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Abstract—In this paper, we investigate a computing task of-
floading problem in a cloud-based autonomous vehicular network
(C-AVN), from the perspective of long-term network wide com-
putation load balancing. To capture the task computation load
dynamics over time, we describe the problem as an Markov
decision process (MDP) with constraints. Specifically, the objective
is to minimize the expectation of a long-term total cost for
imbalanced base station (BS) computation load and task offload-
ing decision switching, with per-slot computation capacity and
offloading latency constraints. To deal with the unknown state
transition probability and large state-action spaces, a multi-agent
deep Q-learning (MA-DQL) module is designed, in which all the
agents cooperatively learn a joint optimal task offloading policy
by training individual deep Q-network (DQN) parameters based
on local observations. To stabilize the learning performance, a
fingerprint-based method is adopted to describe the observation
of each agent by including an abstraction of every other agent’s
updated state and policy. Simulation results show the effectiveness
of the proposed task offloading framework in achieving long-term
computation load balancing with controlled offloading switching
times and per-slot QoS guarantee.

I. INTRODUCTION

Promoting more autonomous vehicles (AVs) on the roads
have been one of the focal points from both academia and
industry in developing the next generation intelligent trans-
portation systems (ITS) [1], [2]. AVs help to relieve human
driving stress, intelligently navigate vehicle traffic, and regulate
driving behaviors. In order to achieve safety and more efficient
AV driving patterns, the on-board vehicle sensing is the key
to perceive environment information to provide different AV
services (e.g., object detection, object tracking and localization,
and data fusion [1]) and react to the environment changes
precisely and promptly (e.g., lane changing, emergency brake,
and curve turning [2]). However, only relying on the vehicle
sensing technology to realize high levels of automation is far
from enough, considering the limited sensing ranges for local
environment information acquisition. Besides, in response to
vehicle traffic dynamics, an increasing amount of sensing tasks
are required to be processed/computed (e.g., data compression
and data fusion) to achieve high automation, which often
overwhelms the limited on-board computation capacities.

Recent research endeavors promote the development of ad-
vanced computing and networking technologies to enhance
the data processing and information sharing capabilities [2].
With edge computing and vehicle-to-infrastructure (V2I) com-
munications, such as long term evolution-vehicle (LTE-V)

[3], AVs can offload their sensing tasks, through near-road
access points (APs) or macro-cell/small-cell cellular base sta-
tions (MBSs/SBSs), to high-performance computing (HPC)
servers connected to the communication infrastructures. Some
researchers also propose to migrate the computing tasks to
other AVs in close proximity with available computation re-
sources using vehicle-to-vehicle (V2V) communications [4].
To further enhance the edge computing performance, existing
works mainly focus on how to determine optimal decisions
between local computing and task offloading, with the objective
of minimizing the edge computing cost, in terms of task trans-
mission latency or power consumption [5], [6], or maximizing
the network utility for task offloading under quality-of-service
(QoS) constraints [4]. Most of the works consider a single edge
computing layer with one BS providing services for a group of
vehicles in a certain area. With more AVs generating increased
and differentiated task computing demands, a layered vehic-
ular networking architecture, e.g., MBSs underlaid by SBSs,
equipped with different levels of HPC capacity, is preferred to
provide fast task offloading and high computing efficiency.

Considering differentiated computing capacities and vehic-
ular traffic dynamics, how to make task offloading decisions,
from a network operator’s perspective, to balance the network
wide computation load for improving the resource utilization
is an important research issue. Some studies shed light on
facilitating computation load balancing among vehicles and
BSs, by designing load balanced network utility functions (e.g.,
logarithm) [7] or by minimizing the difference of computation
load levels among BSs [8]. Using optimization frameworks with
different load balancing metrics are effective in dealing with
one-shot task offloading. However, when the load balancing is
expected over time, solving optimization problems in each task
scheduling slot (in the scale of milliseconds) is computationally
complex. Besides, frequent switching of task offloading deci-
sions among BSs over consecutive slots needs to be avoided.

In this paper, we propose a learning-based computing task
offloading framework in a multi-tier autonomous vehicular
network (AVN) with layered edge computing. The objective is
to achieve long-term computation load balancing among BSs
and, at the same time, reduce the offloading switching times.
To capture the task computation load dynamics over sequential
scheduling slots, we formulate the task offloading problem as a
Markov decision process (MDP) with per-slot offloading delay
and BS computation capacity constraints. Due to the large prob-
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lem size and unavailability of state transition probabilities, we
employ a multi-agent deep Q-learning (MA-DQL) technique to
obtain the optimal policy for task offloading through interacting
with the network environment [9], [10]. Each agent distribu-
tively learns its own policy based on local observation, but
cooperatively maximizes a common reward, which substantially
reduces the complexity in solving the problem. To facilitate the
learning convergence, a fingerprint-based method is adopted to
customize the observation description of each agent. Computer
simulations are conducted based on real vehicle traffic trace
to demonstrate the network wide computation load balancing
under capacity and latency constraints.

II. SYSTEM MODEL

Consider a two-tier uplink AVN, as shown in Fig. 1, where
a single MBS, denoted by B0, is deployed at the center
of a macro-cell in the first network tier to provide a wide-
area communication coverage for AVs moving on a road
segment. The macro-cell is underlaid by n SBSs, denoted by
{B1, B2, ..., Bn}, within its coverage area in the second tier.
The SBSs covering small communication areas are placed near
the road to support increased task offloading demands from
AVs. We use set B = {B0, B1, ..., Bn} to denote all the BSs in
the considered network scenario. The AVN under consideration

Fig. 1: A two-tier AVN with layered edge computing.

is cloud enabled, also named cloud-AVN (C-AVN), where the
baseband processing and radio resource management (RRM)
functionalities on each BS are virtualized and migrated to a
two-layer edge computing architecture [11], as shown in Fig.
1. The master-level computing layer is provisioned in a main
DC node hosting intensive computing resources at the edge
of core networks, which is physically connected to the MBS
and provides different virtualized processing functionalities that
need to be centralized, including mobility management and
centralized RRM. The slave-level computing layer consists of
a number of light DC nodes with less computing capacities,
each connected to one SBS. Every light DC node provides
processing/computing functionalities for vehicle access control
and distributed RRM under each SBS, and is controlled by the
main DC node through wired links.

AVs are moving on the road segment and enter or leave the
road as time elapses. Assume that each AV on the road segment
is always under the coverages of the MBS and one of the SBSs,
and connects to both BSs. Offloading decisions for different
tasks on an AV can be switched between the BSs at the cost
of extra waiting time and consumed power. Suppose that time
is partitioned in a sequence of fixed-duration (T ) scheduling
slots, and T is set same as the delay upper bound for single
task execution. For analysis tractability, we assume that the road
segment under the coverage of B0 is divided into a number of
disjoint road zones, with the set of zone indexes denoted by
Z0 = {1, 2, ..., Z}, and the AVs with generated tasks (if any) in
one zone make a unified offloading decision to one BS covering
the zone (either an SBS or the MBS). Denote the subset of zone
indexes under the coverage of SBS Bk as Zk (⊂ Z0). If an AV
generates a task in its buffer at a slot, the vehicle is termed
as an active AV. The number of active AVs in zone z (∈ Zk)
under Bk at slot t is denoted by Nz

k (t). At each time slot, BSs
collect updated AV transmission buffer status and make task
offloading decisions for active AVs in each zone.

A. Task Model
Computing tasks are consistently generated on AVs for object

detection service [1]. Each task needs to be offloaded to a se-
lected BS for further processing and the task execution result is
sent back to trigger different AV operations (e.g., lane changing,
acceleration/deceleration). Each task offloading process needs
to be completed within certain latency constraint to ensure
timely response. If the computing output is not transmitted
back within the delay bound, the task will be discarded. By
setting T as the delay bound for task offloading, which is a
small value, we assume that at most one task is generated on
an AV at a time [12]. The computing task generation at slot t
on each vehicle follows Bernoulli distribution with parameter
p [5]. Therefore, at every time slot, the transmission buffer
of each active AV contains at most one generated task to be
offloaded. As the computation capacity on BSs are high and the
computation output is of small size, both task computing delay
and transmission delay of computation result are negligible [5],
[12]. The size of each generated task (in unit of bits) from an
active AV is assumed identical, and Hk denotes the maximum
task size from AVs under Bk. The computing speed (in unit of
CPU cycles per second) at a DC node connected to Bk is Ck,
and the computation intensity (i.e., number of cycles required
to process one information bit) is φ, same for all tasks.

B. Communication Model
Suppose that radio resource allocation is determined in each

resource planning period (in a time scale of minutes or hours)
based on the long-term task arrival statistics and network in-
formation (e.g., vehicular traffic load, wireless channel status).
We assume that the bandwidth resources on the MBS and SBSs
are orthogonal to avoid inter-tier interference, and AVs under
Bk (∈ B) are allocated an uplink channel with equal bandwidth
and use a fixed uplink transmit power, denoted by Wk and Pk,
respectively [12]. The bandwidth resources among the SBSs



can be reused with controlled interference to exploit resource
multiplexing.

According to the Shannon capacity formula, we calculate
the average uplink transmission rate from each AV in zone
z (∈ Zk) to Bk at slot t as

rzk(t) = Wk log2

(
1 + Izk(t)

)
(1)

where Izk(t) denotes average signal-to-noise power ratio (SNR)
from an AV in zone z to B0 (when k = 0) or average
signal-to-interference-plus-noise power ratio (SINR) at SBS Bk

(when k = 1, 2, ..., n). Izk(t) is calculated by considering the
uplink transmit power Pk, the squared uplink channel gain
Gz

k(t) averaged over a group of active AVs in zone z of
Bk at slot t, and the average background noise power σ2.
Instantaneous uplink channel gain at each time slot consists
of the path loss and log-normal shadowing components, which
stay unchanged over a number of sequential slots, and the
fast fading component (assumed to be exponentially distributed
with unit mean) [10]. An upper bound of inter-cell interference
is also included in Izk(t) for the SINR calculation, assuming
bandwidth resources are allocated in a way that the interference
in one zone (e.g., the first zone) under the coverage of one
SBS only comes from corresponding zones (e.g, the first zones)
under the coverages of the other SBSs.

III. PROBLEM FORMULATION

The objective of the problem under consideration is to
determine how AVs in each road zone offload computing tasks
among BSs to balance the network wide computation load and
reduce the offloading decision switching times in a long term,
under offloading delay and computation capacity constraints.
At slot t, the computation load at Bk is calculated as

Lk(t) =

∑
z∈Zk

Nz
k (t)a

z
k(t)φHk

CkT
(2)

where azk(t) denotes a unified task offloading decision for AVs
in zone z under Bk. We have azk(t) = 1, if active AVs in zone
z offload the computing tasks to Bk; Otherwise, azk(t) = 0.

The cost of imbalanced task computing load among BSs
at slot t is interpreted as the maximum instantaneous BS
computation load [13], denoted by C1(t) = maxBk∈B {Lk(t)}.
To avoid frequent switching of task offloading decisions in each
road zone, we design a switching cost by counting the number
of offloading decision changes between consecutive time slots
over the road zones under all BSs, given by

C2(t) =
∑
Bk∈B

∑
z∈Zk

∑
j∈B′\Bk

azk(t)a
z
j (t− 1) (3)

where B′ is the set including the MBS and the SBS covering
zone z. The total cost of imbalanced computation load and
offloading decision switching is a weighted sum of C1(t) and
C2(t), expressed as

C(t) = λC1(t) + (1− λ)C2(t) (4)

where λ is a weighting factor within the interval (0, 1).

As our objective is to strike the balance between the network
wide computation load and the task offloading switching cost
over time, we describe the problem as an MDP formulation
with per-slot constraints to capture the network dynamics over
sequential time slots and model the interaction between network
states and policies. An MDP formulation is often described by
a four dimensional tuple, composed of state S, action A, state
transition probability P (S ′|S,A), and reward R(S,A). In the
considered scenario, the system state at time slot t is defined
as S(t) = {N (t), I(t),A(t − 1)}, where N (t) indicates the
set of active AV numbers in each road zone, I(t) is the set of
average SNR and SINR between an AV in a zone to a BS, and
A(t − 1) denotes a combination of task offloading decisions
for AVs in each zone under each BS at slot t− 1. The system
action at slot t is denoted by A(t).

The state transition from t to t+ 1 consists of two parts: 1)
the change of N (t) and I(t) due to dynamics of AV active
status and vehicle movement over time, and 2) the update
of A(t − 1) to A(t) triggered by the action taken at t. A
stationary policy Π(A|S) in MDP is defined as the steady-
state probability of taking action A under state S. Therefore, we
aim at finding an optimal policy Π∗(A|S) that minimizes the
expectation of a long-term total cost for achieving network wide
load balancing (i.e., maximizes a long-term total reward) under
BS computation capacity constraints and task offloading delay
bound in each time slot. The MDP-based problem formulation
is given as (P1) :

min
Π

E

[
lim

T→+∞

1

T

T∑
t=1

C(S(t))
∣∣∣∣Π

]

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
Bj∈B′

azj (t) ≤ 1, z ∈ Zk, Bk ∈ B (5a)

∑
z∈Zk

Nz
k (t)a

z
k(t) ≤

CkT

φHk
, Bk ∈ B (5b)

Hk

rzk(t)
azk(t) ≤ Db, z ∈ Zk, Bk ∈ B (5c)

where C(S(t)) is the per-slot total cost calculated by (4), and
Db is the task offloading delay bound. In (P1), constraint
(5a) indicates that active AVs in each zone take a unified
action to offload tasks to either the MBS or the SBS providing
the coverage. Constraint (5b) guarantees the instantaneous BS
computation load at each time slot not exceed the computation
capacity. Constraint (5c) indicates the maximum task transmis-
sion delay from active AVs in each time slot should be less
than or equal to Db.

The formulated problem has high state and action dimensions

that reach to 3
n∑

k=0

|Zk| and
n∑

k=0

|Zk|, respectively, where |·|
determines set cardinality. Thus, both state and action spaces
are normally large. Besides, due to the dynamic computing
task load, the state transition probability function P (S ′|S,A)
is often implicit and is hard to be known as a priori. Therefore,
conventional MDP algorithms, e.g., value iteration [5], for
solving the stochastic optimization problem may not be applied.



Instead, we consider to use a DQL-based approach to deal with
the problem complexity caused by large state and action spaces,
and learn the optimal steady-state task offloading policy.

IV. COOPERATIVE MULTI-AGENT DEEP Q-LEARNING
APPROACH

DQL is a model-based deep reinforcement learning (DRL)
method that uses trial-and-error interaction with the environ-
ment to accumulate state-action-reward transition samples to
train a deep Q-network (DQN) [14], a structured deep neural
network (DNN) with state as input and Q value as output. An
established DQN output can well approximate the action-value
function Q (S(t),A(t)) described by the Bellman equation,
given by

Q (S(t),A(t)) = (1− α)Q (S(t),A(t))

+ α

[
R(S(t),A(t)) + γ max

A(t+1)
Q(S(t+ 1),A(t+ 1))

]
(6)

where α is the learning rate that balances learning time
with accuracy, and γ is the discount factor indicating how
much the future reward is discounted in each learning time
step. We use DQL with experience replay to handle complex
learning tasks in an environment with high-dimension state-
action representations and a discrete action space [14]. The
DQL has much higher learning efficiency than conventional
Q-table based reinforcement learning which may experience
“curse of dimensionality” in a high-dimension state-action
problem structure. However, if we adopt a single-agent DQL
and put the learning module in the DC node connected to the
MBS which has a global view on the network environment, it
would be difficult to obtain good learning performance due to
increased state and action spaces and huge amount of real-time
information exchanged between AVs and the DC node.

With the two-layer edge computing architecture, we design
an MA-DQL module where each SBS acts as a learning
agent to interact with its local network environment to gain
experience and obtain its own decision policy. All agents share
a same reward function as a unified learning objective, i.e.,
balancing the BS computation load with reduced task offloading
switching times, which turns the multi-agent learning process
as a cooperative game [9], [10]. A joint reward is obtained
after actions are taken from all the agents in each time slot
to collaboratively explore the global network environment. As
actions are taken only based on local observations, the state
and action spaces of each agent are substantially reduced. A
detailed design of the MA-DQL module is in the following.

1) Observation with fingerprint: The local observation Ok(t)
from agent k (SBS Bk) at slot t is described as a function of
global state S(t), given by

Ok(t) = F(S(t), k) = {Nk(t), Ik(t),Ak(t− 1)} (7)

where F(·) describes the mapping relation, Nk(t) =
{Nz

k (t), z ∈ Zk}, Ik(t) = {Iz0 (t), Izk(t), z ∈ Zk}, and
Ak(t−1) = {azk(t−1), z ∈ Zk}. Relying on local observation
to take actions works well for conventional multi-agent Q-
learning, which is also termed as independent Q-learning [9].

However, for the cooperative MA-DQL, all agents share the
same reward function but each one trains its own DQN param-
eter, denoted by θk for agent k (k = 1, 2, ..., n). Thus, each
agent would face a non-stationary network environment while
the other agents adjusting their actions at the same time. The
problem could become more severe when experienced replay is
employed to improve the learning convergence [9]. To stabilize
the learning performance, say for agent k, we include a low
dimensional fingerprint reflecting the update process of other
agents’ polices including the latest DQN training iteration steps
from all the agents excluding agent k, denoted by e−k, and
the rate of exploration ε−k used in ε-greedy policy [10]. We
also customize the observation design for agent k in slot t
by including the abstracted state information from the other
agents and the MBS in slot t − 1 to further stabilize the
learning process. That is the set of computation load shared
by other BSs, denoted by L−k(t − 1). With the layered edge
computing architecture, the computation load on each BS can
be synchronized at the main DC node within slot t − 1 and
shared among SBSs at the beginning of slot t. The customized
observation space for agent k is expressed as

O(f)
k (t) = {Ok(t),L−k(t− 1), e−k, ε−k}. (8)

2) Action: The action for agent k includes a set of task
offloading decisions in each zone under SBS Bk at time slot
t, denoted by Ak(t) = {azk(t), z ∈ Zk}. Compared with the
single agent DQL, the action space is reduced to 2|Zk| which
only depends on the number of zones under SBS Bk.

3) Reward: The per-slot reward function is designed con-
sidering the total cost for BS computation load balancing and
penalties against constraint violation, given by

R(t) = −C(t)− V1

∑
Bk∈B

1

( ∑
z∈Zk

Nz
k (t)a

z
k(t) >

CkT

φHk

)

− V2

∑
Bk∈B

∑
z∈Zk

1

(
Hk

rzk(t)
azk(t) > Db

) (9)

where V1 and V2 denote the penalties when the BS computation
capacity is exceeded and the task offloading delay constraint is
violated, and 1(·) is an indicator function which equals 1 if
the condition is met and equals to 0 otherwise. According to
(9), all the agents cooperatively take actions to maximize the
accumulated reward over time, which is equivalent to minimiz-
ing the network-wide computation load balancing cost while
satisfying the capacity and delay constraints to the maximum
extent.

4) MA-DQL algorithm: We consider an episodic learning
setting where the network environment is initialized at the
beginning of each episode including AV traffic pattens, BS
configuration parameters, and channel conditions. Within each
episode, each agent (i.e., SBS) updates the local observation
information at every time slot (training time step) and learns
the offloading decisions for its covering AVs in each road
zone. Through multiple episodes of training, the set of optimal
policy is converged over different vehicular environment states
to maximize the long-term reward. Specifically, each agent has



two DQNs: a target DQN and an evaluation DQN. In time
step t, any agent, k, takes action Ak(t) based on O(f)

k (t)
using ε-greedy policy [14], and all agents’ actions jointly
generate a system reward, R(t). Then, a state transition tuple[
O(f)

k (t),Ak(t), R(t),O(f)
k (t+ 1)

]
is observed and stored in

the replay memory Mk of agent k. For each episode, a mini-
batch Dk of state transitions is randomly sampled from replay
memory Mk to train the evaluation DQN parameter θk, by
minimizing a squared loss function given in (10) based on
stochastic gradient descent [10], [14].

L(θk) =
∑
t∈Tk

[R(t) + γ max
A′

k(t+1)
Q̂(O(f)

k (t+ 1),A′
k(t+ 1); θ̂k)

−Q(O(f)
k (t),Ak(t);θk)]

2 (10)

where Tk is the set of time steps when each of the transition
tuples in mini-batch Dk is collected, Q(;θk) and Q̂(; θ̂k)
denotes the action-value function approximated by the eval-
uation DQN and the target DQN, with the parameters being
θk and θ̂k, respectively. This mini-batch sampling process
is called experience replay, which is a key feature in DQN
to stabilize the learning convergence. After M episodes, the
target DQN parameter θ̂k of any agent k is replaced by the
updated evaluation DQN parameter θk. The detailed algorithm
is presented in Algorithm 1.

Note that the realization of the algorithm relies on a two-
stage learning process: centralized training and distributed
execution [10]. In the training stage, each agent train its own
DQN parameters by accessing the total system reward; In the
execution stage, each agent takes its own action based on the
local observation and the trained DQN. After some time (e.g.,
minutes) when the AV traffic pattern varies significantly, the
training stage is trigged again to update the DQN parameters
in response to the environment change.

V. SIMULATION RESULTS

Simulations are conducted to verify the effectiveness of
the proposed task offloading framework for computation load
balancing. The network scenario and the learning module are
created using Python 3.7 IDE with Tensorflow 1.14.0. To
simulate vehicle traffic patterns, we use SUMO traffic simulator
to build a bi-directional two-line road segment of 1 km with
a vehicle traffic trace loaded from a provincial roadway in
Xinjiang, China [15]. The average speed of each vehicle is
between 23m/s to 28m/s. We deploy 1 MBS underlaid by
2 SBSs, each with the coverage radius of 500m and 250m,
respectively, to cover the road. The minimum distances from
the MBS and each of the SBSs to the road segment are set as
20m and 10m, and the main and light DCs are equipped with
computation capacities of 6Mbps and 3.2Mbps, respectively.
The road segment under the MBS coverage is partitioned into
10 disjoint zones, among which each SBS covers 5 zones, and
the average active AV number in each zone is around 5. The
uplink transmit power from AVs to the MBS and the SBSs are
set as 27 dBm and 25 dBm. Each SBS connected to a light DC
has a DQL module with two structured DQNs. Each DQN has 3

Algorithm 1: MA-DQL algorithm with experience re-
play for task offloading
Initialize: Vehicular network environment, DQN

parameters θk and θ̂k, replay memory Mk

1 for each episode do
2 Load AV traffic trace and initialize network state;
3 for any time step t do
4 for any agent k do
5 Update O(f)

k (t);
6 Take action Ak(t) based on O(f)

k (t) using
ε-greedy policy;

7 end
8 Observe the joint system reward R(t);
9 Update observation to O(f)

k (t+ 1);
10 for any agent k do
11 Store the state transition tuple[

O(f)
k (t),Ak(t), R(t),O(f)

k (t+ 1)
]

in
replay memory Mk;

12 end
13 end
14 for any agent k do
15 Randomly sample a min-batch Dk of transition

tuples from Mk;
16 Use the mini-batch samples to train the

evaluation DQN parameter θk based on a
stochastic gradient descent method;

17 Copy θk to θ̂k every M episodes;
18 end
19 end

hidden layers with (128, 64, 64) neurons, respectively, between
the input and output layers. Relu nonlinear activation function
is used for all the hidden layers. Other system and learning
parameters are summarized in Table I.

TABLE I: System and learning parameters
System parameters Values Learning parameters Values
Channel bandwidth 200 kHz Learning rate 10−3

Noise power −104 dBm Discount factor 0.9
Maximum task size 5000 bits Exploration rate 0.9999
Path loss exponent 3.5 Exploration decay 0.0002
Log-normal shadowing −30 dB Replay buffer size 5000
AV active probability 0.5 Mini-batch size 64
delay bound/step time 50ms Steps per episode 1000
Penalty (V1/V2) 2000/10000 Replace episodes (M ) 40

We first demonstrate the performance of the designed learn-
ing module in solving (P1). The weighting factor λ in (4) is
set as 0.9 to balance computation load more than controlling
offloading decision switching. The total reward averaged over
1000 time steps in each episode is shown in Fig. 2(a). It can be
seen that the average reward at the end of the learning process
(at around 16000 episodes) converges, where no offloading la-
tency violation and computation capacity overload are incurred.
As the learning process goes, all the agents cooperatively
train their DQN parameters to refine individual task offloading
policies based on local observations to eventually obtain a joint
optimal stationary policy.
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Fig. 2: Performance of the proposed learning-based task offloading framework.

Fig. 2(b) and Fig. 2(c) show the maximum BS computation
load (including its average over time) and the average offload-
ing switching times over all BSs per time step, respectively,
when the learning convergence is reached (For display clarity,
we only show the computation load in the first 100 steps from
last training episode). We demonstrate in Fig. 2(b) the cases of
maximizing the load balancing and minimizing the offloading
switching cost, by setting λ as 0.9999 and 0.0001, respectively.
The former case shows better load balancing by sacrificing
more task offloading decision changes over consecutive slots
in different road zones. An upward trend is observed in Fig.
2(c) on average task offloading switching times per step with
the increase of λ. However, the proposed framework balances
the BS computation load and task offloading switching cost by
well controlling the switching times. A reinforcement learning-
based rate maximization scheme in [16] is compared with, as
shown in Figs. 2(b) and 2(c). By offloading tasks to a BS with
a higher uplink transmission rate, the existing scheme sacrifices
more task offloading switching times and certain degree of load
balancing to achieve a lower task transmission delay.

VI. CONCLUSION

In this paper, we have studied a computing task offloading
problem in a C-AVN, with the objective of achieving long-
term computation load balancing with reduced offloading de-
cision switching cost. Specifically, the problem is formulated
as an MDP with per-slot computation capacity and offloading
latency constraints. To deal with large state-action spaces and
unavailability of state transition probability distribution, we
design a multi-agent DQL module where each SBS acts as
a learning agent to cooperatively learn a joint optimal task
offloading policy based on local observations. To facilitate the
learning convergence, a fingerprint-based method is adopted to
customize the observation of each agent with state and policy
abstraction from other agents. Simulation results demonstrate
that the proposed learning-based task offloading framework
flexibly balances the BS computation load with controlled
offloading decision switching times, compared with a rate-
maximization offloading scheme.
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