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Abstract—In this article, a learning-based proactive resource
sharing scheme is proposed for the next-generation core commu-
nication networks, where the available forwarding resources at
a switch are proactively allocated to the traffic flows in order
to maximize the efficiency of resource utilization with delay
satisfaction. The resource sharing scheme consists of two joint
modules, estimation of resource demands and allocation of avail-
able resources. For service provisioning, resource demand of each
traffic flow is estimated based on the predicted packet arrival
rate. Considering the distinct features of each traffic flow, a linear
regression algorithm is developed for resource demand estima-
tion, utilizing the mapping relation between traffic flow status and
required resources, upon which a network switch makes decision
on allocating available resources for delay satisfaction and effi-
cient resource utilization. To learn the implicit relation between
the allocated resources and delay, a multi-armed bandit learning-
based resource allocation scheme is proposed, which enables fast
resource allocation adjustment to traffic arrival dynamics. The
proposed algorithm is proved to be asymptotically approaching
the optimal strategy, with polynomial time complexity. Extensive
simulation results are presented to demonstrate the effective-
ness of the proposed resource sharing scheme in terms of delay
satisfaction, traffic adaptiveness, and resource allocation gain.

Index Terms—Delay requirements, efficient resource allocation,
proactive resource sharing, traffic dynamics, multi-armed bandit
learning.

I. INTRODUCTION

THE PROLIFERATION of new applications has placed
significant pressure on service provisioning in future core

communication networks beyond the fifth generation (5G).
Some applications are delay-sensitive with strict requirements
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that are challenging to satisfy. For instance, video confer-
encing requires low latency and high reliability to ensure
interactivity and video quality. To meet these requirements,
the utilization of buffer spaces at each network switch needs
to be properly controlled. Specifically, the dominant contribut-
ing factor for end-to-end (E2E) packet transmission delay is
the delay for packet queuing at network switches, and the
packet loss is mainly caused by buffer overflow during network
congestion [1].

Recently, some congestion control methods are proposed
to meet the stringent quality-of-service (QoS) requirements,
e.g., performance-oriented congestion control (PCC) [2] and
BBR [3], both of which are implemented at the packet
source node, to adjust sending rate based on the observed
E2E performance (e.g., achieved goodput, packet loss rate,
and average latency). On the other hand, in-network conges-
tion control schemes (e.g., active queue management (AQM))
adjust the queue lengths at switches by dropping or marking
packets [4]. In [5], the interplay of end congestion control
and in-network AQM is investigated to enable real-time Web
browsing. A variation of BBR is proposed for a multi-path
transmission scenario [6]. Congestion control schemes in gen-
eral assume a fixed amount of forwarding resources for the
traffic flow of each service (i.e., an aggregation of packets of
the same service type being transmitted from a source node to
a destination node). To guarantee QoS satisfaction for different
applications, resource over-provisioning is usually the case to
support the peak traffic volume, while resource multiplexing is
exploited among traffic flows of different services to improve
QoS with efficient resource utilization.

To support delay-sensitive services, packet transmission
delay in core networks should be minimized, in order to
meet the E2E delay requirement. The delivery delay of each
service flow in core networks is determined by the routing
path and the allocated forwarding resources at each switch
on route. Software-defined networking (SDN) is an emerging
technology to enhance the routing performance in the next-
generation core networks, in which the routing path for packet
transmission can be customized and optimized for different
services [7], [8]. Specifically, the SDN controller calculates the
routing path for each traffic flow and distributes the flow tables
to all the related switches, thereby guiding the packet forward-
ing. In addition, the SDN controller can calculate the average
delay of packets traversing each switch [9], [10], which can
be utilized to configure the per-hop delay requirement. Given
the routing path, the amount of allocated forwarding resources
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at each passing switch collectively determines the E2E delay
of a traffic flow. The decomposition of E2E delay require-
ment enables the development of a per-hop resource allocation
solution. Compared with an E2E solution, a per-hop resource
allocation solution can be more flexible when dealing with
varying network conditions.

To satisfy the decomposed per-hop delay requirement with
efficient resource utilization, each switch makes decision on
resource sharing among traffic flows. Delay requirements for
per-hop packet transmission are taken into account by wait
time priority (WTP) [11] and earliest due date (EDD) [12]
algorithms. In using the algorithms, the switch makes deci-
sion each time that a packet is forwarded. Considering the
high forwarding rate of core network switches, flow-level
resource sharing schemes with lower computational complex-
ity are investigated for fairness and delay requirements, such
as weighted fair queuing (WFQ) [13] and deficit round robin
(DRR) [14], [15]. To adapt to varying traffic and network con-
ditions, dynamic WFQ updates the allocation of resources at
the beginning of each resource sharing interval [16], where the
resource allocation decisions are made based on the estima-
tion of average packet queuing delay in the upcoming interval.
For supporting applications with stringent delay requirements,
resource allocation is expected to be conducted for delay sat-
isfaction of individual packets. Furthermore, if the resource
sharing is conducted in line with packet arrival instants, the
QoS can be degraded due to burst of traffic in the upcoming
resource sharing interval. Hence, a proactive resource sharing
and packet scheduling solution potentially can help timely QoS
enhancement based on traffic prediction [17], [18]. Different
from the packet-level decision made based on traffic charac-
teristics, estimating resource demand is required for flow-level
resource sharing decisions. Thus, to accommodate the large
data volume and traffic fluctuations in future core communi-
cation networks while achieving efficient resource utilization,
we resort to generalized traffic prediction and resource demand
estimation to develop a proactive resource sharing scheme.

To support delay-sensitive applications in a dynamic
networking environment, learning-based scheduling algo-
rithms are investigated [19], [20]. To be adaptive to traffic
dynamics, the resource scheduler applies machine learning
techniques to categorize traffic flows with different characteris-
tics [21]. Based on instantaneous system states (e.g., number
of arrived packets and resource occupancy), different deci-
sions on allocating resources are made by the learning module,
such as reinforcement learning (RL) [22], deep Q network
(DQN) [23], and stacked auto-encoder (SAE) deep learn-
ing [24], through which the implicit relation between the
allocated resources and the achieved QoS satisfaction can be
learned. Due to the distinct delay requirements of applica-
tions, different models (e.g., parameters of neural networks)
are trained to capture the relations between resource alloca-
tion and QoS performance separately, which leads to increased
computational cost. To incorporate a large number of flows
in the core communication networks, a resource sharing
algorithm implemented at in-network switches needs to be
effective in achieving satisfactory QoS performance with low
computational complexity.

In this work, we aim at developing a lightweight online
resource demand estimation model for adaptive resource shar-
ing. The resources are for packet forwarding at the egress
port of a network switch. On the basis of resource demand
estimation to accommodate differentiated delay requirements
of different flows, a learning module is developed to learn the
relation between allocated resources and achieved QoS for dis-
tinct applications. Based on the information of flows (including
estimated resource demand, predicted traffic load and resource
occupancy), a resource allocation module facilitates resource
sharing among flows to achieve maximal overall QoS satisfac-
tion, with the consideration of tradeoff between exploitation
and exploration. The multi-armed bandit (MAB) framework
has a potential to balance the exploration-exploitation trade-
off, in resource allocation [25], data offloading decision [26],
and beam alignment [27] in wireless networks. In the MAB
framework, the player makes sequential decisions, choosing
one from the arm set each time to maximize the obtained
reward. The player focuses on exploiting the most rewarding
arms based on historical performance or pulling new arms for
exploration. Upper confidence bound (UCB) [28] is used to
balance the exploitation-exploration tradeoff for bandit prob-
lems, which provides theoretical confidence bound of regret. In
the resource sharing problem, the amount of resources allo-
cated to each flow can be formulated as an arm, while the
obtained QoS satisfaction is the reward for pulling the arm.
The resource demand can also be considered as the guide for
resource sharing, which provides context information of each
arm. Thus, the resource sharing is a feature-based exploration-
exploitation problem, which can be formulated as a contextual
bandit problem [29].

In this article, we aim at maximizing the efficiency of
resource sharing at a switch (i.e., the ratio of delay sat-
isfaction to the allocated resources), and propose a bandit
learning-based proactive forwarding resource sharing scheme,
which maps the delay requirement and packet arrivals of each
traffic flow to forwarding resource demand. Then, the avail-
able resources are allocated to those traffic flows accordingly.
The resource allocation is formulated as a bandit learning
problem and a regret bounded allocation strategy is developed,
which is shown to be efficient in resource utilization. We con-
sider the resource sharing at a software-programmable switch,
which is capable of supporting virtual network functions and
packet processing functions, in addition to packet forward-
ing [30], [31]. The main contributions of this article are
summarized in the following:

(1) Resource sharing framework – We develop a learning-
based framework to make resource sharing decisions at
each switch. In this framework, the resource demand is
firstly extracted as a service feature, by considering both
traffic arrivals and delay requirements. Then, the switch
allocates an optimal amount of available resources to
different traffic flows based on their features;

(2) Resource demand estimation – We propose an online
resource demand estimation module in the resource
sharing framework, which combines a linear regression
model with an online gradient descent method. Utilizing
the linear mapping relation between traffic loads and
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Fig. 1. Illustration of packet transmission at a switch.

the required forwarding resources, the resource demand
for each flow at a switch is estimated based on traffic
prediction and its per-hop delay requirement;

(3) Allocation of available resources – We design a MAB-
based allocation of available resources scheme in the
resource sharing framework. Based on the estimated
resource demand, the available resources are allocated to
the flows accordingly. Using the measured delay as feed-
back, the parameters of the proposed learning module
are updated.

The remainder of this article is organized as follows. The
system model is described and the research problem is formu-
lated in Section II. In Section III, the learning-based available
resource sharing solution is presented. The performance eval-
uation and comparison are given in Section IV. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Traffic flows of different services traverse a sequence of
network switches in core networks before reaching their des-
tinations for E2E service delivery. A network switch refers to
a software switch, e.g., an openflow switch, centrally managed
by an SDN control module in the core networks [32], [33].
An openflow switch is capable of both layer 2 and layer 3
network functionalities, depending on whether the device is
located within a local area network or is interconnecting two
public network segments. The E2E delay requirement for each
traffic flow is considered, which is composed of the per-hop
packet delays at all passing switches along the routing path
from the source to the destination. This per-hop delay consists
of packet queuing delay and transmission delay at a switch.

At each switch, packets from different flows enter cor-
responding transmission queues of the packet scheduler, as
shown in Fig. 1. The packet scheduler makes packet for-
warding decisions based on the resource allocation for traffic
flows. If more forwarding resources are allocated to a flow,
the forwarding rate becomes higher, leading to a reduced
queuing delay and transmission delay for this flow. Hence,
delay requirements of the traffic flows can be satisfied through
adjusting the amount of allocated resources. Consider a set,
N , of in-network switches. The set of flows traversing an
intermediate switch n ∈ N is denoted by Fn , and the set

of switches on the routing path of flow f ∈ Fn is denoted by
Nf ⊆ N . We assume the flow set, Fn , and the switch set,
Nf , remain stable in the course of scheduling. The amount
of forwarding resources of switch n is denoted by C (n),
and the amount of pre-allocated forwarding resources for
flow f is denoted by C̄ (n)

f , which is determined based on
the long-term QoS satisfaction and is assumed to be always
guaranteed. The amount of available resources of switch n is
C (n)

I = C (n) −∑f ∈Fn
C̄ (n)

f .
Time is partitioned into resource sharing intervals of con-

stant duration. At the beginning of the mth interval, switch n
makes decision on the amount of available resources allocated
to flow f, denoted by ΔC (n)

f ,m(≥ 0). Then, the allocated for-

warding resource for flow f is C (n)
f ,m = C̄ (n)

f + ΔC (n)
f ,m , and

[C (n)
f ,m ]f ∈Fn

are the allocated forwarding resources for all the
flows at the mth interval. The weighted round-robin scheme
is adopted for packet forwarding, where the weights of flow
f, denoted by v (n)

f ,m , is proportional to its allocated forwarding
resources. That is,

v (n)
f1,m : v (n)

f2,m = C (n)
f1,m : C (n)

f2,m , ∀f1, f2 ∈ Fn (1)

where
∑

f ∈Fn
v (n)
f ,m = 1.

B. Per-Hop Delay Requirements

We consider traffic flows with differentiated delay require-
ments and packet arrival patterns. Suppose the E2E packet
delay for flow f is decomposed to per-hop delay require-
ments based on the pre-allocated forwarding resources at each
switch. To support the applications with strict delay require-
ments, we consider SDN enabled core networks, in which an
SDN controller has global network information. Upon ser-
vice requests, the SDN controller configures routing paths and
distributes the flow tables to the passing switches for packet
forwarding [34], [35]. In addition, the controller can calcu-
late the average queuing delay and average transmission delay
for packets traversing each switch [9], [10], the summation of
which can be utilized to configure the per-hop delay require-
ment for the switch. Specifically, the delay requirement for
flow f ∈ Fn at switch n ∈ N is denoted by D(n)

f .
We denote the overall delay satisfaction ratio of switch n in

interval m as ρ
(n)
m =

∑
f ∈Fn

ρ
(n)
f ,m , where ρ

(n)
f ,m is the delay

satisfaction ratio for flow f, i.e., the ratio of number of packets
with experienced delay smaller than D(n)

f over total number
of transmitted packets belonging to flow f in the mth interval.
Let ε be the tolerance of per-hop delay violation ratio, i.e.,
ρ
(n)
f ,m ≥ 1 − ε.

C. Problem Formulation

We consider the resource allocation ratio when making the
resource sharing decision, which is denoted by η

(n)
m for switch

n in interval m, η
(n)
m =

∑
f ∈Fn

C (n)
f ,m/C (n). As shown in (1),

the weighted resource sharing is conducted proportionally to
the assigned weight for each flow.
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Fig. 2. Illustration of resource sharing for packet transmission at a switch.

Considering resource allocation for delay satisfaction, we
describe the resource sharing efficiency as the delay satisfac-
tion ratio achieved by per unit of allocated resources, denoted
by ρ

(n)
m /η

(n)
m . The resource sharing optimization problem is

formulated as (P1), in which our objective is to maximize the
resource sharing efficiency at switch n under the resource con-
straints to determine the optimal decision of allocated available
resources ({ΔC (n)

f ,m}f ∈Fn
).

(P1): max{
ΔC

(n)
f ,m

}

f∈Fn

ρ
(n)
m /η

(n)
m

s.t.

⎧
⎪⎨

⎪⎩

ΔC (n)
f ,m ≥ 0, f ∈ Fn (2a)
∑

f ∈Fn

ΔC (n)
f ,m ≤ C (n)

I . (2b)

Delay satisfaction ratio ρ
(n)
m is determined based on the

forwarding resources and the packet-level traffic information.
Due to the uncertainty of traffic arrival patterns, it is difficult to
establish an analytical model for the ratio. Thus, a model-free
learning-based method is expected to solve the optimization
problem, in which the delay satisfaction ratio can be measured
as feedback to the algorithm.

III. LEARNING-BASED PROACTIVE RESOURCE SHARING

In this section, we present a bandit learning-based proac-
tive resource sharing framework to improve delay satisfaction
of different services while achieving efficient utilization of
network resources.

A. Proactive Resource Sharing Framework

For proactive resource sharing among all flows at each
switch, we propose two modules, the resource demand esti-
mation and allocation of available resources, as shown in
Fig. 2. Within each resource sharing interval, there are inte-
ger multiple packet scheduling intervals. The resource sharing
framework for packet transmission at a switch consists of the
following four functionalities:

• Resource demand estimation – To make the resource allo-
cation decisions, the resource demands from different
flows are estimated, based on their delay requirements
for per-hop packet transmission, the queue lengths for
each flow, and the predicted numbers of arrived packets;

• Allocation of available resources – At the beginning of
each resource sharing interval, the allocation of resources
for all flows passing through the switch is updated to
maximize the efficiency of resource sharing at the switch,
based on the estimated resource demands;

• Packet scheduling – For packet transmission, the switch
schedules packets from different flows at the egress port
according to their allocated resource shares. The decision
on packet scheduling is made at each scheduling interval,
which is shorter than the resource sharing interval;

• Delay measurements – When a packet is being transmit-
ted at the egress port, its delay at the switch is measured
by comparing the time difference between the packet
transmission instant and the packet arrival instant [32].
Based on the delay requirements, the overall delay satis-
faction ratio at the switch is calculated at the end of each
resource sharing interval. With the resource allocation
ratio, the resource sharing efficiency is evaluated, which
is fed back to the resource demand estimation module and
the resource allocation module for updating the resource
sharing decisions in the following intervals.

For each flow, the more allocated forwarding resources,
the higher delay satisfaction ratio. However, the improve-
ment of delay satisfaction achieved by allocating the same
amount of resources to different flows may be different.
Considering a flow with sufficient allocated resources, which
already has a high delay satisfaction ratio, its performance
improvement upon additional allocated resources is limited.
On the contrary, allocating resources to a flow with low delay
satisfaction ratio will lead to more significant performance
improvement. Thus, when allocating resources to different
flows, their resource demands should be considered as a fea-
ture of the flows, such that a higher resource demand indicates
a larger potential improvement of overall delay satisfaction
ratio.
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The resource demands of flows in the resource sharing
problem is analogous to user preferences in an advertisement
click problem, referred to as context information. This type
of context-based decision making problems can be formulated
as contextual bandit problem, and solved through UCB meth-
ods [36]. Hence, we propose a MAB formulation with context
information to describe the resource sharing problem in (P1).
In our MAB-based resource sharing problem, an arm rep-
resents a potential resource allocation decision for all flows
in each resource sharing interval. To maximize the resource
sharing efficiency, the reward of the MAB problem is repre-
sented by the delay satisfaction ratio, and the optimal arm
represents the resource allocation decision which achieves
the highest ratio of the reward over the allocated resources.
Before arm selection, the rewards of pulling different arms
are estimated, considering the context information (i.e., the
estimated resource demands in our problem). The achieved
reward depends on both arm selection and context information,
and the resource sharing among flows is iteratively converged
through the learning process with reward feedback.

At the beginning of each resource sharing interval, the
learning module makes resource sharing decision. Decision
variables ΔC (n)

f ,m in (P1) is continuous, leading to an infi-
nite number of arms. Since the reward distribution knowledge
is learned through pulling different arms, it is necessary to
make the arm set finite, i.e., a finite number of arms in the
set. Thus, we discretize the available resources at switch n
into I (n) = �C (n)

I /B� resource blocks (RBs), each with the
same amount of forwarding resources of B (in unit of bits per
second). The decision variables ΔC (n)

f ,m are also discretized

correspondingly as ΔI (n)
f ,m . Hence, (P1) is transformed to

(P2).

(P2): max{
ΔI

(n)
f ,m

}

f∈Fn

ρ
(n)
m /η

(n)
m

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔI (n)
f ,m ∈ N, f ∈ Fn (3a)

ΔC (n)
f ,m = ΔI (n)

f ,m × B (3b)
∑

f ∈Fn

ΔC (n)
f ,m ≤ C (n)

I . (3c)

A contextual-bandit algorithm proceeds in the discrete
resource sharing intervals. At the beginning of the mth interval,
switch n estimates its current resource demand, [Ĉ (n)

f ,m ]f ∈Fn
,

based on reward information from the previous (m − 1)
intervals [ρ(n)

i ]i=1,2,...,m−1. The arm is a vector of |Fn |
integers, each element representing the number of allocated
available resource blocks to a flow. Thus, each selected arm
[ΔI (n)

f ,m ]f ∈Fn
determines the allocation of available resources.

To avoid redundant resource allocation for a flow, its resource
demand is considered. Thus, the number of RBs that can
be allocated to flow f at the mth interval should be less

than 	 Ĉ
(n)
f ,m−C̄

(n)
f ,m

B 
. As the total amount of available resources
at switch n is I (n), for each flow, we obtain the upper
bound of the number of allocated resource blocks ΔI (n)

f ,m ,

as U (n)
f ,m = min [I (n),max(	 Ĉ

(n)
f ,m−C̄

(n)
f ,m

B 
, 0)]. Since the arm
describes the allocation of available resources for all flows
traversing the switch, the set of potential arms is denoted
by A(n)

f ,m |f ∈Fn
, where A(n)

f ,m = {0, 1, 2, . . . ,U (n)
f ,m}, and the

size of the arm set is
∏

f ∈Fn
(U (n)

f ,m + 1). In each interval,

an arm is selected from A(n)
f ,m |f ∈Fn

to achieve the maximal

potential reward ρ̂
(n)
m , i.e., the estimated value of overall delay

satisfaction ratio, ρ
(n)
m .

We propose the resource sharing framework to solve this
contextual-bandit problem, with the resource demand estima-
tion module for context information extraction and allocation
module of available resource blocks for arm selection. Fig. 3
shows the operation procedure of allocating available resource
blocks to different flows based on their estimated resource
demands. The switch executes the following steps in the mth
interval:

• For flow f ∈ Fn , switch n estimates its current resource
demand Ĉ (n)

f ,m , and determines its arm set A(n)
f ,m accord-

ingly, as discussed in Section III-B. Only the flows with
U (n)

f ,m > 0 are processed in the following steps, to reduce
computing complexity in a large-scale network scenario;

• Based on rewards [ρ(n)
i ]i=1,2,...,m−1 in the previous

(m − 1) intervals and Ĉ (n)
f ,m , switch n estimates the poten-

tial value of reward, ρ̂
(n)
m , for each arm from A(n)

f ,m |f ∈Fn
,

as discussed in Section III-C. Then, the arm with the
maximal potential reward is selected and the available
resources are allocated;

• At the end of the interval, ρ
(n)
m is observed and used as

the feedback reward. With this new observation, the tuple,
([Ĉ (n)

f ,m ]f ∈Fn
, [ΔI (n)

f ,m ]f ∈Fn
, ρ

(n)
m ), including the context

information, the selected arm, and reward, can be used
to improve the arm-selection strategy. Note that only the
selected arm has the feedback of reward.

B. Resource Demand Estimation

At the end of the mth resource sharing interval, to obtain
delay satisfaction ratio ρ

(n)
f ,m for flow f, switch n measures

the delay of staying at the switch for all xR packets from
flow f arriving within interval m. Denote the delay of each
packet staying at the switch as di , i = 1, 2, . . . , xR . The delay
satisfaction ratio ρ

(n)
f ,m is calculated as

ρ
(n)
f ,m =

1
xR

xR∑

i=1

1
(
D(n)

f − di

)
(4)

where 1(x) = 1 if x ≥ 0, otherwise 1(x) = 0. The delay
measurement can be accomplished through pipelined packet
processing, which includes the functionalities of reading and
writing packet headers [32]. At the end of interval m, current
queue length (i.e., initial queue length of interval (m + 1)) and
the number of arrived packets during interval m, denoted by
b(n)
f ,m+1 and λ

(n)
f ,m respectively, are measured by the switch.

At switch n, for packets from flow f arriving within interval
m, the required forwarding resources for delay satisfaction is
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Fig. 3. Details of resource sharing framework.

determined by a linear combination of λ
(n)
f ,m/l and b(n)

f ,m/l
as in [16], where l is the average per-hop delay requirement.
For supporting applications with stringent delay requirements,
resource allocation decisions are made by considering the
delay requirements, D(n)

f , for individual packet transmission.
At switch n, the resource demand for flow f in interval
m, Ĉ (n)

f ,m , is defined as the minimal amount of forwarding

resources to satisfy ρ
(n)
f ,m ≥ 1 − ε. Since both new packet

arrivals and the packets waiting in the queue are to be pro-
cessed in the next resource sharing interval, the resource
demand is dependent on the predicted number of arrived pack-
ets λ̂

(n)
f ,m , b(n)

f ,m , and D(n)
f . To estimate Ĉ (n)

f ,m , we use a linear
regression (LR) model to approximate the mapping relation
between (D(n)

f , λ̂
(n)
f ,m , b(n)

f ,m) and Ĉ (n)
f ,m [37]. The LR model is

widely used in engineering areas, such as signal processing
and financial engineering [38]. To approximate the mapping
relation, the number of arrived packets, the observed queue
length, and the measured delay bound to satisfy the per-hop
delay violation ratio are collected at each resource sharing
interval to train the model parameters. For better approxima-
tion accuracy, we combine an online weight update method
(e.g., gradient decent algorithm in [39]) with linear regres-
sion. The detailed description of the linear regression based
resource demand estimation is given in Algorithm 1, in which
the initial model parameters are obtained in the training stage.

The resource demand estimation module takes
(D(n)

f , λ̂
(n)
f ,m , b(n)

f ,m) as input, and estimates correspond-

ing Ĉ (n)
f ,m as output. We omit n and f from the symbols used

in Algorithm 1 for clarity. Based on the LR model, Ĉm is
estimated as

Ĉm = w1
m λ̂m + w2

m
λ̂m

D
+ w3

mbm + w4
m

bm
D

+ w5
m (5)

where the weight vector in the mth resource sharing interval
is denoted as Wm = [w1

m , . . . ,w5
m ], and the input vector is

Im = [λ̂m , λ̂m
D , bm , bm

D , 1].
As shown in Fig. 3, at the beginning of each resource shar-

ing interval, say interval m, the amount of required resources
is estimated and used as contextual information for the follow-
ing allocation of available resources module. At the end of the
interval, the switch can observe the actual number of arrived
packets, λm , and the utilized forwarding resources, Cm . In

Algorithm 1: Online Linear Regression Based Resource
Demand Estimation Algorithm

1 Initialize W1
2 for m = 1, 2, 3, . . . do

3 Im ←
[

λ̂m , λ̂m
D , bm , bm

D , 1

]

4 Estimate Ĉm = WT
m Im

5 Give Ĉm to allocation of available resources module
6 At the end of interval, observe λm , Cm , and DR

m

7 IRm ←
[
λm , λm

DR
m

, bm , bm
DR

m
, 1
]

8 Update Wm+1 ←Wm − ηm+1

(
WT

m IRm − Cm

)
IRm

addition, based on the measurement for the delay of each
packet staying at the switch, di , we can determine DR

m that
satisfies 1

xR

∑xR
i=1 1(DR

m −di ) = 1−ε, with the allocated for-
warding resources Cm in interval m. Hence, (DR

m , λm , bm )
and Cm are used to iteratively refine the weight parameters of
the LR model in (5). According to [39], Wm is updated as

Wm+1 = Wm − ηm+1

(
WT

mIRm − Cm

)
IRm (6)

where IRm = [λm , λm

DR
m

, bm , bm
DR

m
, 1], ηm+1 = 1

m+1 .

C. Allocation of Available Resource Blocks

To determine the amount of allocated available resources,
switch n first estimates the potential reward (ρ̂(n)

m ) by selecting
each possible arm in A(n)

f ,m |f ∈Fn
, which has

∏
f ∈Fn

(U (n)
f ,m+1)

arms. However, the increasing number of flows leads to a
growth of arm set with high computational complexity for
reward estimation. To make the algorithm scalable in a large
scale network, we estimate the reward on a per-flow basis. As
illustrated in Fig. 3, switch n estimates the potential per-flow
reward (ρ̂(n)

f ,m ) with the corresponding number of allocated

available resource blocks (a ∈ A(n)
f ,m ), i.e., ρ̂

(n)
f ,m is estimated

under the action of ΔI (n)
f ,m = a . After that, a greedy method

is used to select the arm that achieves the highest ratio of
potential reward ρ̂

(n)
m over the allocated resources.

In the following, we explain in detail how the per-flow
performance is estimated. This is similar to the reward estima-
tion in a contextual bandit problem, which observes the user
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feature and potentially selected arm as prior knowledge. The
problem is well solved by LinUCB, a variation of UCB method
proposed as a generic contextual bandit algorithm in [36]. It
is proved that a closed-form confidence interval (i.e., the devi-
ation of reward estimation) can be computed efficiently when
the reward model is linear. For each flow f, switch n runs one
LinUCB to estimate per-flow reward. For clarity, we present
the symbols used in the LinUCB based reward estimation algo-
rithm, where indexes n and f are omitted. In the mth interval,
we have

1) Two-dimensional feature: xm = [1, Ĉ (n)
f ,m ], xm ∈ R

2;

2) Arm: a = ΔI (n)
f ,m , a ∈ A(n)

f ,m ;

3) Reward: rm,a = ρ̂
(n)
f ,m , with the action of choosing

arm a.
Under the assumption that the potential reward of a given

arm is linear versus its observed feature xm with unknown
parameter vector θ∗a , we have

E
[
rm,a |xm

]
= xT

mθ∗a . (7)

If arm a was selected m ′ (m ′ < m) times in the previous
(m − 1) time intervals, the associated reward feedback can
be used to improve the estimation of θ∗a . Let Xm,a and
Rm,a denote the previous m ′ feature vectors and observed
rewards, where we have Xm,a ∈ R

m′×2 and Rm,a ∈ R
m′

.
With training data Xm,a and Rm,a , parameter vector θ∗a is
estimated as

θ̂m,a =
(
XT

m,aXm,a + I2

)−1
XT

m,aRm,a (8)

where I2 is the 2 × 2 identity matrix. For clarity, we denote
Am,a = XT

m,aXm,a + I2, and bm,a = XT
m,aRm,a . Based on

the confidence interval given in [36], with the probability of
at least (1 − δ), we have

∣
∣
∣xT

m θ̂m,a − E
[
rm,a |xm

]∣∣
∣ ≤ α

√

xT
mA−1

m,axm (9)

for ∀δ > 0, where α = 1 +
√

ln(2/δ)/2 is a constant. Based
on the analysis in [36], we set α = 1.5. The inequality in (9)
gives an upper bound of the reward estimated by (7)-(8). In
the mth interval, the potential reward for arm a is

r̂m,a = xT
m θ̂m,a + α

√

xT
mA−1

m,axm . (10)

We define the marginal performance gain of allocating one
more available RB to flow f as Δr f

m,a = r̂m,a − r̂m,a−1, a =
1, 2, . . . ,U (n)

f ,m , where r̂m,a is obtained by the LinUCB for
flow f. Since a better delay satisfaction ratio should be
achieved with more allocated forwarding resources, we have
Δr f

m,a > 0. Due to the constant size of RB, a greater Δr f
m,a

indicates a larger delay satisfaction improvement achieved by
the allocated RB. Thus, based on Δr f

m,a , switch n allocates
available RBs greedily for all flows in Fn . Algorithm 2 gives
a detailed description of how to allocate available RBs at
switch n, and the details of greedy RB allocation are given
in Algorithm 3.

To demonstrate how to allocate available RBs, we use the
resource sharing among 5 flows as an example shown in Fig. 4.
The thick red line indicates the upper bound of the amount of

Algorithm 2: Proposed Allocation Algorithm for
Available Resource Blocks

1 for m = 1, 2, 3, . . . do
2 Estimate resource demand (by Algorithm 1) for all flows

f ∈ Fn , Ĉ
(n)
f ,m

3 for f = 1, 2, 3, . . . |Fn | do

4 Determine xm =
[
1, Ĉ

(n)
f ,m

]
and U

(n)
f ,m

5 for a = 0, 1, 2, 3, . . .U
(n)
f ,m do

6 if a is new then
7 Am,a ← I2
8 bm,a ← 02×1 (zero vector)

9 θ̂m,a ← A−1
m,abm,a

10 r̂m,a ← xT
m θ̂m,a + α

√
xT
mA−1

m,axm

11 if a = 0 then

12 Δr
f
m,a = r̂m,a

13 else

14 Δr
f
m,a = r̂m,a − r̂m,a−1

15 Execute Algorithm 3

16 Implement the resource sharing decision
[
C

(n)
f ,m

]

f ∈Fn
through packet scheduling module

17 At the end of interval, ρ
(n)
f ,m is observed as the feedback to

all flows f ∈ Fn as real-valued reward rf ,m
18 for f = 1, 2, 3, . . . |Fn | do
19 a = af ,m , r = rf ,m

20 Am,a ← Am,a + xmxT
m

21 bm,a ← bm,a + rxm

Fig. 4. Illustration of the greedy available resource block allocation.

RBs that can be allocated to each flow, and the green blocks
indicate the amount of RBs already allocated to the flows.
The blocks highlighted in orange indicate the potential RB
allocation to the flows in each algorithm iteration, if the high-
est marginal gain (e.g., Δr f

m,a for flow f ) is observed. In
Algorithm 3, one RB is allocated in each iteration, until all
the available RBs at switch n have been allocated or all the
flows get sufficient RBs (i.e., their upper bounds are reached).

D. Discussion

1) Regret Analysis: As shown in (7), the potential reward
is linear with respect to the observed feature xm , and the true
coefficient vector is θ∗a . Without loss of generality, we assume
‖xm‖ ≤ L, where ‖ · ‖ represents the l2-norm.
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Algorithm 3: Greedy Allocation of Available Resource
Blocks

1 Input: Δr
f
m,a

2 Initialization: Ft ← {}
3 for f = 1, 2, 3, . . . |Fn | do
4 af ,m ← 0

5 if U
(n)
f ,m > 0 then

6 Ft ← Ft + {f }

7 for i = 1, 2, 3, . . . I (n) do
8 if Ft is not empty then

9 fi = arg maxf ∈Ft
Δr

f
m,a where a = af ,m + 1.

Randomly select fi if multiple flows have the maximal
Δrm,a

10 afi ,m ← afi ,m + 1

11 if afi ,m = A
(n)
fi ,m

then
12 Ft ← Ft − {fi}

13 for f = 1, 2, 3, . . . |Fn | do

14 ΔI
(n)
f ,m ← af ,m

15 Based on
[
ΔI

(n)
f ,m

]

f ∈Fn
, obtain the corresponding resource

sharing decision
[
C

(n)
f ,m

]

f ∈Fn

16 Output: Resource sharing decision
[
C

(n)
f ,m

]

f ∈Fn
and the

selected arm
[
af ,m

]

f ∈Fn

In the mth interval, denote the best arm [a∗f ,m ]f ∈Fn
that

satisfies
[
a∗f ,m

]

f ∈Fn

= arg max
[af ]f∈Fn

∑

f ∈Fn

xT
mθ∗af

(11)

where af ∈ A(n)
f ,m . Then, comparing with the reward achieved

by the selected arm [af ,m ]f ∈Fn
, the M -trail regret of this

resource allocation algorithm is calculated by

LM =
M∑

m=1

⎛

⎝
∑

f ∈Fn

xT
mθ∗a∗

f ,m
−
∑

f ∈Fn

xT
mθ∗af ,m

⎞

⎠. (12)

Considering the confidence interval in (9), with probability
at least 1 − δ, we have

∑

f ∈Fn

xT
mθ∗af ,m

≥
∑

f ∈Fn

(

xT
m θ̂m,af ,m − α

√
xT
mA−1

m,af ,m
xm

)

.

(13)

According to the proposed available resource block allocation
algorithm and (9), we obtain

∑

f ∈Fn

xT
mθ∗a∗

f ,m
≤
∑

f ∈Fn

(

xT
m θ̂m,a∗

f ,m
+ α

√

xT
mA−1

m,a∗
f ,m

xm

)

≤
∑

f ∈Fn

(

xT
m θ̂m,af ,m + α

√
xT
mA−1

m,af ,m
xm

)

.

(14)

Thus,

LM ≤
M∑

m=1

⎛

⎝
∑

f ∈Fn

2α
√

xT
mA−1

m,af ,m
xm

⎞

⎠. (15)

To simplify (15), we apply [40, Lemma 4.4 and
Lemma 4.5], as

M∑

m=1

xT
mA−1

m,af ,m
xm ≤ 2 log

∣
∣Am,af ,m

∣
∣

β
(16)

∣
∣Am,af ,m

∣
∣ ≤
(
β + mL2/d

)d
(17)

where d ≥ 1 and β ≥ max(1,L2). Apply the lemmas in (15),
we have

LM ≤ 2α
∑

f ∈Fn

(
M∑

m=1

√
xT
mA−1

m,af ,m
xm

)

≤ 2α
∑

f ∈Fn

√
√
√
√M

(
M∑

m=1

xT
mA−1

m,af ,m
xm

)

≤ 2α
∑

f ∈Fn

√

2M log

∣
∣Am,af ,m

∣
∣

β

≤ 2α
∑

f ∈Fn

√

2Md · log
(

1 +
ML2

βd

)

≤ 2αF
√

2Md ·
√

log(1 + M /d). (18)

In (18), the M-trail regret bound, O(
√

Md · log(1 + M /d)),
indicates the zero-regret feature,1 i.e., limM→∞ LM

M = 0.
The zero-regret strategy is guaranteed to converge to an
optimal strategy after enough rounds are played [41]. Thus, the
proposed algorithm is proved to be asymptotically approaching
the optimal strategy [42].

2) Time Complexity Analysis: To analyze the scalability of
the proposed resource sharing scheme in terms of the number
of flows (F), we evaluate the time complexity for each stage
in Fig. 3 in one interval. First, the resource demand estimation
module runs Algorithm 1 for each flow separately, which leads
to O(F) time complexity. Then, in Algorithm 2, the reward is
calculated for all the arms, where flow f has (U (n)

f ,m +1) arms,
according to its resource demand. Thus, the complexity is pro-
portional to the total number of arms,

∑
f ∈Fn

(U (n)
f ,m +1). The

overall number of resource blocks required by flows should
be comparable to the number of available resource blocks
(I (n)). Otherwise, the network would incur unstable queue
accumulation. We obtain the complexity of reward calculation
in Algorithm 2 as O(I (n)). After that, each resource block
is allocated by comparing the marginal reward for candidate
flows, as given in Algorithm 3. The maximal time complexity
is O(F), in which all the F flows belong to the candidate set.
As the comparison is conducted at most for I (n) times, the

1A strategy whose average regret per round tends to zero when the horizon
tends to infinity is defined as zero-regret strategy [41].
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TABLE I
PARAMETERS OF TRAFFIC FLOW

Fig. 5. Illustration of the simulation scenario.

time complexity of Algorithm 3 is O(FI (n)). Therefore, com-
bining the complexity of three algorithms, the time complexity
of the resource sharing scheme is O(FI (n)).

Since I (n) is determined by the amount of available
resources and the resource block size, we can set the value
of I (n) by adjusting the block size. If we set I (n) as a fixed
value, the complexity is reduced to O(F). However, when the
number of flows increases, the resource sharing scheme with
the fixed I (n) may have a degraded performance. In particular,
if there are more flows than resource blocks, i.e., F > I (n),
the resources allocated to different flows are distinct even if
all the flows have same features. To avoid this inconsistency
between the allocated resources and the observed features due
to insufficient resource blocks, we set I (n) ∝ F , and the poly-
nomial time complexity, O(F 2), is achieved. Note that if the
resource block size has to be set as a small value with the
increase of F in order to satisfy I (n) ∝ F , the improvement
on delay satisfaction by allocating one resource block could be
insignificant, leading to a low marginal gain. Hence, a lower
limit on the resource block size needs to be determined prop-
erly, considering the allocation efficiency, which remains an
important and open issue for the proposed algorithm.

IV. NUMERICAL RESULTS

To demonstrate the effectiveness of the proposed resource
sharing scheme, numerical results are presented.

A. Simulation Scenario

In our work, the resource allocation algorithm is designed
for each switch, aiming at satisfying the per-hop delay require-
ment. To evaluate the performance of the proposed algorithm,
we consider the packet transmission at a network switch in

Fig. 6. Error of resource demand estimation.

the simulation. For the F traffic flows traversing the switch,
the resource sharing among them is simulated and the delay
of each packet passing the switch is measured, as shown in
Fig. 5. The network switch, consisting of the transmission
queues, packet scheduler, resource sharing module, and delay
measurement module, is emulated on a high-performance com-
puter server using a Python IDE called PyCharm [43]. For
each traffic flow, its packets enter the corresponding transmis-
sion queue and wait for transmission scheduling. Given the
amount of resources allocated to each traffic flow, the packet
scheduler makes packet forwarding decisions, i.e., adjusting
the forwarding rate for each flow. During the packet trans-
mission, the delay measurement module records the packet
reception time and departing time to measure the packet delay
at this switch. At the end of each resource sharing interval, the
delay measurement module calculates the delay satisfaction
ratio for each flow, which is utilized by the resource sharing
module to make future resource allocation decisions.

The detailed parameters of the traffic flows are given in
Table I. To simulate flows of different services, we divided
the 50 flows into 3 subsets with different per-hop delay
requirements. The duration of each resource sharing interval
is 5 ms. From Table I, the average traffic rate at this switch is
750 Mbps, considering 50 flows traversing the switch with
average traffic rate of 15 Mbps. In reality, the traffic vol-
umes are different during peak and off-peak hours, which
leads to varying average resource utilization of the switch.
To simulate these variations, we set the switch forwarding
resources for the off-peak hour case as 1250 Mbps (i.e., 60%
resource utilization) and for the peak hour case as 833 Mbps
(i.e., 90% resource utilization). In addition to traffic load
variations, we consider different pre-allocated resource con-
ditions that impact the demand of resource sharing, including
over-provisioning and on-demand matching cases. The pre-
allocated conditions are determined by both the pre-allocated
forwarding resources and the average traffic rate of each flow
(15 Mbps in our simulation). Parameters of these cases are
given in Table II, where the minimal resource allocation ratio
is the ratio of overall pre-allocated resources over the switch
forwarding resources.

B. Performance of Resource Demand Estimation

To evaluate the accuracy of resource demand estimation,
we divide the traffic data trace into two sets, one is used
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TABLE II
PARAMETERS OF SWITCH

Fig. 7. The performance in a off-peak hour condition with matching traffic resources.

as training data set (including 489,930 observations) and the
remaining is used for testing. Each observation represents the
flow transmission status during one resource sharing interval,
consisting of input vector (including the number of arrived
packets, initial queue length, and the measured delay bound
to satisfy the per-hop delay violation ratio), and the output
(allocated forwarding resources). In the training stage, all the
observations are fed into an LR module given by (5), and a
weight vector W ∈ R

5 is obtained by the LR module. Then,
we apply the online resource demand estimation algorithm
with the initial vector W to estimate the required resources.
The estimation error in each interval represents the difference
between an estimated amount and an actual amount of allo-
cated resources. To show the performance of resource demand
estimation, the moving average of errors during 10 consecu-
tive intervals is shown in Fig. 6 where online LR refers to the
proposed method and LR method utilizing W for estimation
without weights update. Without the weights update, the error
of LR method varies between 15% and 35%. However, due to
the weights update in (6), the estimation error of online LR
shows a decreasing trend in Fig. 6, and becomes stable around
1% after 1500 intervals. Therefore, the proposed resource esti-
mation module is capable of providing an accurate resource
demand estimation for the allocation of available resources
module.

C. Delay Reduction via Resource Sharing

To evaluate the delay performance of the resource sharing
scheme, we determine the proportion of flows that meet their
delay requirements (i.e., satisfying ρ

(n)
f ,m ≥ 1 − ε), referred to

as delay guaranteed proportion. In terms of cost, we measure
the resource allocation fraction including both pre-allocated
resources and allocated available resources. For comparison
between different resource sharing schemes, the cumulative

distribution functions (CDF) of packet delay, delay guaranteed
proportion, and resource allocation gain which is the ratio of
delay guaranteed proportion over resource allocation ratio are
calculated for 4,000 intervals.

The proposed MAB based resource sharing scheme is com-
pared with an on-switch resource allocation approach, the
dynamic WFQ (D-WFQ) method [16]. The D-WFQ is an
enhanced version of WFQ under dynamic traffic conditions,
considering the differentiated per-hop delay requirements of
traffic flows. We also compare with the resource sharing
scheme without resource demand estimation module (MAB-
WO). In the MAB-WO method, the allocation of available
resources module directly uses the per-hop delay requirements,
the predicted traffic arrival, and the queue lengths as input,
instead of using the estimated resource demands as shown
in Fig. 3. To show the performance improvement achieved
by utilizing available resources, we simulate the packet trans-
missions with only pre-allocated resources given in Table II
(pre-allocated). If the forwarding resources are fully used,
we make a fixed resource sharing decision to achieve the
optimal accumulative delay guaranteed proportion during the
simulation intervals (optimal).

When the flows are pre-allocated with the resources matched
their packet arrival rates, the packet delay experiences a long-
tailed distribution as shown in Fig. 7. It leads to the delay
guaranteed proportion less than 90% among 20% of intervals.
However, during the off-peak hours, all four resource shar-
ing schemes achieve nearly 100% delay guaranteed proportion
through allocating available resources. Since MAB and MAB-
WO schemes require less forwarding resources than D-WFQ
and optimal schemes, they have higher resource allocation
gain, as shown in Fig. 7. This is because MAB schemes can
learn to allocate the available resources to the flows for the
highest marginal gain, through the greedy allocation algorithm
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Fig. 8. The performance in a off-peak hour condition with over-provisioning resources.

Fig. 9. The performance in a peak-hour condition with matching traffic resources.

in Algorithm 3. Comparing MAB and MAB-WO schemes,
the resource demand estimation module makes it possible to
identify the flows with stringent delay requirements, and set
higher upper bounds of allocated available resource blocks. As
more available resources can be allocated to the flows with
stringent requirements, MAB outperforms MAB-WO in most
resource sharing intervals in terms of resource allocation gain.
In over-provisioning situations, we simulate the case that each
flow is pre-allocated with more resources than necessary on
average. Better delay guaranteed proportion is shown in Fig. 8,
compared with the on-demand matching case. However, due
to the high resource allocation ratio in the over-provisioning
case, its resource allocation gain is lower than the on-demand
matching case.

In the peak-hour scenario, all four resource sharing schemes
tend to make full use of the resources to support the heavy
traffic, and experience delay guaranteed proportion higher
than 90% among 80% of the simulation intervals, as shown
in Fig. 9. Comparing with transmission upon pre-allocated
resources, the MAB method has a higher delay guaranteed
proportion by avoiding the long-tailed distribution of packet
delay. Due to the small amount of available resources during
peak hours, it is unlikely to allocate the required amount of
available resources to a flow, based on the estimated resource
demand. Thus, comparing with the off-peak hour case, the
difference between MAB and MAB-WO methods vanishes
during peak hours.

The highest resource allocation gain is obtained when 100%
delay guaranteed proportion is achieved with the pre-allocated
resources. Thus, resource allocation gain is bounded by the
reciprocal of minimal resource allocation ratio (i.e., the ratio

of overall pre-allocated resources over the switch forwarding
resources). Since the optimal and D-WFQ schemes make full
use of available forwarding resources, the resource alloca-
tion gain is bounded by 1. However, MAB and MAB-WO
schemes can achieve better delay guaranteed proportion with
less resources, and their gains outperform the optimal and
D-WFQ schemes. Due to the errors at the starting stage of
resource demand estimation, the MAB scheme experiences
over-allocation of available resources compared with the sub-
sequent stable stages. Thus, there is a step change in the
resource allocation gain, which becomes negligible with more
fine-grained available resource block sizes. As shown in Fig. 7
to Fig. 9, the step shrinks with the available resource block
size decreases from 5 Mbps, to 3.5 Mbps, and to 0.83 Mbps,
respectively.

D. Adaptive Resource Sharing

Due to insufficient forwarding resources, instantaneous
delay degradation happens during traffic peaks, such as in
intervals 25, 87, and 125, as shown in Fig. 10, where the real-
time packet arrival rate is normalized to the average traffic rate.
Although all three schemes experience degraded performance,
both MAB and MAB-WO schemes outperform D-WFQ, due
to the proactive resource allocation.

Furthermore, to adapt to traffic dynamics, it requires a
fast response of resource allocation when traffic peak comes.
Fig. 11 shows how the MAB scheme adaptively allocates
resources. During traffic peak, packet delay increases, and
more forwarding resources are needed. To obtain the response
time to traffic peak, we focus on the time instants where
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Fig. 10. Resource sharing performance in a peak condition with matching
traffic resources.

Fig. 11. The response of the proposed resource sharing scheme to traffic
peaks.

resource allocation ratio starts to increase or falls back to
a stable level. Comparing with the traffic peak duration, it
is observed that the response time is at most one interval
when traffic peak appears and disappears, which is 5 ms
in our simulation. Therefore, the proposed resource sharing
scheme demonstrates adaptation capability to traffic dynamics,
by allocating suitable resources to the flows.

V. CONCLUSION

In this article, we have proposed a novel learning-based
proactive resource sharing scheme to maximize resource
utilization efficiency with delay satisfaction. Two modules
for estimating online resource demand and allocating avail-
able resources are developed jointly to achieve efficient
resource sharing at each network switch. To learn the implicit
relation between the allocated resources and differentiated
delay requirements from traffic flows of different services, a

multi-armed bandit learning-based resource allocation scheme
is proposed, which enables fast and proactive resource adjust-
ment upon traffic variations. During the data transmission,
delay satisfaction ratios are measured as the reward feedback
to refine the learning parameters for better convergence. The
proposed scheme is proved to be asymptotically approach-
ing the optimal strategy with the polynomial time complexity.
Extensive simulation results are presented to demonstrate both
the advantages of the proposed resource sharing scheme over
conventional schemes and the robustness to traffic dynamics.
For future work, the proposed joint resource demand estima-
tion and resource allocation framework will be extended for
reliable end-to-end packet transmission.
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