfying

E {H(t)|π2} = Hξ(t),

E {[ck(t)− Ek(t)]|π2} ≤ −ξ,

E {[gi(t)− θi(t)]|π2} ≤ −ξ,

E {[θi(t)− µi(t)−mi(t)]|π2} ≤ −ξ. (57)

According to (52), we have

∆(Θ(t))− V · E {H(t)|Θ(t)}

≤ C − VHξ(t) + E
∑
k∈K

Zk(t) {[ck(t)− Ek(t)]|π}

+E
∑
k∈K

∑
i∈Mk

Qi(t) {[gi(t)− θi(t)]|π}

+E
∑
k∈K

∑
i∈Mk

Qi,k(t) {[θi(t)− µi(t)−mi(t)]|π} ≤

C−VHξ(t)−ξE

{∑
k∈K

Zk(t) +
∑
k∈K

∑
i∈Mk

[Qi(t) +Qi,k(t)]

}
.

(58)
Combining (54) and (58), we have

lim
T→∞

1

T

T−1∑
s=0

∆(Θ(t))− V · lim
T→∞

1

T

T−1∑
t=0

E {H(t)}

= 0− V · H(t) ≤ C − VHξ(t)

−ξ lim
T→∞

1

T

T−1∑
t=0

{∑
k∈K

Zk(t) +
∑
k∈K

∑
i∈Mk

[Qi(t) +Qi,k(t)]

}
.

(59)
Dividing (59) by ξ, we can obtain

Q ≤ 1

ξ

{
C + V · [H(t)−Hξ(t)]

}
≤ 1

ξ

{
C + V · [H(t)

max −H(t)
min

]
}

(60)

where

Q = lim
T→∞

1

T

T−1∑
t=0

{∑
k∈K

Zk(t) +
∑
k∈K

∑
i∈Mk

[Qi(t) +Qi,k(t)]

}
.

(61)
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