
An SDN-Based Transmission Protocol with In-Path
Packet Caching and Retransmission

Jiayin Chen∗, Si Yan∗, Qiang Ye∗,Wei Quan†, Phu Thinh Do∗, Weihua Zhuang∗, Xuemin (Sherman) Shen∗

Xu Li‡, Jaya Rao‡
∗Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

{j648chen,s52yan,q6ye,pt3do,wzhuang,sshen}@uwaterloo.ca
†School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, P.R. China

dr.wei.quan@ieee.org
‡Huawei Technologies Canada Inc., Ottawa, ON, K2K 3J1, Canada

{xu.lica,jaya.rao}@huawei.com

Abstract—In this paper, a comprehensive software-defined net-
working (SDN) based transmission protocol (SDTP) is presented
for fifth generation (5G) communication networks, where an SDN
controller gathers network state information from the physical
network to improve data transmission efficiency between end
hosts, with in-path packet retransmission. In the SDTP, we first
develop a new two-way handshake mechanism for connection
establishment between a pair of end host. With the aid of
SDN control module, signaling exchanges for establishing E2E
connections are migrated to the control plane to improve resource
utilization in the data plane. A new SDTP packet header format
is designed to support efficient data transmission with in-path
packet caching and packet retransmission. Based on the new
data packet format, a novel in-path receiver-based packet loss
detection and caching-based packet retransmission scheme is pro-
posed to achieve in-path fast recovery of lost packets. Extensive
simulation results are presented to validate the effectiveness of
the proposed protocol in terms of low connection establishment
delay and low end-to-end packet transmission delay.

Index Terms—5G, SDN, transmission protocol, connection
establishment, in-path packet caching, in-path packet retrans-
mission, retransmission request

I. INTRODUCTION

With fierce advancement of networking technologies, the
fifth generation (5G) communication networks are foreseen to
accommodate diversified bandwidth-hungry applications with
stringent quality-of-service (QoS) requirements. Because of
current distributed and ossified core network architecture with
limited computing and transmission resources on network
servers/switches and links, differentiated end-to-end (E2E)
QoS guarantee for various services is always difficult to
achieve [1]. It is imperative to develop an efficient transport-
layer protocol to reduce network congestion and enhance
E2E QoS satisfaction. Transmission control protocol (TCP)
[2] is a typical transport-layer protocol widely used in the
Internet to achieve reliable end-to-end packet transmissions.
In TCP, through a three-way handshake procedure during the
connection establishment phase, a pair of end hosts establish
a two-way communication connection for data transmission.
The sending host uses retransmission timeout (RTO) and
fast retransmission with congestion window adjustment for
lost packet recovery and congestion control. Different TCP

variants [3] are developed to improve the E2E performance
under different network scenarios (e.g., a network with high
bandwidth delay product).

To support a high data traffic volume and different levels
of E2E delay requirements from diversified services, more
and more network elements (i.e., servers and switches) are
placed into the network. Due to highly dynamic traffic load,
resources at some network locations are underutilized, whereas
other network elements may experience high traffic congestion
and loss. There exist studies on how to improve the loss
recovery performance of transport-layer protocols by reducing
the probability of false fast retransmissions and improving the
accuracy of RTO estimation [4]. However, current transport-
layer protocols, under existing network architecture, e.g., TCP
and user datagram potocol (UDP) [5], only achieve best-
effort E2E performance, due to slow reaction to packet loss.
Software-defined networking (SDN) [6]–[8] emerges as a
promising network architecture to achieve more fine-grained
in-network control. SDN decouples control functions from net-
work servers/switches and migrates them as an integrated and
centralized control module, which simplifies packet forward-
ing functions and makes loss recovery decisions on individual
servers/switches.

Current transport-layer protocols rely on end hosts to detect
packet loss and perform packet retransmission. With SDN, it
is essential to investigate how transport-layer protocols can
be enhanced to perform prompt packet loss (or congestion)
detection and recovery. Existing studies exploit the SDN
control module to gather in-network statistics (e.g., buffer
occupancy) from OpenFlow switches for early packet loss (or
congestion) detection and fast response [9]. In [10], an SDN-
based UDP framework is proposed, where UDP is employed
for transmission between a pair of edge switches to reduce
communication overhead, and a retransmission engine is acti-
vated on each network switch to perform in-path packet loss
detection and packet retransmissions. Packet loss is detected
simply based on out-of-order packets observed at an in-path
switch, without a retransmission policy to distinguish between
packet loss and packet reordering. Moreover, in most of exist-
ing works [11], [12], it is assumed that every switch is enabled

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

caching and retransmission function, which inevitably incurs
substantial resource consumption for caching at each switch
and signalling overhead between switches for retransmission
request and caching release. In this paper, we develop a
comprehensive SDN-based transmission protocol (SDTP) with
the consideration of in-path packet caching and retransmission.
The protocol framework consists of following three parts, of
which the main contributions are summarized:
(1) Connection establishment – We propose an SDN-based

two-way connection establishment procedure for each pair
of end hosts. With SDN controller, signaling exchanges for
establishing each E2E connection are migrated to the con-
trol plane to save resources for data transmissions. Com-
pared with the TCP three-way handshake, the proposed
procedure reduces the amount of signaling exchanges
overhead for establishing bi-directional connections;

(2) Data transmission – We design a new header format to
support efficient data transmission, in-path caching and
retransmission. On one hand, unnecessary fields in the
TCP/IP header are removed because the controller can of-
fload partial functions from switches in data plane. On the
other hand, we introduce new fields to support advanced
protocol function elements, such as packet caching and
receiver-triggered packet retransmission, which is different
from the conventional TCP;

(3) Caching-based packet retransmission – A novel in-path
receiver-based packet loss detection and caching-based
packet retransmission scheme is proposed to achieve in-
path congestion detection and fast recovery of lost packets
with low signaling overhead, which further reduces E2E
packet transmission delay especially when congestion
happens. The receiver-triggered packet retransmission is
promising in terms of short response delay in packet loss
detection and in reducing state management complexity at
sender sides [13].

II. SYSTEM MODEL

The system model under consideration includes an embed-
ded virtual network topology, a description of caching and
retransmission function elements and their placement policies,
and a traffic model for each end host.
A. Embedded Virtual Network Topology

Given a service description and its QoS requirement, our
SDT algorithm [14] determines an embedded topology for
each virtual network function (VNF) chain on the physical
substrate network. Based on user requests, every source-
destination (S-D) host pair has an E2E data connection for
reliable transmissions, in which the routing path between two
edge switches for each connection is established through the
SDN controller caching flow entries (containing forwarding
rules) into each network switch according to the SDT output.
After one E2E connection is established, data packets are sent
from the source host (or the sending host), and are then for-
warded via a pair of edge switches and other network switches
and transmission links to reach the destination host (or the re-
ceiving host). For example, in Fig. 1, there are in total n hosts

connected to edge switch A, denoted by {A.1, A.2, ..., A.n},
which are supposed to establish connections with the set of
hosts {B.1, B.2, ..., B.n} under B, respectively. It is assumed
that all end hosts under one edge switch belong to one service
type and the traffic flow1 aggregated at the edge switch are
forwarded via a single-path routing in the core network to the
other edge switch.

Sender
Receiver

Host

end

Edge

switch

In-network

Switch

Caching

function

Retransmission

function
CR segment

A.1

A.n

...

A
B.n

...

B.1

B

SDN

controller
Signaling

Fig. 1: An embedded network topology for different E2E connections.

B. Caching and Retransmission Function Elements

To facilitate packet loss detection and packet retransmission,
we activate caching and retransmission function elements at
in-path switches.

Caching Function Element – A caching node is defined as
a network switch with the caching function activated. Each
caching node is equipped with pairs of data transmission and
caching buffers. Each data buffer is used to queue the data
packets for packet forwarding. After a packet is processed
by the node, it is cached (i.e. copied) in its caching buffer.
Each cached packet is used for in-network early retransmission
if the packet is lost on a network path, instead of being
retransmitted from the sender side. Each connection has a
unique pair of data transmission and caching buffers. Note that
data buffer overflow leads to data packet loss2, while caching
buffer overflow causes cached packet loss. Thus, buffer space
release is necessary to avoid caching buffer overflow, which
is realized by periodically transmitting a caching notification
(CN) packet upstream from one caching node to its previous
one for releasing cached packets.

Retransmission Function Element – A retransmission node
refers to an in-path switch with the functionalities of in-
path packet loss detection and retransmission triggering. Af-
ter packet loss is detected at a retransmission node, a re-
transmission request is sent from the retransmission node to
each preceding upstream caching node consecutively until the
requested data packets are located. We define one caching-
retransmission (CR) segment as a network segment including
one retransmission node, network switches/transmission links,
and all the caching nodes between this retransmission node
and its nearest upstream retransmission node.

C. Caching and Retransmission Placement

For each E2E host pair, a basic policy is that the sending
edge switch is equipped with the caching function element,
while the receiving edge switch enables both caching and

1A traffic (service) flow refers to an aggregation of packets of same service
type passing through a pair of edge switches in the core network.

2Note that packet loss refers to data packet loss in this paper.

retransmission function elements to minimize the maximum
packet retransmission delay. Packet retransmission delay is the
time duration from the instant that packet loss is detected and a
retransmission request is sent to the instant that a retransmitted
packet is received by the retransmission node. In addition,
to ensure packet caching between consecutive CR segments,
the retransmission node of one CR segment is one of the
caching nodes of its subsequent CR segment. An example of
caching and retransmission functionality placement for one
pair of edge switches is shown in Fig. 1. The policy of
caching and retransmission function placement is based on
packet loss probability of each link. Caching functions are
activated at the switch nodes before links with high packet
loss probabilities, and then some of these caching nodes are
selected for retransmission function activation. To balance
resource utilization of different CR segments, we choose
retransmission nodes so that the packet loss probabilities
over each segment are approximately equalized, named the
equalized loss probability (EP) policy. This policy indicates
the chances of packet loss over each segment are similar, and
thus the numbers of retransmission requests sent over each
segment are balanced.

III. SOFTWARE-DEFINED TRANSMISSION PROTOCOL

A. Connection Establishment
An SDN controller has a global view over the network

states and can check edge-to-edge path availability, and it
also has the capability to set up a routing path, including
activating caching and retransmission functionalities during
the connection establishment phase to satisfy E2E service
requirement. With the SDN control module, we can adopt a
two-way handshake, instead of the TCP three-way handshake,
for connection establishment in SDTP to reduce the signaling
overhead, shown in Fig. 2: (1) Sending edge switch 1 receives
a synchronous (SYN) packet sent by end host A; (2) Edge
switch 1 encapsulates the SYN packet into an OpenFlow
packet (i.e., Packet-in) and sends it to the SDN controller. This
process can be implemented by configuring a new flow entry
specific for SYN packets in the edge switch. This flow entry
points to an encapsulation action; (3) The controller receives
and parses the OpenFlow packet, and then checks the path
reachability according to a table of local link status. If there
is a reachable path, the controller continues to forward this
packet to receiving edge switch 8 through another OpenFlow
packet (Packet-out), and then the receiving edge switch ab-
stracts the pure SYN packet and sends it to end host B. If
there is no available path, the controller deploys a new path.
The path calculation is based on the SDT algorithm [14]; (4)
A similar process is conducted for sending back the SYN-
Acknowledgement (ACK) packet, where the SDN controller
checks the reachability for establishing a reverse connection;
(5) To be compatible with conventional TCP employed by
end hosts, we make some patch processing. That is to notify
end host B, by an additional ACK packet, that the connection
establishment is accomplished. Note that the ACK packet
does not come from end host A, but is triggered by the

receiving edge switch. At the same time, the sending edge
switch requires to drop the ACK packet received from end
host A directly.

Fig. 2: The SDTP signaling during the connection establishment phase.

B. Data Transmission
For compatibility, the packet transmission between an end

host and an edge switch is based on conventional TCP, whereas
the transmission between edge switches follow our proposed
SDTP protocol. Therefore, the sending and receiving edge
switches should execute header conversion and reversion for
E2E communication. In SDTP, a new packet header format is
developed to support efficient and reliable data transmission
as shown in Fig. 3, which includes 24-byte required fields
and 20-byte optional field. On one hand, some fields in the
TCP/IP header are removed since the controller can offload
partial functions from switches in the data plane. For example,
the Acknowledgment field in the conventional TCP header is
removed from the SDTP data packet because SDTP adopts the
receiver-triggered packet loss detection. In this way, the SDTP
data transmission achieves higher throughput according to the
simplified packet header. On the other hand, two new fields,
Flag and Optional fields, are added into the SDTP header for
new functionalities different from the conventional TCP, such
as in-path caching and caching-based retransmission.

Slice ID

Fig. 3: The SDTP packet header formats.

The header supports OpenFlow-switches, in which some
required fields (i.e., slice ID) are extracted to match the flow
table entries for packet forwarding along the embedded SDT
routing path. Different types of SDTP packets are identified
by the field of Flag, including retransmission request (RR)
packet, retransmission data (RD) packet, retransmission infor-
mation (RI) packet, and caching notification (CN) packet. The
optional field contains different information for different types.

C. Caching-Based Packet Retransmission
1) Terminology for Packet Loss Detection: After the con-

nection establishment for a pair of E2E hosts, a content
window list and an expected packet list are maintained at each
retransmission node for packet loss recovery. We elaborate
how a content window list and an expected packet list are

built up, and define some important variables and parameters
independently used by each connection to detect packet loss.

Content Window List – A content window list is established
to record the packets already received by a retransmission
node. A number of packets received in sequence can be
described by one window, where the left edge of the window
indicates the first sequence number of the received packets and
the right edge of the window is the next expected sequence
number of the last received packet. When packets are not
received in sequence, several content windows are generated,
and each entry in the list represents a single window. The
content window list is updated when a new packet is received
at the retransmission node.

Expected Packet List – An expected packet list is used
to record the information of packets that are expected by
a retransmission node. After packet loss is detected and a
retransmission is triggered, the node refers to the expected
packet list to sort out the lost packets to be retransmitted. The
expected packet list has the following information fields:
(1) Num – When packets are lost discontinuously, different

portions of expected packets are inserted into the expected
list as different entries. The Num field records the se-
quence of the entries;

(2) StartSeq and EndSeq – Specifying an interval with a start
sequence number and an end sequence number;

(3) StartNum – A pointer indicating the number of packet
offset from the packet with the sequence number equaling
StartSeq, with initial value 0;

(4) InterCnt – A packet interarrival counter indicating the
number of packets received after the last sequentially
received packet, with initial value 0;

(5) CntThres – A threshold for InterCnt to detect packet loss,
with initial value 1;

(6) WaitLen – Measuring the difference between CntThres and
InterCnt, with initial value 1;

(7) RTCnt – Counting how many retransmission requests of
lost packets are sent, with initial value 0;

(8) RTType – Defining how packet loss is detected;
(9) RTTimer – The time elapses from the instant that a retrans-

mission request is sent to the instant that the retransmitted
packet is received.

StartSeq and EndSeq are established based on the right
edge of corresponding content window and left edge of its
subsequent content window at a retransmission node. If both
StartSeq and EndSeq are specified, the packets with the
sequence numbers falling between StartSeq and EndSeq are
the expected packets; If EndSeq is not determined (set as
infinity), we use StartSeq and StartNum to locate a specific ex-
pected packet. The time duration between consecutive packet
reception at a retransmission node is interarrival time, denoted
as InterTime and reset to 0 whenever a new packet is received.
If the recorded InterTime is larger than a threshold, packet loss
due to link congestion is detected.

2) Thresholds for Packet Loss Detection: We differentiate
original packet loss and retransmission packet loss. The origi-
nal packet loss is triggered by InterTime exceeding a threshold

or the number of received disordered packets exceeding a
threshold; For retransmission packet loss detection, retrans-
mission RTT is measured for timeout detection.

Interarrival Timeout – We define the threshold for packet
interarrival timeout as expected interarrival time, which indi-
cates that packet loss is detected when InterTime is greater
than the expected interarrival time. The expected interarrival
time, denoted by ∆TE , can be obtained by linear prediction
based on sampled interarrival time [15],

∆TE = max{∆T, a ·∆TS + b ·∆T} (1)
where ∆TE is an estimated expected interarrival time, ∆T is
the sending interval, ∆TS is one sample of an interarrival time,
a = 0.875 and b = 0.375. If interarrival time equals n ·∆TE
(n is a positive integer), retransmission is triggered by the
interarrival timeout. Then, the packet in the expected packet
list with smallest WaitLen that has not been retransmitted is
selected for retransmission.

Interarrival Counter Threshold – For a single-path routing
scenario shown in Fig. 1, out-of-order packet reception in-
dicates packet loss, and a retransmission node triggers packet
retransmission depending on the level of packet disorder. Since
the RD packet also leads to disordered packet reception at the
following segments, the following retransmission nodes should
estimate an updated packet disorder length (CntThres) to avoid
spurious packet loss detection. To balance the tradeoff between
accuracy and complexity, we determine two-level packet inter-
arrival counter threshold: One is packet-level CntThres which
is differentiated for each packet, and the other is segment-level
CntThres that is differentiated for each segment.

To compute packet-level CntThres, packet retransmission
information needs to be shared. If the retransmission node in
the k th CR segment sends an RR packet, the node also sends
an RI packet to its following retransmission nodes. The main
fields in an RI packet is shown in Fig. 4, in which AddL
(i.e., additional packet disorder length) is computed at the
k th retransmission node to estimate how many packets are
transmitted ahead of an RD packet. After the following re-
transmission nodes receive an RI packet, they update CntThres
by adding AddL for the retransmitted packet from the k th
CR segment based on received information in the RI packet.
If the RR packet is sent at the k th retransmission node, the

StartSeq StartNum EndSeq AddLFlag

Optional Field

Fig. 4: Main fields in an RI packet.

additional packet disorder length (AddL), Lk, is calculated as
Lk = Rk/Ik + ak, k ∈ Z+ (2)

where Rk is the retransmission RTT and Ik is expected
interarrival time at the k th retransmission node; ak is de-
pendent on different retransmission trigger, 1 for InterCnt
exceeding CntThres and 0 for packet interarrival timeout.
To determine segment-level CntThres, the expected packet
disorder length is estimated through sampling the InterCnt of
out-of-order packets at each retransmission node of its own

CR segment. When a new out-of-order packet is observed, an
exponentially weighted moving average and its mean deviation
of a disordered packet length are iteratively updated, upon
which the CntThres in the expected packet list is updated.

Retransmission Timeout – After packet loss is detected,
both the transmitted RR and RD packets can be lost during
the retransmission phase. Therefore, a retransmission node
should be able to detect the retransmitted packet loss and
resend the retransmission request. To determine a threshold
for retransmission timeout, each packet retransmission delay
(i.e., retransmission RTT) is sampled to estimate an expected
retransmission RTT, given by [16]

Rv(k + 1) = (1− ξ)Rv(k) + ξR(k + 1)

Rm(k + 1) = (1− δ)Rm(k) + δ|R(k + 1)−Rv(k)|
Rth(k + 1) = Rv(k + 1) + φRm(k + 1), k ∈ Z

(3)

where R(k) is the k th retransmission RTT sample, Rv(k) is
an expected retransmission RTT calculated from k samples,
Rm(k) is a mean deviation from k retransmission RTT sam-
ples, Rth(k + 1) is the updated threshold for retransmission
timeout (i.e., expected retransmission RTT) after the (k+1) th
retransmission RTT sample, Rv(0) = R(1), Rm(0) = 0,
ξ = 0.125, δ = 0.25, and φ = 4.

3) Retransmission Nodes Triggering RR Packets: After a
retransmission node detects packet loss, it sends an RR packet
to the preceding caching node, requesting the retransmission
of the lost packet(s). If the retransmission is triggered by
a packet-level interarrival counter threshold, the node also
needs to generate and send an RI packet downstream to the
following retransmission nodes at the same time. Main fields
of the RR packet are similar to those of RI packet, expect that
AddL is replaced by the Timestamp field, which records the
time of sending an RR packet. The Flag field also indicates
how an RR packet is triggered. For RR packets triggered by
interarrival counter threshold (C) and retransmission timeout
(R), StartSeq and EndSeq specify that the packets with the
sequence numbers lying in between StartSeq and EndSeq are
expected to be retransmitted; For RR packets triggered by
interarrival timeout (T) where EndSeq fields are unknown, we
use StartSeq and StartNum to locate each specific expected
packet to be retransmitted.

4) Caching Nodes Retransmitting RD Packets: When a
caching node receives an RR packet, a range of sequence
numbers for the requested packets can be obtained from the
RR packet. The caching node searches in its data caching
buffer for the requested packets. If the requested packets are
successfully cached and are not triggered by the same condi-
tion (i.e., interarrival timeout or interarrival counter threshold),
the RD packets are sent out. Similar to RR packets, each RD
packet includes the timestamp fields, for the retransmission
timeout detection in case of retransmitted packet loss, and
includes the values of StartSeq and StartNum from its received
RR packet and the requested data payload; If the requested
packets are not found in current caching node, the RR packet
is forwarded to each preceding caching node consecutively
until the packets are found in the current CR segment.

Signaling between

controller and switch

Fig. 5: Simulation topology.

IV. SIMULATION RESULTS
In this section, simulation results are presented to demon-

strate the effectiveness of the proposed protocol. Since SDTP
is proposed to achieve reliable end-to-end packet transmission,
similar as TCP, the simulation results are compared with TCP
to show the effectiveness achieved by applying SDTP with
SDN controller. We use two separated virtual machines to
simulate the control plane and the data plane, respectively,
of an SDT-based embedded virtual network topology, where
we have an SDN controller, two end hosts and five switches as
shown in Fig. 5. Each virtual machine utilizes a 4 GB physical
memory and an Intel Core i7-4770HQ CPU at 2.20GHz with
a dual-core processor. The SDN control plane is implemented
by the Ryu framework [17]. The network elements including
end hosts, switches, and transmission links are emulated
by Mininet [18]. The switches in the simulation are Open
vSwitches [19]. We choose OpenFlow Version 1.3.0 [20] to
implement the SDN southbound interface. The link delay
between consecutive switches is set to 5 ms, and the link
between an end host and an edge switch has 20 ms delay.
The E2E packet loss rate ranges from 0% to 5%. For each
sending-receiving E2E transmission connection, a sending host
sends every packet per 15 ms. For the control plane, there
is a dedicated link used for signaling exchanges between
the controller and each switch. The SDN control efficiency
depends on the controller processing capacity and the distances
between the controller and each switch. In our simulations, we
set control delay (i.e., the time duration from the instant that
the sending edge switch sends a control message to the instant
that the receiving edge switch receives the control message)
as a variable to indicate different levels of control efficiency.
A. Connection Establishment

Fig. 6 shows the relationship of E2E connection estab-
lishment delay versus packet loss rate. The connection delay
increases with the control delay in SDTP. With a small control
delay (10 ms), the SDTP connection delay is much less than
that of TCP. When the control delay becomes large (65 ms),
SDTP has a larger connection delay than TCP if the E2E
packet loss rate is small, since few connection signaling
packets are lost and retransmitted. With an increased packet
loss rate, the two-way handshake to establish a connection
for SDTP avoids ACK packet loss, reduces the probability of
restarting the connection establishment, and thus achieves low
connection delay as compared to TCP.
B. Average End-to-End Packet Delay

In Fig. 7, we evaluate the average E2E packet delay (i.e., the
duration from the time a data packet is sent from a sending host

1 1.5 2 2.5 3 3.5 4 4.5 5
End-to-end packet loss rate (%)

0.1

0.15

0.2

0.25

0.3

C
o
n
n
e
ct

io
n
 e

st
a
b
lis

h
m

e
n
t
d
e
la

y
(s

) TCP
SDTP control delay=10ms
SDTP control delay=35ms
SDTP control delay=65ms

Fig. 6: Connection establishment delay of SDTP and TCP.

till the time instant it is successfully received by a receiving
host) with different packet loss rates. We also evaluate the
E2E packet delay distribution for the proposed protocol and
TCP. One thousand continuous packet samples are performed
and the results are shown in Fig. 8. For different packet loss
rates, TCP incurs higher delay jitter, which indicates that the
SDTP performs more stable data transmissions. As the packet
loss rate increases, both packet delay and delay jitter of TCP
are enlarged much more than those in SDTP, since the lost
packets of TCP can only be detected and retransmitted by the
source node. However, for the SDTP, the lost packets can be
detected earlier by the in-path retransmission nodes and be
retransmitted faster by the in-path caching nodes.

0 1 2 3 4 5

End-to-end packet loss rate (%)

0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078

A
ve

ra
g
e
 e

n
d
-t

o
-e

n
d
 p

a
ck

e
t
d
e
la

y
(s

)

TCP

SDTP

Fig. 7: Average E2E packet delay of SDTP and TCP.

200 400 600 800
Packet sequence number

0.1

0.2

0.3

0.4

E
n
d
-t

o
-e

n
d
 d

e
la

y
(s

) Packet loss rate=1%

TCP

SDTP

200 400 600 800
Packet sequence number

0.1

0.2

0.3

0.4

E
n
d
-t

o
-e

n
d
 d

e
la

y
(s

) Packet loss rate=2%

TCP

SDTP

200 400 600 800
Packet sequence number

0.1

0.2

0.3

0.4

0.5

E
n
d
-t

o
-e

n
d
 d

e
la

y
(s

) Packet loss rate=3%

TCP

SDTP

200 400 600 800

Packet sequence number

0.2

0.4

0.6

0.8

E
n
d
-t

o
-e

n
d
 d

e
la

y
(s

) Packet loss rate=5%

TCP

SDTP

Fig. 8: E2E packet delay with different packet loss rates.

V. CONCLUSION

In this paper, we present a novel SDN-based transmission
protocol (SDTP) with simplified connection establishment and
enhanced data transmission efficiency. Specifically, the SDTP
replaces the three-way handshake mechanism in TCP with
a new two-way connection establishment procedure, which
offloads the signaling overhead from the data plane to the

control plane, and reduces the amount of signaling exchanges
overhead. For data transmission, a new header format is
designed to support efficient data transmission with in-path
packet retransmission. Based on the new SDTP packet header
format, a novel in-path receiver-based packet loss detection
and caching-based packet retransmission scheme is proposed
to achieve fast lost packet detection and recovery with low
signaling overhead. Extensive simulation results are provided
to demonstrate the advantages of the proposed SDTP over
the conventional TCP. For future work, we will optimize
the caching/retransmission function placement to minimize
the E2E packet delay, and also investigate caching-based in-
network congestion control.

REFERENCES

[1] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5G: RAN, core network and caching solutions,”
IEEE Commun. Surv. Tutor., May 2018.

[2] J. Postel, Transmission Control Protocol, RFC 793, 1981.
[3] P. Chaudhary and S. Kumar, “A review of comparative analysis of TCP

variants for congestion control in network,” IJCA, vol. 160, no. 8, 2017.
[4] R. Globisch, Y. Sanchez, T. Schierl, K. Ferguson, and T. Wiegand,

“Retransmission timeout estimation for low-delay applications using
multipath RTP,” in Proc. IEEE WAINA’14, Victoria, Canada, May 2014,
pp. 759–764.

[5] S. P. Tinta, A. E. Mohr, and J. L. Wong, “Characterizing end-to-end
packet reordering with UDP traffic,” in Proc. IEEE ISCC’09., Sousse,
Tunisia, Aug. 2009, pp. 321–324.

[6] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Commun. Surv. Tutor., vol. 16,
no. 3, pp. 1617–1634, Feb. 2014.

[7] B. Gu, M. Dong, C. Zhang, Z. Liu, and Y. Tanaka, “Real-time pricing for
on-demand bandwidth reservation in SDN-enabled networks,” in IEEE
CCNC, Las Vegas, NV, USA, Jan. 2017, pp. 696–699.

[8] W. Han, M. Dong, K. Ota, J. Wu, J. Li, and G. Li, “SD-OPTS: Software-
defined on-path time synchronization for information-centric smart grid,”
in IEEE GLOBECOM, Singapore, Dec. 2017, pp. 1–6.

[9] T. Hafeez, N. Ahmed, B. Ahmed, and A. W. Malik, “Detection and
mitigation of congestion in SDN enabled data center networks: A
survey,” IEEE Access, vol. 6, pp. 1730–1740, Dec. 2017.

[10] M.-H. Wang, L.-W. Chen, P.-W. Chi, and C.-L. Lei, “SDUDP: A reliable
UDP-Based transmission protocol over SDN,” IEEE Access, vol. 5, pp.
5904–5916, Apr. 2017.

[11] Z. Wang, H. Luo, H. Zhou, and J. Li, “R2T: A rapid and reliable hop-
by-hop transport mechanism for information-centric networking,” IEEE
Access, vol. 6, pp. 15 311–15 325, 2018.

[12] H. Chen, D. Fang, X. Chen, F. Chen, X. Gong, B. Zhou, and L. Qin, “A
reliable transmission protocol based on dynamic link cache,” in Proc.
IEEE iThings/CPSCom’11, Dalian, China, Oct. 2011, pp. 752–755.

[13] B.-H. Oh, J. Han, K. Kim, and J. Lee, “A new receiver-based retrans-
mission scheme with TFRC,” IEEE Commun. Lett., vol. 16, no. 12, pp.
2091–2094, 2012.

[14] O. Alhussein, P. T. Do, J. Li, Q. Ye, W. Shi, W. Zhuang, and X. Shen,
“Joint VNF placement and multicast traffic routing in 5G core networks,”
in Proc. IEEE GLOBECOM’18, Abu Dhabi, UAE, Dec. 2018, pp. 1–6.

[15] A. C. Begen and Y. Altunbasak, “Timely inference of late/lost packets
in real-time streaming applications,” in Proc. PCS, San Francisco, CA
USA, 2004.

[16] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
retransmission timer,” Tech. Rep., Jun. 2011.

[17] “Ryu SDN framework.” [Online]. Available: http://osrg.github.io/ryu/
[18] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid

prototyping for software-defined networks,” in Proc. ACM SIGCOMM
Workshop’10, Monterey, CA USA, Oct. 2010, pp. 1–6.

[19] “Open vswitch.” [Online]. Available: http://www.openvswitch.org/
[20] B. Pfaff, B. Lantz, and B. Heller, “Openflow switch specification, version

1.3. 0,” Open Networking Foundation, 2012.

