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Abstract—In this paper, a software-defined networking (SDN)
based adaptive transmission protocol (SDATP) is proposed to
support applications in fifth generation (5G) communication
networks. For time-critical services, such as machine-type com-
munication services for industrial automation, high reliability
and low latency are required. To guarantee the strict service
requirements, a slice-level customized protocol is developed with
in-network intelligence, including in-path caching-based retrans-
mission and in-network congestion control. To further reduce the
delay for end-to-end (E2E) service delivery, we jointly optimize
the placement of caching functions and packet caching probabil-
ity, which reduces E2E delay by minimizing retransmission hops.
Since the joint optimization problem is NP-hard, we transform
the original problem to a simplified form and propose a low-
complexity heuristic algorithm to solve the simplified problem.
Numerical results are presented to validate the proposed proba-
bilistic caching algorithm, including its adaptiveness to network
dynamics and its effectiveness in reducing retransmission hops.
Simulation results demonstrate the advantages of the proposed
SDATP over the conventional transport layer protocol with
respect to E2E packet delay.

Index Terms—5G networks, SDN, adaptive transmission proto-
col, in-path packet caching/retransmission, probabilistic caching.

I. INTRODUCTION

W ITH the rapid development of the fifth genera-
tion (5G) communication networks, bandwidth-hungry
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applications are foreseen to be supported, which have stringent
quality-of-service (QoS) requirements. With limited resources
of network switches and tranmission links in current core
networks, it is challenging to guarantee end-to-end (E2E) QoS
requirements of diverse services [2], [3]. Therefore, an efficient
transport-layer protocol is required for E2E QoS enhancement.
Transmission control protocol (TCP) [4], [5] is widely used
for reliable E2E packet transmissions in a packet switching
network. In TCP, a two-way communication connection is
established between a pair of end hosts for data transmis-
sion. The sender applies retransmission timeout (RTO) for
lost packet recovery and mitigate network congestion with
congestion window adjustment.

To guarantee E2E QoS requirements for diversified services,
many existing studies propose enhanced transport-layer pro-
tocols in terms of E2E performance improvement, including
avoidance of false fast retransmissions [6], [7], accurate RTO
estimation [8], [9], and efficient congestion control [10], [11].
However, current transport-layer protocols (e.g., TCP and
user datagram protocol (UDP)) only achieve best-effort E2E
performance [12], due to the distributed and ossified network
architecture. In TCP, a sending host records for every trans-
mitted data packet a round-trip time (RTT) for packet loss
detection and congestion control; a three duplicate acknowl-
edgements (ACKs) mechanism is applied for fast retransmis-
sion of lost packets. However, the TCP congestion detection
is performed only at a sending host based on feedback ACK
information from its receiving end, without in-network con-
gestion awareness, which leads to a long response delay for
packet retransmission and congestion control.

Software-defined networking (SDN) is proposed to bal-
ance traffic load and reduce network congestion [13]–[15].
It decouples control and forwarding functions at network
servers/switches. The routing decisions for each traffic flow1

are made by a centralized SDN control module. With network-
wide information, global optimal E2E routing paths can be
established by the SDN control module, which realizes load bal-
ancing for network congestion alleviation. In addition, network
function virtualization (NFV) emerges to provide flexible and
cost-effective service through virtualization technology [16],
[17]. In this way, different customized services can be supported
over a physical network as embedded virtual networks.

1A traffic (service) flow refers to an aggregation of packets of same
service type passing through a pair of edge switches in the core network.
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The SDN architecture can reduce E2E delay by enabling
packet caching and retransmission functions at the in-path
network switches [18], [19]. The function placement real-
izes in-path packet loss recovery and retransmission, both of
which can reduce the delay and overhead of packet loss recov-
ery. Compared with a conventional TCP network, these in-
network functionalities require computing, caching, and higher
protocol-layer packet analyzing capabilities. Given a number
of activated caching nodes, the location of these caching func-
tionalities affects QoS provisioning. For a network routing
path, if a caching functionality is activated near the receiving
node, a high performance gain (e.g., reduced retransmission
hops) is achieved for each individual lost packet which, on
the other hand, reduces the caching effectiveness due to the
small chances of being retransmitted by in-path caching nodes
for loss recovery. The number of caching nodes also has an
impact on the performance gain. With more caching nodes,
the caching buffer overflow probability can be reduced, while
the caching resource usage becomes less efficient. Thus, the
caching performance should be optimized via trading off the
caching effectiveness with resource utilization. Therefore, the
caching node placement and packet caching probability should
be jointly considered, accounting for their correlation in the
caching scheme design, to improve caching efficiency, reduce
retransmission overhead, and minimize the E2E packet delay
for time-critical services (e.g., machine-type communication
(MTC) for industrial automation).

In this paper, we present a comprehensive SDN-based adap-
tive transmission protocol (SDATP) supporting time-critical
services that require high reliability and low-latency. Different
from TCP operating on a packet switching network, the
SDATP is based on an SDN/NFV enabled virtual network
which is logically circuit switching. To satisfy the strin-
gent requirements, we exploit both in-path packet caching
and in-network congestion control. A joint optimization of
caching function placement and probabilistic packet caching
is studied to reduce the delay for retransmitted packets.
This joint optimization problem is formulated as a mixed-
integer non-linear programing (MINLP) problem to mini-
mize the number of average packet retransmission hops.
The dependence between packet caching probabilities and
locations of caching node placement poses technical chal-
lenges in solving the problem. For a tractable solution,
we simplify the problem by reducing the number of deci-
sion variables, which is achieved by considering the fea-
ture of in-path caching. Then, a low complexity heuristic
algorithm is developed to solve the simplified problem. In
comparison with several benchmark policies, the proposed
probabilistic caching policy requires the minimum num-
ber of retransmission hops, thus achieves the fastest packet
retransmission.

The remainder of this paper is organized as follows: The
system model is described in Section III. In Section IV,
we present the proposed customized protocol elements of
SDATP to support time-critical services. Simulation results
are given in Section VI to demonstrate the effectiveness
of the proposed protocol. Finally, conclusions are drawn
in Section VII.

II. RELATED WORK

With the SDN architecture, in-network control intelligence
can be utilized by transport-layer protocols to enhance conges-
tion detection and congestion recovery. In-network statistics
(e.g., resource utilization information) can be collected from
OpenFlow switches; Accordingly, the SDN control mod-
ule can make congestion detection and alleviation [20]–[22].
In [20], a software-defined TCP (SDTCP) is proposed where
an SDN controller collects queue length information from each
OpenFlow switch and calculates traffic shares for each ser-
vice flow traversing the switch. If the traffic share of one flow
exceeds a threshold, indicating certain level of congestion, the
SDN controller will modify the flow table entries to migrate
some of the flow traffic to alternative paths to alleviate the con-
gestion. A scalable congestion control protocol is developed
based on TCP in [21], where congestion control is performed
at end hosts for a packet switching network.

The SDN architecture can reduce E2E delay by enabling
in-path packet caching and retransmission functionalities. An
SDN-based UDP framework is proposed in [23], where each
network switch is equipped with retransmission functionality
to perform in-path packet loss detection and recovery. Packet
loss detection is based on the observed out-of-order packet
reception, without distinguishing between packet retransmis-
sion and reordering. Caching and retransmission functions
are activated at every switch, which increases resource usage
at switches, and leads to significant signaling overhead
between switches (e.g., for retransmission request and caching
release). To reduce network cost and signaling overhead,
caching functions are enabled only on selected in-network
switches [24], [25]. All received packets are cached at each
caching switch, which causes additional storage resource usage
and processing delay by repetitive packet caching along the
forwarding path. To better utilize storage resources and reduce
processing delay, packets are cached with certain probability
in [26], given caching node locations. To improve network
performance, existing studies deal with the placement of
caching functions and the packet caching probabilities as
two separate problems in designing packet caching policies.
However, based on E2E delay analysis, the impact of caching
function placement and packet caching probabilities are cou-
pled, which should be jointly studied to minimize E2E delay
with limited caching resources.

III. SYSTEM MODEL

In this section, we present the network model, protocol
function modules, and traffic models for time-critical services.
Important mathematical symbols are listed in Table I, where
RRH stands for required retransmission hop.

A. Network Model

Consider multiple virtual networks embedded on a 5G phys-
ical infrastructure for diverse applications. Data traffic from a
set of E2E connections of one type of service are aggregated
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TABLE I
SUMMARY OF MATHEMATICAL SYMBOLS

at virtual switches2 (i.e., vSwitches) at the edge of the core
network as one traffic flow. Thus, the edge vSwitch should
be equipped with the capabilities of traffic aggregation and
higher-layer network functionalities (e.g., header processing).
Each E2E path consists of three domains: (i) between the
source node and ingress edge vSwitch, (ii) between two edge
vSwitches, (iii) between egress edge vSwitch and the receiving
node. To guarantee protocol backward compatibility on end
hosts, the connections between end hosts and edge vSwitch
are established based on the state-of-the-art TCP protocol. We
propose a customized protocol for enhanced data transmis-
sion between a pair of ingress and egress edge vSwitches.
The protocol operates at slice level. We define one network
slice as a combination of customized protocol elements, allo-
cated resources, and the designed virtual network topology to
support one aggregated service flow between a pair of edge
vSwitches. Slices are differentiated and logically isolated to
guarantee different levels of service QoS requirements. Each
slice has a unique slice ID which is a combination of source
and destination edge switch IP addresses and a pair of port
numbers for E2E service delivery.

We focus on one unicast service as an example. The
aggregated traffic flow traverses through a linear network
topology, as shown in Fig. 1. Let M denote the number of
transmission links between edge vSwitches, and S0 and SM
denote the ingress and egress edge vSwitches. The traversed
path consists of (M − 1) in-network vSwitches, denoted by
{S1,S2, . . . ,SM−1}, and M transmission links between S0
and SM , denoted by {L1,L2, . . . ,LM }. In addition to all the

2A virtual switch refers to a softwarized network switch with virtual-
ized resources to program higher-layer network functions, apart from the
functionalities of traffic forwarding or traffic aggregation.

Fig. 1. Illustration of the embedded network topology under consideration.

vSwitches managed by an SDN controller, there exist conven-
tional switches, with only packet forwarding capability (not
shown in Fig. 1 for clarity). In the following, a switch refers to
a vSwitch. Since some services require caching functions, both
the two edge switches and the (M − 1) in-network switches
are equipped with caching buffers, the sizes of which are
denoted as {B0,B1, . . . ,BM }. For SDATP, caching function-
alities are activated at N (≤ M − 1) in-network switches, and
the index for one caching node is the index of the correspond-
ing network switch. The set of indexes for the caching nodes
is denoted by C(N ) = {C1,C2, . . . ,CN }. For example, we
have C1 = 2 and C2 = 4 shown in Fig. 1. Since both edge
switches (S0 and SM ) are always activated as caching nodes to
cache all received packets, the caching policy is designed only
for in-network switches (Sm (m = 1, 2, . . . ,M − 1)). Packet
loss at the mth (m = 1, 2, . . . ,M ) transmission hop includes
packet loss due to transmission errors of link Lm and con-
gestion at switch Sm−1. If congestion happens at SM , it will
be handled by TCP operating between SM and the receiving
node.
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B. Network Functionalities

Consider that the service requires high reliability and low
latency where lost packets need to be retransmitted. A set of
on-demand functionalities can be activated, including packet
loss detection and packet retransmission realized by activat-
ing caching and retransmission functionalities at in-network
switches.

1) Caching Function: A caching node is a network switch
with activated caching function, equipped with pairs of data
transmission and caching buffers. When a node receives a
data packet, it caches the packet with a certain probability,
which is referred to as probabilistic caching. The caching
buffer is used for storing cached packets, while the data trans-
mission buffer is used for queueing packets to be forwarded.
Each network slice has a unique pair of data transmission and
caching buffers.

Caching Release Function – Due to capacity constraint at
each caching buffer, caching buffer release is necessary to
avoid overflow, which is realized by transmitting a caching
notification (CN) packet upstream from one caching node to
its previous one for releasing cached packets, as shown in
Fig. 1. Time is partitioned into intervals with constant dura-
tion T (in the unit of second), and a caching node sends
a CN packet to its previous caching node in every T time
interval.

Each CN packet conveys the following information:
(1) Packet type, indicating that a packet is a caching noti-
fication packet; (2) Caching release window, showing the
sequence numbers of successfully cached packets at a caching
node during T. When a caching node receives a CN packet
from its subsequent caching node, it releases the amount
of cached packets according to the received caching release
window; (3) Caching state information, which is the avail-
able buffer size of a caching node, indicating current caching
node’s packet caching capability. Such information is also
used for in-network congestion control, to be discussed in
Section IV-D.

2) Retransmission Function: A network switch with acti-
vated retransmission function is referred to as a retransmission
node, with in-path packet loss detection and retransmission
triggering functionalities. When a retransmission node detects
packet loss, it triggers retransmission by sending a retrans-
mission request to upstream caching nodes consecutively.
If a requested data packet is recovered at a caching node,
the packet will be retransmitted from that caching node.
We refer to one caching-retransmission (CR) segment as a
network segment, including the network switches/transmission
links between two consecutive retransmission nodes, as
shown in Fig. 1. The caching and retransmission func-
tions within one CR segment cooperate to recover the
packet loss happened in this segment, so multiple seg-
ments can operate parallelly to reduce the retransmision
delay.

In the virtual network establishment, the SDN controller
makes decisions on where to activate caching or retransmission
functionality. To minimize the maximum packet retransmission

delay,3 both the ingress and egress edge switches are equipped
with the caching functionality, while the egress edge switch is
also enabled retransmission functionality. Specifically, based
on packet loss probability and available resources over each
transmission hop, the policy of activating caching and retrans-
mission functionalities is discussed in Section V. If a packet
is lost between two CR segments, the packet may be released
by the caching nodes in previous CR segment, while it has
not been received by the caching nodes in the next CR seg-
ment. Therefore, the packet loss between two CR segments
requires retransmission from the source node, which leads to
a longer delay than retransmission from in-path caching nodes.
To ensure seamlessness in packet caching, the retransmission
node of one CR segment is also the first caching node of its
subsequent CR segment.

C. Traffic Model

Traffic arrivals for services requiring high reliability and low
latency at the ingress edge vSwitch are modeled as a Poisson
process, with the consideration of temporal independence of
access requests from different users [27], [28]. The packet
arrival rate of the aggregated flow ranges from tens to a few
hundreds packets per second [27]. In each time interval of
T, the number of packets arriving at edge switch S0, denoted
by Y, follows a Poisson distribution, with mean number of
packet arrivals denoted by λ over T. It is proved in [29] that
bounds of the median of Y satisfy

λ− ln(2) ≤ median(Y ) < λ+
1

3
. (1)

With λ much greater than 1, we have median(Y ) ≈ λ, i.e.,
Pr{Y ≤ λ} ≈ 0.5.

IV. CUSTOMIZED PROTOCOL FOR TIME-CRITICAL

SERVICES

We propose a customized protocol to meet the high reliabil-
ity and low latency requirements for time-critical services. The
protocol function elements include connection establishment,
data transmission, caching-based in-path packet retransmis-
sion, and congestion control. The E2E packet delay is to
be minimized by activating these elements on demand. We
also develop an optimization framework to determine the
probabilistic caching policy, including the optimal number,
placement, and packet caching probabilities of enabled caching
nodes.

A. Connection Establishment

In conventional TCP for a packet switching network, due
to a distributed network paradigm, a three-way handshake is
required for connection establishment to ensure the reachabil-
ity of an E2E path before data transmission. However, based

3Packet retransmission delay is the time duration from the instant that a
retransmission request packet is sent (after detecting packet loss) to the instant
that a retransmitted packet is received by the request node.
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Fig. 2. The SDATP packet header format.

on the SDN architecture, the three-way handshake process can
be simplified.

(1) With the global information of network status, the SDN
controller can check the E2E path availability. This is
more efficient than the distributed signaling exchange;

(2) To prepare for data transmissions, the SDN controller
assigns the initial sequence number and acknowledge-
ment number to the end hosts;

(3) During the connection establishment, a customized E2E
routing path can be established by the SDN controller
according to certain service requirement.

Therefore, an SDN-based connection establishment mech-
anism is designed to reduce both the time consumption and
signaling overhead for the connection establishment. A two-
way handshake is applied to establish the connection for
the forward and reverse directions respectively. The detailed
procedure is presented in our previous work [1].

B. Data Transmission

1) SDATP Packet Format: To achieve efficient slice-level
data transmission, a set of new packet formats are needed.
Comparing with the conventional TCP/IP, the header format
can be simplified in SDATP, due to the SDN based in-network
transmission control. For example, the Acknowledgment field
in the conventional TCP header is used to acknowledge each
received packet. This field is removed from the SDATP packet
header, thanks to its receiver-triggered packet loss detection.
The SDATP packet header includes 24-byte required fields
and 20-byte optional fields, as shown in Fig. 2, where slice
ID consists of source and destination edge switch IP addresses
and a pair of port numbers for E2E service delivery.

For packet forwarding, the required matching fields (i.e.,
slice ID) can be extracted by the OpenFlow-switches, which
are used to match the cached flow entries for forwarding. Since
some customized functionalities are introduced in SDATP, the
header format is designed to support these new functionalities,
such as in-path caching and retransmission, and caching-based
congestion control. Therefore, in SDATP packet header, the
Flag and Optional fields are used to differentiate important
types of packets, including data packet, retransmission request
(RR) packet, retransmission data (RD) packet, and CN packet,
to support the enhanced protocol functionalities.

2) Header Conversion/Reversion: For compatibility with
end hosts, the conventional TCP is applied between an end
host and an edge switch. With the SDATP protocol for packet
transmission between edge switches, packet header conversion
and reversion for E2E communication are required, such as via
the tunneling technology [30]. When a TCP packet is sent from
the source node to the ingress edge switch, it is converted to
an SDATP data packet, by adding a new SDATP header over

the TCP header. When the SDATP packet arrives at the egress
edge switch, it is reverted to a TCP packet by removing the
SDATP header.

C. Packet Retransmission

In this subsection, we present the details of our proposed
packet retransmsission scheme, including in-path receiver-
based packet loss detection and caching-based packet
retransmission.

1) Receiver-Based Packet Loss Detection: With activated
retransmission functions, the in-network switches enable in-
path receiver-based packet loss detection for fast packet loss
recovery. If no packet loss happens, packets are expected
to be received in sequence because of the linear topology.
However, packet loss leads to enlarged time interval for con-
secutive packet reception or a series of disordered packet
reception. Accordingly, the retransmission node measures the
time intervals for consecutive packet receptions and extracts
the number of received disordered packets. Two thresholds,
named expected interarrival time and interarrival counter
threshold, are maintained at the retransmission node to detect
packet loss.

Since packet loss can happen for RR and RD packets, a
retransmission node should be capable to detect the retrans-
mitted packet loss and resend the RR packet. The detection
is realized based on the measurement of each sampled packet
retransmission delay, where the sample mean is estimated and
used as the retransmission timeout threshold. The detailed
information of how the loss detection thresholds are obtained
is given in Appendix A.

After packet loss is detected, the retransmission node sends
an RR packet upstream to its preceding caching node(s) in
its CR segment. The sequence number information used for
identifying loss packet(s) is included in the RR packet. This
information is maintained by the retransmission node through
establishing and updating an expected packet list, including
which packets are not received and how the packets are
detected to be lost. In addition, a content window list is estab-
lished and maintained to record the received packets, which is
used to update the expected packet list. More details of how
to update these two lists are given in Appendix B.

2) RD Packet Retransmissions by Caching Nodes: The
procedure of how caching and retransmission functions are
operated within one CR segment is shown in Fig. 3. For packet
loss recovery, both the first and last nodes in one CR seg-
ment are equipped with caching and retransmission functions.
After an RR packet is received by a caching node, a range
of sequence numbers and the retransmission triggering condi-
tion for the requested packets can be obtained. Based on the
sequence number information, the caching node searches from
its data caching buffer. If the requested packets are found, the
RD packets are sent out downstream. Each RD packet also
includes the timestamp from its received RR packet, which
can be used for calculating packet retransmission delay. If
current caching node cannot find the requested packets, the
RR packet is forwarded upstream to preceding caching nodes
until the requested packets are found.
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Fig. 3. An illustration of functionalities in a CR segment.

Fig. 4. Segment-level congestion control with M = 11.

D. Congestion Control

For each slice, communications between an end host and an
edge switch follow TCP, while the proposed SDATP is used
for the communications between two edge switches. Multiple
slices share communication links and switches. With busy traf-
fic flows, congestion happens when resource utilization is high,
which leads to packet loss. Thus, we use packet loss as the
indicator for congestion detection in the core network.

1) Caching-to-Caching Congestion Control: For the link
congestion problem, we introduce caching-to-caching conges-
tion control between two edge switches to mitigate congestion
as shown in Fig. 4, where only caching nodes are specified
for illustration purpose.

We define one caching-caching (CC) network segment
which includes two consecutive caching nodes and the network
switches/transmission links between them. Congestion detec-
tion for the nth (n = 1, . . . ,N − 1) CC segment is based
on CN packets sent from downstream caching node SCn+1

to
upstream caching node SCn

. From the caching release window
field of a CN packet, the upstream caching node SCn

obtains
the number of successfully received packets at caching node
SCn+1

during last T. Since SCn
determines how many packets

are transmitted during last T, the number of lost packets over
the nth CC segment, denoted by Un , is calculated. Note that
Un is updated every T, and a large value of Un indicates high
congestion over the nth CC segment. Therefore, based on the
information in a CN packet, link congestion can be detected.

An example of caching-to-caching congestion control is
given in Fig. 4, where 4 caching nodes (i.e., S0, S3, S7,

and S11) are activated, and congestion happens in the third CC
segment (i.e., between S7 and S11). Caching node S7 detects
the congestion from receiving a CN packet that indicates a
high value of U3, and starts to lower its sending rate to alle-
viate the congestion condition. Therefore, the local response
time to congestion is T. The remaining caching buffer space
of S7 is decreased because of its lowered sending rate and
the reduced number of released cached packets. Based on
CN packets sent by node S7, node S3 obtains the remain-
ing caching space of S7 and compared with a threshold. If
the remaining space is lower than the threshold, node S3 esti-
mates that caching buffer overflow likely happens at S7, and
slows down its sending rate to lower the risk. The congestion
information is spread out upstream until it reaches the ingress
edge switch (S0). After S0 estimates the potential caching
buffer overflow at S3, it reduces the sending rate, and updates
the rate of replying ACKs according to its remaining caching
buffer size.

When congestion happens, the nearby in-network caching
node detects congestion by observing packet loss. Then,
preceding caching nodes spread out the information upstream
to the source node by estimating the risk of caching buffer
overflow, which is guided by a threshold. Thus, the reaction
time to the congestion depends on the caching overflow thresh-
old. With a smaller caching overflow threshold, each preceding
caching node can achieve a faster overflow estimation, which
makes the source node exhibit a faster reaction. On the con-
trary, with a larger caching overflow threshold, the source node
will send out more packets at the premise of not aggravating
the congestion. By reducing the waiting time at the source
node, a lower E2E transmission delay can be achieved. Thus,
the caching overflow threshold is an important design param-
eter, due to its impact on both congestion reaction time of the
source node and E2E transmission delay.

V. OPTIMIZED PROBABILISTIC CACHING POLICY

To satisfy high-reliability and low-latency requirements of
services, we introduce in-path caching-based retransmission
in SDATP, which is achieved through activating caching and
retransmission functions at in-network switches. Furthermore,
to minimize the average number of packet retransmission hops,
we propose an optimized packet caching policy, to determine



762 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

caching node placement, packet caching probability, and the
number of activated caching nodes.

With the embedded network topology supporting time-
critical services shown in Fig. 1, a packet loss at the mth

link indicates that the packet has been successfully transmit-
ted through the first (m − 1) links and lost at the mth link (or
transmission hop), the probability of which is given by{

p1, if m = 1
Qs(m − 1)× qm , if m = 2, 3, . . . ,M

(2)

where qm denotes the packet loss probability over link
m (m = 1, 2, . . . ,M ) between edge switches caused by
network congestion and/or link errors, Qs(m − 1) =∏m−1

i=1 (1 − pi ) is the successful transmission probability of
a packet over the first (m − 1) transmission hops before arriv-
ing at switch Sm . Thus, the probability of packet loss between
Sm and edge switch SM is [Qs(m)−Qs (M )]. Within a time
interval of T, switch Sm successfully receives Y ·Qs(m) pack-
ets, among which Y · [Qs(m) − Qs(M )] packets are lost on
average between Sm and SM .

For packet retransmission, both the delay and transmission
resource consumption are proportional to the required retrans-
mission hops (RRHs). Thus, we describe the performance of
in-path caching-based retransmission in terms of RRH num-
ber in one T. Specifically, the benefit achieved by exploiting
in-path caching nodes is the eliminated RRHs compared with
no in-path caching nodes.

To improve the caching efficiency, packets can only be
cached once, indicating the already cached packets cannot
be cached again. Thus, the probability of a packet cached
at SCn

after passing through a sequence of caching nodes
{SCi

, i = 1, 2, . . . ,n − 1} is given by

Pt (Cn ) =

{
Pc(Cn ), if n = 1∏n−1

i=1 [1− Pc(Ci )] · Pc(Cn ), if n = 2, 3, . . . ,N ,

(3)

where Pc(Cn ) denotes the caching probability of a packet
passing through caching node SCn

.
With in-path caching, if a packet cached at SCn

is lost
and is requested for retransmission, it can be retransmitted
by caching node SCn

. Otherwise, it needs to be retransmitted
from the ingress edge switch. Compared to the case without
in-path caching, at least Cn transmission hops can be avoided
for each packet retransmission. With caching buffer capac-
ity BCn

(i.e., maximum number of cached packets) allocated
to SCn

, the number of packets that can be cached at SCn
is

min [Y · Qs(Cn ) · Pt (Cn ),BCn
]. Then, the reduction in the

average number of RRHs for packets cached at SCn
during T

is given by

H (Cn ) = min[YQs(Cn )Pt (Cn ),BCn ]
Qs(Cn )−Qs(M )

Qs(Cn )
Cn .

(4)

A. Problem Formulation

The performance gain is represented by a ratio of the total
number of eliminated RRHs for packets cached at all caching

nodes to the total number of RRHs for all lost packets without
in-path caching. That is,

∑N
n=1 H (Cn )

Y · [1−Qs(M )] ·M

=

∑N
n=1 min[Y ·Qs(Cn ) · Pt (Cn ),BCn ]

Qs (Cn )−Qs (M )
Qs (Cn )

· Cn

Y · [1−Qs(M )] ·M .

(5)

Since Y is a random variable, we calculate the expectation
of (5) as

G(N ) = E

{ ∑N
n=1 H (Cn )

Y · [1−Qs(M )] ·M

}

=

∑N
n=1

Qs (Cn )−Qs (M )
Qs (Cn )

CnE

{
min

[
Qs(Cn )Pt (Cn ),

BCn
Y

]}
[1−Qs(M )] ·M

(6)

where E{·} is the expectation operation. In (6), we have

E

{
min

[
Qs(Cn ) · Pt (Cn ),

BCn

Y

]}

= F (Cn ) ·Qs(Cn ) · Pt (Cn ) + BCn ·
∞∑

k=R(Cn )+1

1

k
· λ

k

k !
e−λ

(7)

where F (Cn ) denotes the caching buffer non-overflow prob-
ability (i.e., caching reliability) at switch SCn

, given by

F (Cn ) = Pr{YQs(Cn )Pt (Cn ) ≤ BCn
}

= Pr{Y ≤ R(Cn )}. (8)

For Y is limited by the caching buffer capacity of SCn
, the

traffic rate upper bound, R(Cn ) is given by

R(Cn) =

⌊
BCn

Qs(Cn) · Pt (Cn )

⌋
(9)

where �·� is the floor function.
It is indicated in (5) that the performance gain depends

on the in-path caching policy. Therefore, to minimize the
average packet retransmission delay (i.e., to maximize G(N)),
we consider to optimize the number of enabled caching
nodes, N, caching function placement indicated by C(N ) =
{C1,C2, . . . ,CN }, and the set of packet caching probabilities
P(N ) = {Pt (C1),Pt (C2), . . . ,Pt (CN )}. The optimization
problem for probabilistic caching is formulated to maximize
G(N) as

(P1) : max
N ,C(N ),P(N )

G(N )

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ≤ N ≤ M − 1,N ∈ Z+ (10a)

1 ≤ C1 < C2 < · · · < CN ≤ M − 1 (10b)

Cn ∈ Z+,n = 1, 2, . . . ,N (10c)

0 < Pc(Cn ) ≤ 1,n = 1, 2, . . . ,N . (10d)

This optimization problem is an MINLP problem and is dif-
ficult to solve due to high computational complexity. In the
following, based on design principles for P(N ), we derive
P(N ) in terms of N and C(N ), upon which (P1) can be
simplified with a reduced number of decision variables.
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There are two principles for determining P(N ): 1) All trans-
mitted packets should be cached in path between the edge
switches (i.e., Pc(CN ) = 1 and

∑N
n=1 Pt (Cn ) = 1), which

guarantees that all lost packets can be retransmitted from
in-path caching nodes; 2) The caching buffer overflow prob-
abilities at all caching-enabled switches should be equal, in
order to balance the caching resource utilization at different
in-path caching nodes.

To satisfy principle 2), R(Cn ) (or F (Cn )) is the same for
all n ∈ {1, 2, . . . ,N }. Thus, we use RN and FN to represent
R(Cn ) and F (Cn ) for simplicity. Based on (9), Pt (Cn ) is
given by

Pt (Cn ) =
BCn

Qs(Cn ) · RN
(11)

and the summation of Pt (Cn ) over all caching nodes is

N∑
n=1

Pt (Cn) =

N∑
n=1

BCn

Qs(Cn ) · RN

=
1

RN
·

N∑
n=1

BCn

Qs(Cn )
= 1. (12)

Therefore, RN is expressed as

RN =

N∑
n=1

BCn

Qs(Cn )
(13)

and FN is calculated based on (13) as

FN = Pr{Y ≤ RN } =

RN∑
k=0

λk

k !
e−λ. (14)

Based on (11) and (13), P(N ) is expressed as a function
of N and C(N ), and (P1) is simplified in terms of decision
variables.

To further reduce the problem complexity, we simplify the
objective function of (P1) through algebraic manipulation.
In (P1), G(N) is a summation of Gr (N ) and Go(N ), which
represents a combination of performance gains in caching
buffer non-overflow and overflow cases, respectively. Thus,
we obtain Gr (N ) and Go(N ) as

Gr (N ) =

∑N
n=1[Qs(Cn)−Qs(M )] · Cn · BCn

Qs (Cn )

[1−Qs(M )] ·M ·∑N
n=1

BCn
Qs (Cn )

· FN (15)

and

Go(N ) =

∑N
n=1[Qs(Cn )−Qs(M )] · Cn · BCn

Qs(Cn )
·A

[1−Qs(M )] ·M (16)

where A =
∑∞

k=RN+1
1
k · λk

k ! e
−λ. Since the calculation of

infinite series in A incurs high computational complexity, we
calculate its lower and upper bounds, denoted by Al and Au .
We first determine Al as

Al =

∞∑
k=RN+1

1

k + 1
· λ

k

k !
e−λ =

1

λ

∞∑
k=RN+2

λk

k !
e−λ

=
1

λ
(1− FN − Pr{Y = RN + 1}). (17)

Then, we have

A− Al =

∞∑
k=RN+1

(
1

k
− 1

k + 1

)
· λ

k

k !
e−λ

<
1

λ
· 1

RN + 1

∞∑
k=RN+2

λk

k !
e−λ

=
Al

RN + 1
. (18)

From (18), the upper bound of A is derived as

A < Al +
Al

RN + 1
= Al ·

RN + 2

RN + 1
= Au . (19)

With Al , the lower bound of Go(N ) is expressed as

Go,l (N ) =

∑N
n=1[Qs(Cn )−Qs(M )] · Cn · BCn

Qs(Cn )

[1−Qs(M )] ·M · λ
× (1− FN − Pr{Y = RN + 1}). (20)

Using Au , the upper bound of Go(N ) is calculated as

Go,u (N ) =
RN + 2

RN + 1
·Go,l (N ). (21)

When the caching buffer overflow happens at SCn
, some

cached packets are dropped from the buffer. Later on, if the
retransmission requests are triggered for those cached pack-
ets, the packets need to be retransmitted from the ingress
edge switch, which requires Cn hops more than that if
retransmitted from SCn

. Also, the caching resources for
those overflowed packets at SCn

are wasted without any
performance gain. Since caching buffer overflow leads to
a decrease of performance gain and a wastage of caching
resources, the caching buffer non-overflow probability FN
for the optimal caching strategy tends to 1. Hence, RN is
expected not to be less than λ, which is the median of Y
as discussed in Section III-C. With λ ranging from tens to
hundreds of packets per T, the gap between Go,u (N ) and
Go,l (N ) is small. Therefore, we use Go,l (N ) to estimate
Go(N ). Then, the objective function G(N) in (P1) is simplified
to Gr (N ) +Go,l (N ), and (P1) is transformed to

(P2) : max
N ,C(N )

Gr (N ) +Go,l (N )

s.t.

⎧⎪⎨
⎪⎩

1 ≤ N ≤ M − 1,N ∈ Z+ (22a)

1 ≤ C1 < C2 < · · · < CN ≤ M − 1 (22b)

Cn ∈ Z+,n = 1, 2, . . . ,N . (22c)

B. Optimized Probabilistic Caching

By solving (P2), an optimal number of caching nodes,
N, and its corresponding C(N ) can be obtained to
maximize G(N). However, (P2) is a nonlinear integer pro-
gramming problem, which is difficult to solve [31]. For
tractability, we design a low-complexity heuristic algorithm
as Algorithm 1 to jointly optimize N and C(N ).

If a caching node is placed near the receiving node, a
large number of retransmission hops (Cn ) is avoided for
each individual retransmitted packet, but the cached packets
experience a low caching efficiency (i.e., the probability of
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Algorithm 1 The Probabilistic Caching Algorithm

Input: Loss probability {q1, q2, ..., qM }, caching buffer
resource {B1,B2, ...,BM−1};
Traffic load information, packet arrival rate λ

Output: Caching placement set C(N ∗) and caching proba-
bility set P(N ∗)

1: Initialization: Set performance gain G∗ to 0
2: Calculate Wm for each in-network switch
3: Rank Wm in a descending order
4: for N = 1:M − 1 do
5: Find N switches with largest Wm

6: Get the index set as caching node set C(N )
7: Calculate G(N ) for C(N ) based on (15) and (20)
8: if G(N ) > G∗ then
9: Set N ∗ to N

10: Set C(N ∗) to C(N )
11: Set G∗ to G(N )
12: end if
13: end for
14: Calculate caching probability P(N ∗) with N ∗ and C(N ∗)

based on (11) and (13)

being requested for retransmission). Therefore, for caching
placement C(N ), there is a trade-off between the reduced
retransmission hops and the caching efficiency. In terms of
the number of caching nodes, a large value of N means more
caching resources are available to guarantee a low caching
buffer overflow probability. However, packets are distributively
cached at caching nodes, with decreased caching resource uti-
lization. A maximal G(N) can be achieved through balancing
the trade-off between the buffer overflow probability and the
utilization of caching resources of switches.

Specifically, we define caching weight Wm for in-network
switch Sm as the product of its caching efficiency, reduced
retransmission hops of one cached packet (m), and caching
buffer size (Bm ) to represent its contribution to the overall
performance gain. That is

Wm =
[Qs(m)−Qs(M )]

Qs(m)
·m · Bm (23)

where the caching efficiency of Sm is given by
[Qs(m)−Qs(M )]

Qs(m)
. The higher the value of Wm , the greater

the contribution. Therefore, the caching nodes are selected
based on Wm in our proposed probabilistic caching algorithm
(Algorithm 1). Given N, C(N ) is determined in line 5 and
line 6 of Algorithm 1, and G(N) is calculated based on (15)
and (20). Then, we iterate N to find the N value that achieves
the maximal G(N) (from line 8 to line 12).

C. Time Complexity

The time complexity for calculating [Gr (N ) + Go,l (N )]
in (P2), which linearly increases with the number of
caching nodes N, i.e., O(N ). Based on Algorithm 1,
[Gr (N ) + Go,l (N )] in (P2) is calculated for each
N (N = 1, 2, . . . ,M − 1). Thus, the time complexity is given

Fig. 5. Simulation platform for the proposed protocol to support time-critical
service.

Fig. 6. Network topology for time-critical service.

by

M−1∑
N=1

O(N ) = O
(
M−1∑
N=1

N

)
= O

(
M 2
)
. (24)

For the brute-force method, there are CN
M−1 candidate sets

for caching placement for a given N value, and [Gr (N ) +
Go,l (N )] needs to be calculated for each candidate set.
Therefore, the total time complexity is derived as

M−1∑
N=1

CN
M−1 · O(N ) = O

(
M−1∑
N=1

(M − 1)!

N !(M − 1− N )!
· N
)

= O
(
M · 2M

)
. (25)

Compared with the brute-force method, our proposed proba-
bilistic caching policy generates a solution with a much lower
time complexity.

VI. NUMERICAL RESULTS

To demonstrate the effectiveness of the proposed SDATP,
both analytical and simulation results are presented in this
section. The SDN-based network architecture is shown in
Fig. 5, in which two separated virtual machines, with 8 GB
physical memory and 12 virtual processors, are utilized to
simulate the data and control planes, respectively. In the data
plane, the network elements are emulated by Mininet, includ-
ing end hosts, edge/in-network switches, and transmission
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Fig. 7. Scheme adaptiveness to the packet arrival rate: a) caching node placement and performance gain; b) normalized caching weight for each node.

TABLE II
SIMULATION PARAMETERS

links [32]. Both edge and in-network switches are OpenFlow
vSwitch [33]. In the control plane, the SDN controller is imple-
mented by the Ryu framework [34]. For the SDN southbound
interface, we use OpenFlow version 1.3.0 [35] for simulation.

An SDN-based linear network topology is deployed for
supporting a time-critical service flow, as shown in Fig. 6,
where two E2E source-destination node pairs, (A.1, B.1)
and (A.2, B.2), are connected via eleven switches (two edge
switches and nine core network switches) under the SDN con-
trol. Traffic flows from both source nodes are aggregated at
edge switch S0 and are then sent to corresponding destination
nodes through egress edge switch S10. A detailed simulation
setting is given in Table II. The caching function is activated
at ingress edge switch, S0, while both caching and retrans-
mission functions are activated at egress edge switch, S10. In
addition, in-path functions are activated based on the proposed
caching placement scheme in order to adapt to varying network
conditions.

A. Adaptive Probabilistic Caching Policy

We evaluate the adaptiveness of the proposed probabilistic
caching policy with respect to the varying packet arrival rate.
Analytical results are obtained using MATLAB, where link
packet loss rates and switch caching buffer sizes are set using
parameters in Table II.

The number of active devices (e.g., activating devices in
smart alarming system) varies with time, leading to different

traffic volumes during peak and off-peak hours. To evaluate
the adaptiveness of probabilistic caching policy, we vary the
packet arrival rate of an aggregated flow, from 10 packets per
T to 90 packets per T. The performance gain defined in (6)
indicates the improvement of using in-path caching on the
reduced number of retransmission hops. Given packet arrival
rate, the caching policy (i.e., caching placement and caching
probability) is shown in Fig. 7(a). The caching nodes with nor-
malized weight Wm(m = 1, 2, . . . ,M − 1) are differentiated
by colours as shown in Fig. 7(b). The height of each coloured
bar in Fig. 7(a) denotes the caching probability (i.e., Pt (Cn )
in (3)) of a specific node. To ensure all transmitted packets
are cached in path, the summation of caching probabilities
equals to 1. It shows that more caching nodes are activated
upon a traffic load increase, which is necessary to guarantee
caching reliability. However, to accommodate the increasing
traffic, some nodes with a small weight are selected, which
leads to a decreased performance gain.

We also compare the proposed policy with two other in-path
caching policies, called RP and HP policies. In RP policy, the
in-path caching nodes are randomly selected. In HP policy,
the nodes immediately before the links with high packet loss
probability are activated as in-path caching nodes. Given the
packet arrival rate is 50 packets per T, caching placement and
packet caching probability for each node are designed based
on the proposed probabilistic caching (PC) algorithm, RP, and
HP methods. In addition, we compare the PC method with a
modified PC (MPC), in which each packet can be cached at
multiple locations. For the proposed PC scheme, the number of
activated caching nodes is 4, and nearly 24% of retransmission
hops can be avoided as shown in Fig. 8, which outperforms the
other three methods. In addition, since PC outperforms MPC,
it is reasonable that we make each packet only be cached
once over the network path between the edge switches in the
simulated networking environment.

To evaluate the accuracy of proposed algorithm, we com-
pare the performance gain of the PC policy and the optimal
policy achieved by brute-force algorithm shown in Fig. 9,
where packet arrival rate is 30 packets per T. It shows that
the optimal number N ∗ of activated caching nodes exists and
the gap of optimal performance gains between the PC policy
and the brute-force method is small. We also demonstrate the
performance gain through simulations. It can be seen that the
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Fig. 8. Performance gain achieved by different methods.

Fig. 9. Performance gain versus number of caching nodes.

simulation results closely match the analytical results under
different number of caching nodes.

B. E2E Packet Delay

The E2E packet delay of our proposed SDATP is compared
with that of TCP. We compare the average E2E delay (i.e., the
duration from the time instant that a packet is sent from the
source node till the instant that it is received by the destination
node, averaged over all received packets) between SDATP and
TCP for packets sent from A.1 to B.1. Two scenarios are con-
sidered: a) Packet loss happens due to link errors; b) Packet
loss happens due to congestion. Based on the link propagation
delay setting, the E2E delay for packet transmission, assuming
no packet loss happens, is 120 ms, which is the lower bound
of the E2E packet delay. Due to time consumed in packet loss
detection and packet retransmission, the average E2E delay in
both scenarios are larger than 120 ms.

1) Packet Loss Due to Link Errors: Fig. 10 shows the aver-
age E2E delay of TCP and SDATP when the E2E packet
loss rate varies, where packet loss rate between a user and an
edge switch ranges from 0% to 1% and between in-network
switches is 0.05%.

It is observed that SDATP achieves a shorter average E2E
delay than that of TCP. For TCP, packet loss is detected
at the source, with an E2E round trip packet transmission
time, before a packet retransmission is performed. For SDATP,
the in-path caching-based retransmission enables packet loss
detection within a CR segment. The time duration for loss
detection and retransmission triggering is much shorter than

Fig. 10. A comparison of average E2E packet delay between TCP and
SDATP without congestion.

Fig. 11. A comparison of average E2E packet delay between TCP and
SDATP with congestion.

the E2E round trip time, leading to a shorter average E2E
delay.

2) Packet Loss Due to Congestion: Consider that packet
loss over all links in the network are due to congestion. The
transmission rate over the physical link between S5 and S6 is
denoted by C Mbps. We set C smaller than 5 Mbps such that
congestion can happen due to transmission bottleneck between
S5 and S6.

Fig. 11 shows a comparison of the average E2E delay
between TCP and SDATP, where C varies from 0.5 Mbps to
3 Mbps to indicate different levels of congestion. For SDATP,
the locations of congestion and caching nodes have impact
on both congestion control and retransmission performance.
Therefore, we place the caching nodes before (i.e., at S3
and S5) and after (i.e., at S6 and S8) the congestion link,
respectively. When C varies from 0.5 Mbps to 2 Mbps, the
congestion condition is severe, and packets are lost frequently
due to data buffer overflow. Compared with TCP, the average
E2E packet delay is reduced for SDATP due to early packet
loss detection and shortened packet retransmission delay, as
shown in Fig. 11. Moreover, placing caching nodes after the
congestion link outperforms placing before the congestion,
since the congestion is detected earlier by S0, with CN pack-
ets sent from S6. However, when the congestion level is low
(i.e., C varies from 2.5 Mbps to 3 Mbps), SDATP has a higher
average E2E packet delay than that of TCP, due to time con-
sumption for packet caching in SDATP. In contrast to heavy
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congestion, placing caching nodes before the congestion link
acheives better performance, due to fast packet retransmission
from S5.

VII. CONCLUSION

In this paper, we propose an SDN-based traffic adap-
tive transport-layer protocol for customized services with low
latency and high reliability requirements in 5G core networks.
With SDN, in-network intelligence is enabled in SDATP,
such as in-path caching-based retransmission and in-network
caching-based congestion control. To further enhance the
SDATP performance, we jointly optimize the placement and
packet caching probability for enabled caching nodes to reduce
retransmission hops. Due to the high computational complex-
ity in solving the problem, we propose a low-complexity
heuristic algorithm to achieve the solution. We evaluate the
adaptiveness of SDATP, and show that high performance gain
can be achieved under a varying traffic load. The proposed
probabilistic caching scheme outperforms three other in-path
caching schemes in reducing retransmission hops. Simulation
results are also presented to demonstrate the advantages of
the proposed SDATP over the conventional TCP in terms
of E2E packet delay for both link error and link congestion
cases. For future work, we will design an adaptive in-network
caching policy for uncertain network dynamics. Model-free
machine learning methods (e.g., reinforcement learning) will
be considered for the policy development.

APPENDIX A
THRESHOLDS FOR PACKET LOSS DETECTION

We provide details of how packet loss is detected based
on the threshold design. Specifically, a packet loss detection
depends on the measurements of the time intervals for consec-
utive packet receptions (denoted by InterTime) and the number
of received disordered packets (denoted by InterCnt), while
retransmission delay is measured for retransmitted packet loss
detection. If at least one of these measurements exceeds
corresponding threshold, a packet loss is detected.

Interarrival Timeout – The time interval between consecu-
tive packet receptions is interarrival time, which indicates the
conditions of link congestion and packet loss. At a retransmis-
sion node, there is an elapsed timer initiating at the instant of
receiving a packet. If time duration is longer than a thresh-
old, expected interarrival time, a packet loss is detected due
to interarrival timeout. We obtain the expected interarrival
time by linear prediction, based on sampled interarrival time
durations at the retransmission node.

Interarrival Counter Threshold – Since the packets from one
service slice are forwarded following the linear topology, out-
of-order packet reception at a retransmission node indicates
packet loss. After a packet loss is detected by a retransmission
node, an RR packet is sent from the retransmission node to its
upstream caching nodes, and an RD packet will be generated
and sent by a caching node. When the RD packet is received
by the downstream retransmission nodes, it leads to out-of-
order packet reception. Thus, a retransmission node can detect

packet loss depending on the level of packet disorder (i.e.,
packet disorder length).

To avoid spurious packet loss detection, the retransmission
nodes should estimate an updated packet disorder length as
threshold for InterCnt in the expected list. To do so, each
retransmission node needs to determine where a packet loss
actually happens. If the packet loss happens in its own seg-
ment, the retransmission node sends an RR packet to trigger
retransmission; otherwise, the retransmission node estimates
an updated disorder length for a retransmitted packet to avoid
duplicate retransmissions. The updated disorder length is set
as the interarrival counter threshold (CntThres) for the packet
in the expected packet lists.

Based on signaling exchange with other retransmission
nodes, one retransmission node can update the packet-level
thresholds that are differentiated for each packet. To reduce
the signaling overhead, the retransmission node can also obtain
the segment-level threshold through sampling and estimation,
based on the InterCnt of received out-of-order packets.

Retransmission Timeout – After packet loss is detected, RR
and RD packets are transmitted for loss recovery. Since packet
loss can happen to both RR and RD packets, the node that
triggers a retransmission should be able to detect the retrans-
mitted packet loss and resend an RR packet. To detect the
loss, we use the expected retransmission delay as a threshold
for RTTimer in the expected list, in which the estimation is
based on the sampled packet retransmission delay. The time of
sending an RR packet is recorded in its timestamp field, and
is included in the corresponding RD packet when it is gen-
erated. When the RD packet is received at a retransmission
node, the retransmission delay is calculated, i.e., the duration
from the time instant the RR packet is sent till the instant the
RD packet is received. The calculation of thresholds, including
the expected interarrival time, packet-level and segment-level
CntThres, and the expected retransmission delay, is presented
in detail in our previous work [1].

APPENDIX B
TERMINOLOGY FOR PACKET LOSS DETECTION

After the connection establishment, a content window list
is established and maintained at each retransmission node, to
record the packets successfully received at the node. At the
same time, an expected packet list is established to record the
packets that are expected to be received at the retransmission
node. If packet loss is detected, contents in the expected packet
list are referred for triggering packet retransmissions.

Content Window List – In the content window list, pack-
ets received in sequence are described by one window. Each
window is bounded by its left edge and right edge, which
indicate the first sequence number and the next expected
sequence number of the received packets respectively. Thus,
the sequence numbers of sequentially received packets lie
between left edge and right edge of one content window. Due
to packet loss, the packets may not be received in sequence,
and a new window is generated in the list. Whenever a new
packet is received, the content window list is updated by the
retransmission node.



768 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

Expected Packet List – To record the information of packets
that are expected by a retransmission node, the expected packet
list has following fields:

(1) Num – When packets are lost discontinuously, expected
packets are in separated packet windows, which are
described by different entries in the expected list. The
Num field represents the sequence of the entries;

(2) StartSeq and EndSeq – Specify an sequence number
interval with a start and an end sequence numbers;

(3) StartNum – Indicate the number of packet offset between
the target packet and the packet with StartSeq as its
sequence number;

(4) InterCnt – Record how many packets have been received
after the last sequentially received packet, when packets
are received discontinuously;

(5) CntThres – Indicate the threshold set for InterCnt in
packet loss detection;

(6) WaitLen – Measure the difference between CntThres and
InterCnt;

(7) RTCnt – Record the number of retransmission requests
sent for lost packets;

(8) RTType – Indicate how packet loss is detected by
packet interarrival time exceeding a timeout, InterCnt
greater than CntThres, or the duration from triggering
the retransmission request to receiving the retransmitted
packet exceeding a timeout;

(9) RTTimer – Denote an elapsed timer starting from the
time instant of sending a retransmission request. If this
time duration is larger than a retransmission timeout,
another retransmission request of the lost packet is
triggered.

The expected packet list is established based on the corre-
sponding content window list at a retransmission node. For
each entry in the expected packet list, StartSeq is set as the
value in the right edge field of corresponding content window,
and EndSeq is set as the maximum sequence number less than
the left edge of its subsequent content window. In the case of
a determined EndSeq, the packets with the sequence num-
bers lying between StartSeq and EndSeq are expected; In the
case of an undetermined EndSeq (set as infinity), the expected
packet is located by using StartSeq and StartNum. As the end
sequence number for the last content window cannot be deter-
mined, we set StartNum as 0 to indicate the expected packet
after the last content window. When a new entry is established,
we initialize CntThres and WaitLen to 1, and the other fileds
to 0.

When a caching node receives an RR packet from a retrans-
mission node, it generates an RD packet whose header includes
the StartSeq and StartNum information from the received RR
packet. When receiving the RD packet, the retransmission
node not only uses the RD sequence number, but also uses
the StartSeq and StartNum pair to match the entries in the
expected packet list. After an entry in the list is matched,
it is removed from the list, indicating that the RD packet
is successfully received. If the packet interarrival time at a
retransmission node is longer than a threshold, indicating con-
secutive packet loss, the expected packets after the last entry of
the content window list will be requested for retransmission

one by one. StartSeq and StartNum in the expected packet
list are used to locate each expected packet. Whenever packet
loss is detected due to packet interarrival timeout, a new entry
is added to the expected packet list, where StartSeq remains
unchanged, and StartNum is incremented by one (pointing to
the subsequent expected packet).

The header format of an SDATP packet is shown in
Fig. 2, in which the Flag field indicates whether an RR
packet is triggered by interarrival timeout, exceeding an inter-
arrival counter threshold, or is triggered by retransmission
timeout. For packet loss detected by exceeding interarrival
counter threshold and retransmission timeout, both StartSeq
and EndSeq are specified in the RR packet, indicating the
range of sequence numbers of lost packets. For packet loss
detected by interarrival timeout where EndSeq is unknown,
StartSeq and StartNum in the RR packet are used to locate a
specific expected packet for retransmission. The time instant
of generating this RR packet is represented by the Timestamp
field.

Data traffic from different slices may go though a common
network switch sharing a set of resources. However, each slice
has an independent set of content window list, expected packet
list, and the associated parameters and variables maintained at
each retransmission node.
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