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Abstract—The six generation (6G) networks demand intelligent
and decentralized solutions to meet dynamic service requirements
and high quality-of-service expectations. Federated Learning
(FL) emerges as a promising framework for collaborative ma-
chine learning in 6G, ensuring data privacy while supporting
diverse artificial intelligence (AI)-driven services. Yet, extending
FL to decentralized architectures, as necessitated by 6G hetero-
geneous and distributed environments, faces the challenge of data
heterogeneity, resulting in catastrophic forgetting. Addressing this
challenge is essential for realizing pervasive network intelligence
in 6G. To address this problem, we analyze the impact of
data distribution on the stability and efficiency of decentralized
federated learning by analyzing the propagation of bias among
nodes and examining the frequency of incorrect identification for
each digit. In addition, we investigate how varying local model
learning rates influence stability and efficiency. To enhance the
convergence speed while maintaining stability, we propose to add
a small number of teleportation links to reduce the average pair-
wise distance, thereby enhancing connectivity and accelerating
knowledge dissemination. The experimental results demonstrate
the effectiveness of the proposed method.

Index Terms—Decentralized federated learning, network topol-
ogy, connectivity, teleportation links

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) are
essential for achieving pervasive network intelligence in six
generation (6G) networks. These technologies provide ad-
vanced, data-informed capabilities that enhance the manage-
ment and utilization of network resources, enabling uninter-
rupted connectivity and sophisticated services. Moreover, AI
and ML analyze large datasets to predict trends, adapt to
network changes, and meet quality of service demands like
latency, reliability, and accuracy.

The emerging trend for distributed intelligence and efficient
resource utilization has driven the development of innova-
tive approaches, where federated learning (FL) stands out,
enabling collaborative ML across decentralized systems. FL
enables multiple devices to train a shared model while keeping
their data localized to ensure privacy and efficient use of
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resources [1]–[4]. This method significantly enhances data
privacy, as sensitive information remains on local devices
and is not transmitted to a central server [5], [6]. Despite
these advantages, the performance of FL faces significant
challenges, including scalability issues and communication
bottlenecks at the central server [7]. These bottlenecks can
hinder efficient model updates as the number of participating
devices increases. In addition, relying on a central server
introduces a single point of failure, posing a risk to system
reliability and robustness. To address these limitations, decen-
tralized FL (DFL) extends the FL approach by distributing
the aggregation process across peers without relying on a
server [8], [9]. In DFL, each peer node trains a local model on
its own data and periodically exchanges model updates with
its neighbours rather than a central server. These updates are
then aggregated at each peer to refine the local model. This
iterative exchanging and aggregation of model updates con-
tinue until the models converge. By decentralizing the learning
process, DFL enhances scalability, bypasses communication
bottlenecks, and improves fault tolerance while maintaining
data privacy.

However, DFL faces new challenges, primarily arising from
the non-independent and identically distributed (non-i.i.d.) na-
ture of data across different nodes. This heterogeneity in data
distribution complicates model convergence and consistency,
posing significant obstacles to achieving a robust and reliable
global model. One of the most pressing issues arising from
these challenges is catastrophic forgetting [10]. It involves
a model losing a significant amount of previously acquired
knowledge, causing unstable convergence in a decentralized
learning system with significant implications across various
critical sectors. For example, in healthcare, an unstable FL
model can result in inconsistent and unreliable diagnoses with
potential to harmful treatments. In autonomous driving, it
poses safety risks by causing erratic vehicle behaviors. For
financial institutions, it undermines fraud detection mecha-
nisms, potentially leading to financial losses. In smart cities,
it can cause inefficiencies in traffic management and resource
allocation. In industrial settings, it can result in operational
inaccuracies and safety hazards with collaborative robots.

The server-less nature of DFL and the non-i.i.d. data distri-
bution are the main reasons for catastrophic forgetting. At the
beginning of the training process, each node has access only
to its own training data and that of its closest neighbours. This
initial phase leads to a high degree of model specialization to



local data, making the model susceptible to forgetting when it
encounters new and varied data. As training continues, nodes
start to share insights and aggregate models from more distant
nodes, which sets the stages for catastrophic forgetting. The
incorporation of new information during these updates can
impair the performance of the model, which specializes for
the data in the neighbourhood. The continuous model updates
and information exchanges, fundamental to FL, exacerbate
this issue as they can displace or overwrite previously learned
information, resulting in decreased performance on prior tasks.

Various studies have proposed alternative approaches to
overcome these limitations. SkewScout optimizes DFL by
adjusting communication thresholds, selectively transmitting
important parameters to save the overall model accuracy [11].
Yet, overly restrictive thresholds may slow convergence, de-
grade accuracy, and require careful tuning for optimal per-
formance. P2PK-SMOTE rebalances non-IID training data by
generating synthetic minority samples and selectively shar-
ing them to enhance anomaly detection performance [12].
Nevertheless, it faces challenges in real-world deployment, as
sharing synthetic training samples may still introduce privacy
concerns and practical data-sharing constraints.

To address this problem, it is crucial to consider the in-
fluence of network topology in DFL [13]. Network topology
significantly affects the efficiency of information flow and the
convergence of the global model in several ways. First, the
structure of the network determines the paths through which
data travels among nodes. In a highly connected network,
information can disseminate quickly and efficiently, reducing
the time it takes for updates to reach all nodes. Second, the
presence of highly connected nodes (hubs) can facilitate faster
communication and enhance the overall speed of information
propagation. These hubs act as central points that can rapidly
distribute information to multiple nodes simultaneously. In
addition, the average pair-wise distance within the network
affects how quickly information can spread from one node to
another. The clustering coefficient, a metric that measures the
presence of closed triangles, also plays a significant role by
indicating the likelihood of which neighbours of a given node
are next to each other.

To accelerate the dissemination of information within DFL
networks, we strategically introduce a limited number of
teleportation links to alter the network topology. These telepor-
tation links operate at the transport layer and serve as logical
shortcuts, connecting nodes that would otherwise be forced
to go through other parts of the network. In this work, we
use a genetic algorithm to add teleportation links to the DFL
network. The contributions of this work are summarized as
follows: (1) We analyze the impact of data distribution on the
stability and efficiency of DFL by examining the propagation
of bias across nodes; (2) We explore the effect of the local
model learning rate on stability and efficiency; (3) We propose
to add a small number of teleportation links to increase
network connectivity, thereby accelerating convergence while
maintaining stability. Unlike [14], which primarily emphasizes
accelerating DFL, this work provides a broader analysis by

investigating the impact of data distribution on stability and
efficiency, examining bias propagation among nodes, and
analyzing the frequency of incorrect identification for each
digit.

The remainder of the paper is organized as follows. Sec-
tion II details the methodology for connectivity enrichment.
Section III evaluates the performance of our proposed method.
Section IV presents concluding remarks, and future research
directions.

II. CONNECTIVITY ENRICHMENT

In this section, we begin with catastrophic forgetting in
DFL. We then explore the role of network connectivity in DFL.
Finally, we address how network connectivity can be improved
by introducing a small number of teleportation links.

A. Catastrophic forgetting in DFL

Catastrophic forgetting occurs when a ML model, upon
being trained on new data, significantly loses its ability to
perform well on previously learned tasks or data [15]. This
phenomenon is particularly problematic in DFL, when training
data is non-i.i.d. Each node initially has access only to its
local data and the data of its immediate neighbours. During
the initial training phase,the training model becomes highly
specialized to the local data of the node, increasing the
risk of forgetting when exposed to new data. As training
progresses, nodes acquire insights from distant nodes through
model aggregation, further exacerbating the issue. The delay
in information exchange, even if there is a small number of
hops, implies that updates can be outdated by the time they are
received. Consequently, these updates can lead to catastrophic
forgetting, as the model parameters are adjusted to incorporate
new information.

B. Connectivity in DFL network topology

Nodes in DFL represent individual participants, such as
devices or servers, each holding local data and performing
computations. These nodes train local models and share model
updates with other nodes, typically involving model param-
eters to construct a global model while preserving privacy.
Edges in the network represent communication links, deter-
mining direct information exchange paths. These links define
how nodes interact and share information directly with each
other. In addition, the edges influence the network topology
and the overall efficiency of information spread. Several key
metrics can be employed to assess network connectivity in
DFL networks, each offering distinct advantages and disad-
vantages. These metrics include network density, diameter,
average pair-wise distance, flow capacity, and clustering coef-
ficient [16]. Each of these metrics provides unique insights on
different aspects of network structure and performance [17].
Network density represents the ratio of existing connections
to the total possible connections, offering a quick overview of
overall connectivity, and does not distinguish the importance
of individual connections. Diameter determines the maximum
distance between any two nodes, revealing the network spatial



extent, and is less stable due to its sensitivity to changes.
Average pair-wise distance measures the mean distance be-
tween all node pairs, indicating the efficiency of information
flow within the network. The average distance is more robust
compared to the network diameter as it is pooled from all node
pairs. Flow capacity determines the maximum volume that can
be transported through a network. Information throughput is
limited by the network bottlenecks, where the connectivity
is weaker than other richly connected regions. The clustering
coefficient quantifies the extent to which nodes form triangles,
indicating cohesion in a neighbourhood.

In our assessment of DFL network connectivity, we choose
average pair-wise distance and the clustering coefficient. Aver-
age pair-wise distance provides a comprehensive, global mea-
sure of the network efficiency in information flow. Formally,
given a connected undirected graph G = (V,E) of n vertices
in V , denoted as v1, v2, . . . , we use di,j to denote the distance
between nodes vi and vj , i.e., the length of the shortest path
joining these two nodes. Hence, the average pair-wise distance,
⟨d⟩, can be expressed as

⟨d⟩ = 2

n(n− 1)

∑
1≤i<j≤n

di,j . (1)

A small average pair-wise distance enables nodes to efficiently
acquire knowledge from distant nodes, promoting broader
dissemination of information across the network. Conversely,
a higher clustering coefficient facilitates fast and efficient local
information exchange by ensuring that neighboring nodes are
richly connected. With high connectivity achieved either way,
nodes continuously refine their models with diverse knowledge
from others, retaining previously learned information while in-
tegrating new insights. The clustering coefficient ⟨C⟩ indicates
the tendency of nodes to form triangles, i.e., the mean of the
per-node clustering coefficients Ci over all nodes, given by

⟨C⟩ = 1

n

n∑
i=1

Ci (2)

where the per-node clustering coefficient of node vi with
degree ki is

Ci =
2Li

ki(ki − 1)
. (3)

Here, Li denotes the number of links between the ki neighbors
of node vi. Both Ci and ⟨C⟩ range from 0 to 1.

C. Teleportation links

To speed up the convergence and improve the stability of
DFL systems, we strategically enhance network connectivity
through addition of teleportation links. These overlay links
are logical connections, at the transport layer, and function
as shortcuts, enabling direct communication between nodes
that would otherwise be indirectly connected. This reduces the
average pair-wise distance across the network. By integrating
teleportation links, DFL networks achieve faster convergence,
improved generalization, and more stable and efficient learning
processes.

We employ a genetic algorithm to add teleportation links
with the aim of increasing network connectivity [18], [19].
We encode an individual as all n(n−1)

2 possible node pairs
using a binary representation, where 0 indicates the absence
of an edge and 1 indicates the presence of an edge. The fitness
function is defined as the average pair-wise distance within
the corresponding network, with lower values indicating more
optimal solutions. There are two primary operations applied
to these individuals. For the mutation process, node pairs
connected by edges in the original graph have a mutation rate
of 0, while those not connected in the original graph have a
mutation rate of 0.2. Here, we enforce a constant number of
added edges. Crossover combines segments from two parent
individuals to generate two new offsprings. We maintain the
population of 50 individuals in the evolution. The selection
retains the fittest individuals based on their fitness scores. We
iteratively apply these operations for 100 generations to reduce
the network connectivity and terminate the process afterwards.

III. EXPERIMENTAL EVALUATION

In this section, we assess the effectiveness of the proposed
method on the MNIST dataset [20]. We use MNIST for two
key reasons. First, its simplicity ensures that evaluation focuses
on the method rather than dataset complexity. Large datasets
introduce additional challenges that can obscure method as-
sessment, whereas MNIST allows for a clearer evaluation.
Second, MNIST is a widely recognized benchmark, exten-
sively studied and commonly used for method comparison.
Poor performance on MNIST often signals potential issues on
more complex datasets.

Initially, we examine the stability and efficiency of DFL
by exploring bias propagation and comparing the impact of
different learning rate of the local model on stability and
efficiency in DFL. Next, we demonstrate the addition of
teleportation links across various topologies and evaluate their
performance.

A. Experiment settings

1) Topologies: We evaluate the proposed method on three
typical network topologies.

a) Cycle: In a cycle, each node connects to exactly two
other nodes, forming a closed loop. This configuration ensures
that there is a single continuous path for data to travel, looping
back to the starting point [21], [22].

b) Ring of cliques: In a ring of cliques, each clique
connects to exactly two other cliques, forming a ring. For a
setup with 100 nodes, there are 25 cliques, each containing 4
nodes [23].

c) Sphere: In a sphere, nodes are distributed evenly on
the surface of a sphere. We use the Fibonacci sequence to
place nodes. The nodes are spaced to minimize overlap and
maximize coverage [24].

2) Data distribution: We evaluate the method on 100
nodes, following a non-i.i.d. data distribution. To achieve this,
we initially categorize the data by digit label and then divide it
into 200 segments, with each segment containing 300 samples.
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Fig. 1: Bias proportion for different digits over time across nodes.

54 0 6
55 1 9
56 3 8
57 0 3
58 1 2
59 1 7
60 5
61 4 9
62 8 9
63 2 6
64 4 9
65 4 7
66 1 8
67 3
68 1 4
69 3 8
70 6 7

Fig. 2: Data distribution for nodes 54 to 70.

Each node is assigned two segments. This leads to a highly
non-i.i.d. distribution where the majority of nodes possess
samples from only two different digits.

3) Federated learning parameters: We train a multilayer
perceptron with a total of 199,210 parameters. The network
includes two hidden layers, each with 200 units using ReLU
activations. We employ stochastic gradient descent for opti-
mization, with learning rates of 0.1 and 0.01, and use a local
training batch size of 10.

4) Hardware configuration: The proposed algorithm is
implemented with PyTorch. It is tested on a computing node
equipped with an Intel Xeon Gold 6530 CPU. The system has
512GB of RAM and an Nvidia RTX 6000 GPU.

B. Stability and efficiency in DFL

Stability and efficiency in DFL are significantly influenced
by data distribution and the learning rate of the local model.
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Fig. 3: Average test accuracy over time.

In the first experiment, we illustrate the impact of data distri-
bution on the stability and efficiency of DFL by analyzing bias
propagation across nodes in a cycle topology of 100 nodes.
Here, the learning rate is 0.1. We are interested in observing
the frequency at which each digit is incorrectly identified. That
is, the number of false positives for each digit divided by
the total number of misclassifications. Fig. 1 shows the bias
proportion for three example digits 3, 4, and 9 over time (x-
axis) across nodes 55 through 70 (y-axis). The patterns in this
Fig. 1 are caused by the specific data distributions summarized
in Fig. 2.

In panel (a) for digit 3, nodes 56 and 57 exhibit a tendency
to misclassify other digits as digit 3. Over time, the bias of
these two nodes towards digit 3 decreases, transitioning from a
darker gray to a lighter gray. As shown in Fig. 2, both nodes
56 and 57 have digit 3 in their training set, so they have a
tendency towards digit 3 from the very beginning. Such a



tendency tapers due to the knowledge acquired from other
nodes over time. In this case, the biased nodes are next to
each other.

In contrast, the biased nodes can be spaced out and nodes
between them can still be affected. Fig. 1(a) shows that nodes
67, 68, and 69 show a similar propensity to misclassify other
digits as 3. Notably, node 68, which are trained with digits 1
and 4 but not digit 3, exhibits an even stronger bias towards
digit 3 than nodes 67 and 69. In particular, node 67 exclusively
contains digit 3, whereas node 69 includes both digits 3 and 8,
as depicted in Fig. 2. The observation above can be explained
as follows. Node 68 demonstrates a strong propensity towards
digit 3, jointly boosted by the tendencies of nodes 67 and 69.
Specifically, node 67’s inclination towards digit 3 is diluted by
its knowledge of digits 1 and 8 (from node 66) and of digits 1
and 4 (from node 68). Likewise, node 69’s tendency towards
digit 3 is moderated by its understanding of digits 1, 4, 6, and
7, acquired from nodes 68 and 70.

Not only can bias towards a given digit propagate to nearby
nodes, but also biases towards different digits at the same node
compete with each other. At the beginning, nodes 61, 62, and
63 exhibit a bias towards digit 9. Specifically, node 61 contains
digits 4 and 9, node 62 contains digits 8 and 9, and node 63
does not contain digit 9 but includes digits 2 and 6. Node 64
contains digits 4 and 9, and node 63 develops a bias towards
digit 9 due to the influence from nodes 62 and 64. Node 65
contains digits 4 and 7. Initially, nodes 64 and 65 exhibit a
bias towards digit 4 as their knowledge of digit 4 mutually
reinforces one another. Over time, the bias of these nodes
towards digit 4 or 9 diminishes due to the knowledge of other
digits acquired from more distant neighbours.

There are three key takeaways from the observations above.
First, nodes initially exhibit specific biases towards certain dig-
its based on the digits represented in their training set. Second,
nodes can influence each other’s biases. Third, over time, the
initial biases of nodes towards specific digits decrease. This
reduction in bias is attributed to the acquisition of knowledge
from other nodes, including distant neighbours.

Next, we will illustrate the impact of the learning rate of
the local model on stability and efficiency in DFL. While
data distribution plays a crucial role in bias propagation, the
learning rate also significantly affects the system performance
in a different dimension.

Fig. 3 presents a performance comparison of the average test
accuracy between DFL with learning rates of 0.1 and 0.01 over
a cycle topology of 100 nodes. The shaded area shows the 90%
confidence interval. There is a trade-off between stable and fast
convergence regulated by the choice of learning rate. As shown
in Fig. 3, a smaller learning rate results in stable but slower
convergence due to the gradual exchange of information. In
contrast, a larger learning rate can accelerate convergence but
often leads to instability. Specifically, at a learning rate of 0.1,
the average test accuracy reaches 0.9 within 1,000 time steps.
Meanwhile, at a learning rate of 0.01, the average test accuracy
is still below 0.9 after 10,000 time steps. If our target learning
accuracy is 0.8, learning rate of 0.1 gives us a convergence

TABLE I: Time steps required for different topologies with
varying numbers of teleportation links to achieve 0.8 and 0.9
test accuracy.

Topology Target
accuracy +0 edges +3 edges +6 edges +9 edges

Cycle 0.9 – – 3034 1992
0.8 1412 967 (↓31%) 884 (↓37%) 679 (↓52%)

Ring of
cliques

0.9 1965 1493 (↓24%) 1318 (↓33%) 1038 (↓47%)
0.8 643 528 (↓18%) 450 (↓30%) 373 (↓42%)

Sphere 0.9 2655 1929 (↓27%) 1664 (↓37%) 1509 (↓43%)
0.8 837 659 (↓21%) 595 (↓29%) 546 (↓35%)

rate around four times faster than 0.01.
It is observed that the DFL system with a smaller learning

rate exhibits a larger confidence interval compared to a higher
learning rate. That is, at a low learning rate, a considerable
number of nodes are trapped at local optima while many may
reach high learning accuracies, leading to a large performance
variance. Furthermore, these nodes exhibit considerable stabil-
ity regardless of their learning accuracy level. In contrast, at
the higher learning rate of 0.1, the DFL system successfully
converges to a higher level, but the system also demonstrates
a greater instability. For example, at approximately 7,000 time
steps, the accuracy noticeably drops from 94% to 75%.

C. Performance evaluation of adding teleportation links

Fig. 4 presents the average test accuracy for different
topologies with varying numbers of teleportation links. As
illustrated in the figure, strategically adding a small number
of teleportation links reduces the average pair-wise distance
and accelerates convergence speed while maintaining stability
in convergence.

To further quantify the benefits of teleportation links, Ta-
ble I shows time steps required for different topologies with
varying numbers of teleportation links to achieve 0.8 and
0.9 test accuracies. It demonstrates that adding teleportation
links significantly reduces the time needed to reach the target
accuracies across all topologies. For instance, adding 9 edges
to the ring of cliques reduces the time to reach 0.8 by 42%
and the time to reach 0.9 by 47%.

IV. CONCLUSION AND FUTURE WORK

In this paper, we strategically add a small number of
teleportation links to decentralized federated learning net-
works, enhancing connectivity and accelerating knowledge
dissemination. The cost of a communication network is usually
measured by the number of communication links in it. This
work achieves fast and stable convergence simultaneously
with little network cost increase. The experimental results
demonstrate that these teleportation links speed up model
convergence while preventing catastrophic forgetting.

For future work, we will investigate possible performance
degradation at specific nodes to trace anomalies during model
training and quantitatively assess the instability of DFL under
varying learning rates. We will evaluate the impact of adding
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Fig. 4: Average test accuracy for different topologies with
different numbers of teleportation links.

a varying number of edges on network connectivity across
different topologies. We will also examine the scalability and
efficiency of the proposed method in a larger DFL network. In
addition, the proposed method can be applied to other different
application domains. For instance, it can optimize communi-
cation in distributed sensor networks, enhance data flow in
peer-to-peer systems, and improve efficiency in transportation
networks.
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