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Abstract—Mobile edge computing (MEC) and cloud computing
(CC) have been considered as the key technologies to improve the
task processing efficiency for Internet of Vehicles (IoV). In this
article, we consider a random traffic flow and dynamic network
environment scenario where MEC and CC are collaborated for
processing delay-sensitive and computation-intensive tasks in IoV.
We study the joint optimization of computation offloading and
resource allocation (CORA) with the objective of minimizing the
system cost of processing tasks subject to the processing delay and
transmission rate constraints. To attack the challenges brought by
the dynamic environment, we use the Markov decision process
model for formulating the dynamic optimization problem, and
apply a deep reinforcement learning (DRL) technique to deal with
high-dimensional and continuous states and action spaces. Then,
we design a CORA algorithm, which is able to effectively learn the
optimal scheme by adapting to the network dynamics. Extensive
simulation experiments are conducted, in which we compare the
CORA algorithm with both non-DRL algorithms and DRL algo-
rithms. The experimental results show that the CORA algorithm
outperforms others with excellent training convergence and per-
formance in processing delay and processing cost.

Index Terms—Cloud computing, computation offloading, deep
reinforcement learning (DRL), Internet of Vehicles (IoV), mobile
edge computing, resource allocation.

I. INTRODUCTION

W ITH the emergence and rapid development of Internet
of Vehicles (IoV), various computation-intensive and

delay-sensitive applications are employed to improve the con-
venience of human–vehicle interaction [1], such as autonomous

Manuscript received 12 February 2022; revised 24 December 2022; accepted
19 February 2023. Date of publication 13 March 2023; date of current version
8 June 2023. This work was supported in part by Beijing Nova Program under
Grant Z201100006820082; in part by the National Natural Science Founda-
tion of China under Grant 61972414; in part by the Project of Cultivation
for young top-motch Talents of Beijing Municipal Institutions under Grant
BPHR202203225; in part by R&D Program of Beijing Municipal Education
Commission under Grant KM202011232015; and in part by the Young Elite
Scientists Sponsorship Program by BAST under Grant BYESS2023031. (Cor-
responding author: Ying Chen.)

Jiwei Huang, Jiangyuan Wan, and Bofeng Lv are with the Beijing Key
Laboratory of Petroleum Data Mining, China University of Petroleum, Bei-
jing 102249, China (e-mail: huangjw@cup.edu.cn; 15611562852@163.com;
lvbofeng@foxmail.com).

Qiang Ye is with the Department of Computer Science, Memorial University
of Newfoundland, St. John’s NL A1C 5S7, Canada (e-mail: qiangy@mun.ca).

Ying Chen is with the Computer School, Beijing Information Science
and Technology University, Beijing 100101, China (e-mail: chenying@
bistu.edu.cn).

Digital Object Identifier 10.1109/JSYST.2023.3249217

driving, augmented reality [2], natural language processing, etc.
Among the aforementioned applications, autonomous driving
is one of the key technologies to improve travel efficiency in
the intelligent IoV [3]. In order to perceive the surrounding
environment in real time, vehicles need to perceive the environ-
ment through on-board cameras. Then, the wireless communi-
cation on-board units (OBU) need to extract useful information
from the image data captured by cameras to assist autonomous
driving. However, with the increase of the amount of data, the
computation capacity of the OBU may be not enough to meet the
autonomous driving task processing delay requirement, and high
delay is a fatal problem in autonomous driving. Therefore, cloud
computing (CC) with high-performance computing capability
is an effective method to reduce the computing burden of vehi-
cles [4]. Although CC can deal with the challenge of insufficient
computing capability of vehicles, massive data will lead to high
transmission delay and unstable connection. In order to make
up for the deficiency of CC, mobile edge computing (MEC) is
introduced to improve the performance of IoV [5].

As an emerging paradigm, MEC can provide auxiliary com-
puting services with low delay for vehicles. Although the MEC
can bring advantages like low delay due to short distance be-
tween vehicles and edge servers, there are challenges in MEC
for IoV. The edge server (ES) needs to process a large number
of heterogeneous tasks from vehicles in parallel, which leads to
dynamic remaining available computing resources of the ES.
Furthermore, the randomness of vehicle density leads to the
dynamic task computation load [6]. When the number of tasks
increases, the ES with limited computing resources may not be
able to handle high volume of tasks. To solve these problems,
the roadside unit (RSU) needs to offload tasks partially to cloud
server (CS). In this article, we study the scenario where CC and
MEC are collaborated in IoV to process tasks with strictly high
requirements in performance.

Due to the dynamic network environment of IoV, the avail-
able bandwidth of the micro base station (MBS) and RSU to
MBS (R2B) wireless channel states are time varying and un-
predictable [7]. All RSUs along the road communicate with the
MBS and share the available bandwidth of the MBS. In addition,
the channel state will affect the transmission delay of R2B
connections, and R2B connections sharing the bandwidth of the
MBS will cause interference to other connections. Therefore,
the bandwidth of MBS and channel state of R2B connections
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Fig. 1. System architecture.

cannot be ignored. Finally, due to the time-varying network
environment, it is difficult for traditional mathematical optimiza-
tion methods to determine the optimal scheme of computation
offloading and resource allocation (CORA) in real time.

To attack the aforementioned challenges, we consider a three-
layered architecture of IoV consisting of both MEC and CC.
In order to minimize the task processing cost in the dynamic
scenario of IoV, we propose a CORA algorithm based on deep
reinforcement learning (DRL) supporting the partial offloading
strategy, which is able to deal with continuous and large-scale ac-
tion spaces for effectively obtaining the optimal CORA schemes.
The main contributions of this article are as follows.

1) We investigate a three-layered architecture of IoV sup-
porting MEC and CC. In the dynamic scenario, the vehicle
layer includes autonomous driving vehicles on a straight
road, the edge layer contains RSUs for receiving tasks
from vehicles and ESs for processing tasks, and the cloud
layer contains one CS for relieving the computing burden
of the edge layer, one central controller for collecting
system status and making scheduling decisions and one
MBS for receiving tasks from RSUs. Furthermore, we
consider both binary offloading and partial offloading to
make the task offloading strategy more flexible. Then, we
propose a joint optimization of computation offloading
and bandwidth resource allocation scheme. The objective
of our scheme is to minimize the task processing cost with
the delay and transmission rate constraints.

2) We consider the dynamic IoV scenario, in which the
vehicle density, available bandwidth of MBS, channel
states of R2B connections, and computing resources of
edge servers are time varying. In order to deal with the
large-scale dynamic IoV scenario, we design our CORA

algorithm based on DRL to obtain the optimal comput-
ing offloading and resource allocation scheme effectively.
We take advantage of the collaboration of multiple actor
networks and critic networks for preventing from overes-
timation and stabilizing the training process.

3) We compare our CORA algorithm with traditional non-
DRL algorithms and existing DRL algorithms [deep Q
network (DQN) and deep deterministic policy gradient
(DDPG)] through extensive simulation experiments. The
results show that our CORA algorithm outperforms others
in learning convergence rate, processing delay, and system
cost.

The remainder of this article is organized as follows. In
Section II, we propose the system model. The optimization
scheme of our problem is illustrated in Section III. Section IV
proposes Markov decision process (MDP)-based CORA algo-
rithm. Section V shows the experimental results of our experi-
ment. Section VI discusses the related work. Finally, Section VII
concludes this article.

II. SYSTEM MODEL

This section proposes the detailed system model, which in-
cludes network model, mobility model, task model, computation
model, and communication model.

A. Network Model

We consider a three-layer edge-cloud collaboration system in
IoV. The vehicle layer includes autonomous driving vehicles on
a straight road. The edge layer includes M RSUs and M ESs.
The cloud layer includes one CS equipped with one MBS. The
system architecture is shown in Fig. 1.
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In the vehicle layer, vehicles run on a unidirectional road.
Each vehicle is equipped with an OBU for communicating with
RSU and processing tasks. The road is divided into M zones
with equal length, and each zone is covered by one RSU. The
set of RSUs is denoted byM = {R1, R2, . . ., RM}. We assume
the coverage areas of RSUs do not overlap, and thus, the vehicles
driving in the ith zone can only communicate with RSU Ri.

In the edge layer, there are M RSUs along the road, and each
RSU is connected with an ES through wired connection. The set
of ES is expressed as S = {S1, S2, . . ., SM}. In each time slot t,
each RSU receives arrival tasks within its coverage. According to
the dynamic network environment, RSUs can choose to offload
partial or all of the tasks to the CS to reduce the computation
burden on ES through wireless connections.

In the cloud layer, the CS is connected with one MBS through
wired connection. The CS has enough computing resources for
processing tasks. The MBS can receive and forward tasks to the
CS, which are offloaded by RSUs.

We assume that there is a central controller with full knowl-
edge of the network environment and traffic environment of the
IoV [8]. The DRL agent that makes task offload and resource
allocation decisions is deployed in the central controller. The
central controller collects the status of vehicle tasks, edge server
computational resources, channels, bandwidth resources, etc.
Then, the DRL agent in the central controller makes offloading
decisions for all vehicles intensively. The central controller is
deployed with the MBS connected by wired link. For the clarity
of the following analysis, we describe in Table I notation mainly
used in this article.

B. Mobility Model

Vehicles enter/leave the road as time passes. At time slot t,
we denote Vi(t) as the set of vehicles within coverage of RSU
Ri. The length of time slot t is usually short (e.g., milliseconds).
Thus, the number of vehicles within coverage area of RSU Ri

during one time slot can be considered constant, denoted as
Ni(t). Nevertheless, Ni(t) can vary over long time scales (e.g.,
hours) due to dynamics of traffic flow. The average number of
vehicles is related to the average speed on the road [9], i.e.,

v = vlim

(
1− N

Nmax

)
(1)

where v is the average speed of vehicles in one zone; N is the
average number of vehicles in one zone; vlim is the maximum
speed for vehicles on the road; andNmax is the maximum number
of vehicles in one zone.

C. Task Model

We consider that each vehicle generates at most one task at the
beginning of each time slot t. We assume that the tasks generated
at each time slot can be completed during the current time slot.
Therefore, the task generation events are independently and
identically distributed at each time slot. Therefore, we consume
that task generation follows the Bernoulli distribution [10] with

TABLE I
NOTATION AND DEFINITIONS

probability p. Thus, the average task arrival rate is expressed as

λ =
p

t
. (2)

The size of one task is l bits. At time slot t, the total compu-
tation load Li(t) generated by Vi(t) is

Li(t) = Ni(t)l. (3)

D. Computation Model

The vehicles do not drive out of one zone during each time
slot t. The vehicles in Vi(t) can complete the computing process
before driving out of the zone. Task offloading decisions for all
vehicles in Vi(t) are identical, denoted by ai(t). ai(t) is a binary
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variable which represents whether or not Li(t) is offloaded to
RSU Ri at time slot t, i.e.,

ai(t) =

{
1, load Li(t) is offloaded to RSU Ri

0, processed by vehicles locally.
(4)

1) Local Computing Model: We consider that the CPU pro-
cessing frequency of all vehicles are identical, denoted as fv .
The number of CPU cycles required to process one bit data is
c. Then, the average local computing delay of computation load
Li(t) is

T local
i (t) = ai(t)

cLi(t)

fvNi(t)
, i ∈M. (5)

2) Edge Computing Model: Each RSU needs to process a
large number of multitypes of tasks in parallel. The computing
resources of ES connected to RSU is limited. In addition, due
to the dynamic network environment in IoV, the remaining
available computing resources of ES is not static. At time slot t,
the available computing resources of ES i is fi(t).

If computation load Li(t) is offloaded to RSU, the processing
delay includes vehicle to RSU (V2R) transmission delay and ES
processing delay. We adopt task partition technique during task
processing. RSU Ri can divide the computation load Li(t) into
two parts, which are processed by ES Si and CS, respectively.
The slicing proportions of Li(t) processed by ES Si and CS are
1− xi(t) and xi(t), respectively, i.e.,

xi(t) =

⎧⎨
⎩
0 , Processed all by RSU Ri

(0, 1) , Processed jointly by ES Si and CS
1 , Processed all by CS.

(6)

If computation load Li(t) is processed all by ES Si, i.e., xi(t)
= 0, the average computing delay of load Li(t) is

T comp
i (t) =

cLi(t)

fi(t)Ni(t)
. (7)

In this article, we consider a dynamic IoV scenario where the
tasks generated from the vehicles have to be processed during
the time period when the vehicles locating in the coverage area
of the RSU. In our model, it is assumed that the task should be
processed within one slot; otherwise, it will be discarded by the
ES [10]. Therefore, we do not consider the queuing delay of the
edge server in the RSU.

3) Cloud Computing Model: The computation capacity of
the CS is much larger than that of ES and vehicle. In addition,
the computing results of image processing are usually small.
Thus, the bottleneck in the total processing delay may be the
transmission delay of task offloading. The transmission delay
consists of transmission delay of V2R connections and trans-
mission delay of R2B connections. In comparison, the delay of
processing tasks by CS and sending results back to vehicles are
negligible generally.

E. Communication Model

We define the state of communication link as non-line of sight
(NLoS) when the communication link between two equipments
is blocked by the buildings; otherwise, it is defined as line
of sight (LoS) [11]. Since RSUs that have limited coverages

are generally deployed on both sides of the road, the distance
between vehicles and RSUs is close. When a vehicle moves at
a uniform speed within the coverage of an RSU, the variation
of the distance between the vehicle and the RSU is negligible.
Furthermore, we assume that the V2R connection is the LoS link
and there is almost no path loss. The MBS is farther away from
the RSU than the vehicle, and the R2B connection is usually ob-
scured by obstacles in urban areas. There is a nonnegligible path
loss and the signal strength obeys Rayleigh distribution [12].
Therefore, we assume that the channel states of V2R connections
are unchanged, and the channel states of R2B connections are
time varying.

1) Vehicles to RSUs: RSUs use high-speed optical fiber and
gigabit Ethernet for data transmission. Thus, RSUs can meet
the data transmission requirements of multiple vehicles and
multiple scenarios. RSUs work on the 5.9-GHz LTE V2X
(vehicle-to-everything) intelligent transportation system spec-
trum. Therefore, there is no interference from other channels for
V2R connections.

For convenience, we consider the transmission powers of
vehicles to be identical, denoted as pv . The channel gain of V2R
connections remains constant during one time slot t, denoted
as gv2r

i . The interference noise Iv2r
i (t) depends on other V2R

connections, which share the same channel, i.e.,

Iv2r
i (t) = (Ni(t)− 1)pvg

v2r
i . (8)

Thus, the average transmission rate between vehicles set Vi(t)
and RSU Ri is

Rv2r
i (t) =

Bi

Ni(t)
log2

(
1 +

pvg
v2r
i

Iv2r
i (t) + σ2

)
(9)

where Bi is the bandwidth of RSU Ri, and σ2 is average
Gaussian white noise. In addition, the V2R connections have
minimum transmission rate to ensure the real-time positioning
of vehicles [10], i.e.,

Rv2r
min = λl. (10)

The average transmission delay for offloading the computation
load Li(t) is

T v2r
i (t) =

Li(t)

Ni(t)Rv2r
i (t)

. (11)

2) RSUs to MBS: In our model, we consider the scenario
in which the available bandwidth of the MBS is dynamic. At
time slot t, the available bandwidth of the MBS is denoted by
B0(t). RSUs can offload computation load to the CS through
the MBS. All RSUs share the available bandwidth of the MBS.
The allocation proportion of the bandwidth allocated to RSU Ri

is ηi(t). The channel state between the RSU Ri and the MBS is
time varying, denoted by gr2b

i (t). The interference noise I r2b
i (t)

from other R2B connections is expressed by

I r2b
i (t) =

∑
j �=i,j∈M

pjg
r2b
i (t). (12)

Thus, the transmission rate between RSU Ri and the MBS is

Rr2b
i (t) = ηi(t)B0(t)log2

(
1 +

pig
r2b
i (t)

I r2b
i (t) + σ2

)
(13)
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where pi is the transmission power of RSU Ri. If RSU Ri

chooses to offload all computation load Li(t) to the MBS, the
average transmission delay from RSU Ri to the MBS should be

T r2b
i (t) =

Li(t)

Rr2b
i (t)Ni(t)

. (14)

According to (5), (7), (11), and (14), we obtain the total
processing delay of computation load Li(t) as

Ti(t) = (1− ai(t))T
local
i (t) + ai(t)[T

v2r
i (t)

+ (1− xi(t))T
comp
i (t) + xi(t)T

r2b
i (t)]. (15)

III. OPTIMIZATION SCHEME

A. Cost of Processing Tasks

The total cost of processing tasks includes computation cost
and bandwidth leasing cost.

1) Computation Cost: The computation cost consists of ES
computation cost and CS computation cost. The prices of com-
puting data per bit for ES and CS are γ and μ, respectively.
Therefore, at time slot t, the computation cost for processing
Li(t) is

Ccomp
i (t) = ai(t)[γ(1− xi(t))Li(t) + μxi(t)Li(t)]. (16)

2) Communication Cost: The RSUs and the MBS need to
rent bandwidth resources for communication. The price of
renting bandwidth is δ per hertz. Therefore, at time slot t, the
communication cost for processing Li(t) is

Ccomm
i (t) = ai(t)[δ(ηi(t)B0(t) +Bi)]. (17)

According to (16) and (17), at time slot t, the total cost of
processing tasks of system is

C(t) =
∑
i∈M

Ccomp
i (t) +

∑
i∈M

Ccomm
i (t). (18)

B. Cost Minimization Problem Formulation

With the quantitative analyses presented in the aforemen-
tioned discussions, we formulate the cost minimization problem
as follows:

(P1) min
ai(t),xi(t),ηi(t)

1

T

T−1∑
t=0

C(t) (19)

s.t. C1 : ai(t) ∈ {0, 1} ∀i ∈M (20)

C2 : 0 ≤ ηi(t) ≤ 1 ∀i ∈M (21)

C3 :
∑
i∈M

ηi(t) = 1 ∀i ∈M (22)

C4 : 0 ≤ xi(t) ≤ 1 ∀i ∈M (23)

C5 : Ti(t) < t ∀i ∈M (24)

C6 : Rv2r
i (t) ≥ Rv2r

min ∀i ∈M (25)

C7 : Rr2b
i (t) ≥ Rr2b

min ∀i ∈M. (26)

The optimization objective is to minimize the average task
processing cost of the system in the long timescale. The decision

variable ai(t) represents the offloading decision of task Li(t).
xi(t) represents the slicing proportion of computation loadLi(t)
on RSU Ri. ηi(t) represents the slicing proportion of bandwidth
allocated to RSU Ri.

C1 indicates the vehicles in Vi(t) can choose local computing
or offloading computing. C2 shows that the bandwidth slicing
proportion of the MBS should be in range 0–1. C3 illustrates
that the summation of the proportions of bandwidth allocated
to RSUs should be 1. C4 illuminates that the computation load
slicing proportion is in range 0–1. C5 indicates that the average
processing delay of load Li(t) should not exceed the maximum
task processing delay (i.e., length of time slot t). Finally, C6
and C7 illustrate that the transmission rates of V2R and R2B
connections are not less than the minimum transmission rate,
respectively.

IV. DRL-BASED CORA ALGORITHM DESIGN

The aforementioned optimization problem is a mixed integer
programming problem with a very high computational complex-
ity. Thus, we choose DRL to solve this problem.

A. MDP-Based Problem Formulation

Due to the randomness of vehicle density and the dynamic of
the network environment in the IoV, the computational complex-
ity of solving this problem by traditional mathematical methods
will be extremely high. To attack this challenge, we reformulate
the problem by an MDP model, and apply the DRL technique
to solve this problem. The MDP model is generally represented
by a 4-tuple (S,A, T ,R). Here, S represents the system states,
and A represents the system actions. T = p(st+1|st, at) is the
state transition probability, but T is unknown in our problem.
R is the reward of executing a action based on a state. With the
aforementioned definitions, our MDP model of this problem can
be formulated as follows.

1) State: At time slot t, the agent of the system observes the
dynamic environment of IoV. The agent can obtain state infor-
mation of computation load, channel states, available computing
resources of ES, and bandwidth of the MBS. The state st consists
of the following parameters:

s(t) = {L1(t), L2(t), . . . , Li(t), . . . , LM (t)

f1(t), f2(t), . . . , fi(t), . . . , fM (t), B0(t)

gr2b
1 (t), gr2b

2 (t), . . . , gr2b
i (t), . . . , gr2b

M (t)

T1(t− 1), T2(t− 1), . . . , Ti(t− 1), . . . , TM (t− 1)} (27)

where Li(t) is the total size of arrival tasks within coverage
of RSU Ri. fi(t) is the available computing resources of ES
Si. B0(t) is the available bandwidth of the MBS. gr2b

i (t) is
the channel state of V2R connection between the RSU Ri and
the MBS. Ti(t− 1) is the average processing delay of the task
Li(t− 1) in previous time slot t− 1.

2) Action: At time slot t, the agent executes action a(t) based
on the state s(t). The vehicles within the coverage of RSU Ri

make decision of task offloading. RSU Ri makes the decision
of computation load slicing ratio. The MBS makes decision of
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the bandwidth allocation ratio. The action at consists of the
following parameters:

a(t) = {a1(t), a2(t), . . . , ai(t), . . . , aM (t)

x1(t), x2(t), . . . , xi(t), . . . , xM (t)

η1(t), η2(t), . . . , ηi(t), . . . , ηM (t)} (28)

where ai(t) is the decision for tasks offloading of vehicles in
Vi(t). xi(t) is the decisions for tasks slicing of RSU Ri. ηi(t) is
the decisions for bandwidth allocating of the MBS.

3) Reward: At time slot t, the agent will get reward r(t) after
executing action a(t) at state s(t). Whether the training process
of the DRL model converges depends on the reward function.
The reward function of our problem contains the objective
function (19). Thus, the agent need to minimize the long-term
cumulative reward. In addition, when quality of service (QoS)
requirements (24)–(26) are not satisfied, a penalty with a large
positive value is added to the reward function. Thus, the reward
function, which consists of two parts of utility function and QoS
penalty, is expressed as

r(t) =
∑
i∈M

E[Ci(t) + Pi(t)]. (29)

Considering the long-term minimization of the average reward
value, our objective can be expressed as

R = min
1

T

T−1∑
t=0

r(t). (30)

B. DRL Algorithm

DRL can be divided into on-policy learning and off-policy
learning according to the learning methods. The difference
between them is that the method used to update value is an estab-
lished policy or a new policy. After analyzing our optimization
problem P1, we apply off-policy learning and propose a CORA
algorithm based on the twin delayed deep deterministic policy
gradient (TD3) algorithm [13], which performs well in dealing
with continuous action space.

At time slot t, the agent observes the real-time state s(t) of the
IoV. According to the state s(t), the agent gets the optimal action
a(t) of CORA through the CORA algorithm. The DRL model of
the CORA algorithm has two neural networks, which includes
main networks and target networks, and both of them include
one actor network and two critic networks. The parameters of
actor network and critic networks in main networks are denoted
as φ, θ1, and θ2. The parameters of actor network and critic
networks in target networks are expressed as φ′, θ′1, and θ′2. The
actor network πφ is used to generate action a(t), i.e.,

a = πφ(s) + ε, εN (0, τ) (31)

ε is the noise, which can increase exploration of the DRL model.
ε follows normal distribution with mean value equal to 0 and
variance equal to τ .

After the agent performs action a(t), the system state is
updated from s(t) to s(t+ 1). The agent obtains the system
reward r(t) corresponding to (s(t), a(t)). Then, the state tran-
sition is stored in the reply memory, which is used for updating

Algorithm 1: CORA.
Input: Training episode number N ; training step number T ;
reply memory size D; batch size S; target smoothing
coefficient τ ; exploration noise ε; actor learning rate la;
critic learning rate. lc; actor network weights φ; actor target
network weights φ′; critic network weights θ1, θ2; critic
target network weights θ1

′, θ2
′

Output: Decisions for tasks offloading of vehicles a(t);
decisions for tasks slicing of RSU x(t); decisions for
bandwidth allocating of the MBS η(t).
1: for episode← 1 to N do
2: Initialize environment parameters, get initial state s0;
3: for step← 1 to T do
4: Obtain action a(t) using (31);
5: Execute action a(t);
6: Obtain the next state s(t+ 1) and reward r(t)
7: using (29);
8: Store transition 〈s(t), a(t), s(t+ 1), r(t)〉 into reply
9: memory D for training networks;

10: if step ≥ S then
11: Randomly sample N experience from reply
12: memory;
13: Update φ with (32);
14: Update θ1 and θ2 with (33);
15: Update target networks with τ = 0.005:
16: φ′ ← τφ+ (1− τ)φ′;
17: θi

′ ← τθi + (1− τ)θi
′;

18: end if
19: end for
20: end for

network parameters of TD3. TD3 uses the deterministic policy
gradient to update the parameters of the main actor network. The
deterministic policy gradient is

∇φJ(φ) = N−1
∑
∇aQθ1(s, a)|a=πφ(s)∇φπφ(s) (32)

where Qθ1 is the first critic network of main network, and πφ is
the actor network of main network.

The parameters of main critic networks are updated by fol-
lowing formula:

θi = argminθiN
−1

∑
(y −Qθ1(s, a))

2 (33)

where Qθ1(s, a) is the current value of Q, and y is the target
value of Q calculated by target critic networks. y is calculated
by

y = r + γ min
i=1,2

Qθ′i
(s′, ã) (34)

where r is the reward, γ is the discount factor range in [0, 1],
and ã is the action generated by the target actor network πφ1

based on state s. The detailed algorithm for solving our problem
is shown in Algorithm 1. The specific algorithm flow chart is
shown in Fig. 2.

Theoretically, we can prove that our CORA algorithm is able
to obtain the (near-)optimal solution of the original problem
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Fig. 2. Overview of CORA.

P1 upon finishing its iterations. To this end, we first build a
continuous-time Markov chain (CTMC) to model the dynamic
IoV scenario. Then, we assign a reward to each state of the
CTMC according to the reward function in the MDP Bell-
man Equation, and thus, we construct a Markov reward model
(MRM). Next, we can prove that the MDP algorithms can obtain
the steady-state optimal reward of the MRM, whose details of
the proof can be found in our previous work [14].

V. PERFORMANCE EVALUATION

A. Simulation Settings

We consider a scenario in which there is a 400-m long
unidirectional straight road, covered by four RSUs with no
overlapping areas. The covering radius of each RSU is 100 m.
The moving speed of vehicles on the road is in the scale of
20–28 m/s. The maximum number Nmax of vehicles in each
zone is 40. The size of task is randomly distributed in range
5–10 MB. The detailed parameters of IoV are shown in Table II.

Our simulation experiments are conducted on PCs with 8-core
Intel i7-7700H CPU and 32-GB DRAM. We use NVIDIA GTX
1060 GPU with 6-GB memory and CUDA 11.4 to train our DRL
model. The algorithm runs on Python 3.6 and pytorch 1.9.

The TD3 model includes six neural networks. Each neural
network has three hidden layers with (400, 400, 300) neurons.
We add rectified linear unit on each hidden layer. We train the
model for 500 episodes, and each episode includes 300 steps.
The soft update parameter τ and discounted factor γ are set as
0.005 and 0.99, respectively. The number of neural nodes in
the three hidden layers of actor networks and critic networks are
set to be 400, 400, and 300, respectively. The activation function

TABLE II
IOV PARAMETERS SETTING

between hidden layers is selected as rectified linear unit (ReLU),
and the optimizer of DRL is Adam. The learning rates of the actor
and critic networks are set to 0.001 and 0.002, respectively. The
capacity of the memory buffer is set as 5000, and the batch size
of each episode is set as 128.

B. Comparison Experiments With Non-DRL Algorithms

We select the following four traditional non-DRL algorithms
to verify the effectiveness of our CORA algorithm in finding
optimal task offloading and resource allocation polices.
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Fig. 3. System cost with different number of vehicles.

1) Local computing: All the computation workload of each
zone is processed by vehicles locally.

2) Edge computing: In each zone, all vehicles submit their
workload to ES for processing.

3) Cloud computing: The computation workload is uploaded
and processed by the CS.

4) Random scheduling: The decisions for task offloading and
resource allocation are randomly selected from vehicles,
ES, or CS within each zone. The task slicing ratio and
bandwidth allocation ratio are also random.

Fig. 3 shows the processing cost with different number of
vehicles. We can see that, for all the approaches, the processing
cost of task processing grows with the increase of the number of
vehicles in an area. Among them, random scheduling performs
the worst in system cost, because both task offloading and
resource allocation policies are randomly selected and such
approach is not able to make intelligent decisions according
to the dynamic network environment. Besides, since CS has
a lower computing price than ES and the renting bandwidth
cost of R2B connections is much lower than task computation
cost, the cost of cloud computing is lower than that when all
tasks are processed by the ES, especially when the workload
is heavy (with large number of vehicles). This also proves the
scale economy of cloud computing. We can see that our CORA
algorithm performs best among different number of vehicles,
which validates that our approach dominates the other traditional
task offloading and resource allocation approaches.

Fig. 4 shows the average processing delay of different pro-
cessing methods with different number of vehicles. We find out
that the processing delay of task processing increases when the
workload generated from each zone gets heavier. Our CORA
performs best among any number of vehicles. For the random
scheduling, its average processing delay is the highest, because
the local computation delay is independent of the number of
vehicles in one zone, so the average processing delay of local
method is stable. When the number of vehicles is less than or
equal to 25, the delay of cloud computing is smaller than that
of edge computing. Because the computing resources of CS
are much larger than that of ES. The tasks can be processed

Fig. 4. Average processing delay with different number of vehicles.

Fig. 5. Average processing delay with different bandwidth of the MBS.

immediately after being offloaded to the CS. When the number
of vehicles exceeds 25, the delay of edge computing is lower
than that of cloud computing, because the interference from
wireless connections increases with the increasing of vehicles
which leads to the increasing of R2B transmission delay. Thus,
in our scenario, edge computing is suitable for large amounts
of data, while cloud computing is suitable for small amounts of
data. We compare Fig. 4 with Fig. 3. Although the cost of cloud
computing is lower than that of edge computing under different
vehicle numbers, the delay of cloud computing is higher when
the number of vehicles increases, and CORA can achieve a good
tradeoff between cost and delay.

Fig. 5 shows the average processing delay with different
bandwidths of the MBS. We find out all average processing delay
increases as the bandwidth increases except local computing and
edge computing. Because edge computing and local computing
do not use the MBS. CORA performs best among different
bandwidths of the MBS. Fig. 5 illustrates that in the dynamic
network environment scenario we considered, when bandwidth
resource is scarce, we tend to offload tasks to ES for processing,
because low bandwidth can bring a high R2B transmission
delay. In contrast, when bandwidth resource is sufficient, we
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Fig. 6. Failure rate with different number of vehicles.

Fig. 7. Average processing delay with different computation resources of ES.

tend to offload tasks to CS for computing, because the the
CS with abundant computing resources can quickly process
tasks, Fig. 5 shows that CORA can flexibly make decisions of
task segmentation and bandwidth allocation according to the
real-time network state.

Fig. 6 shows the failure rate with different number of the
vehicles. We define the failure rate as the ratio of the number of
tasks whose processing time exceeds one time slot to the number
of all tasks. As the number of vehicles increases, the failure
rate of all algorithms except local computing also increases
simultaneously. Because the increasing number of vehicles leads
to more intense competition for the computing resources and
bandwidth resources. As a result, the number of tasks with
processing time exceeding the time limit also increases. Among
all the scheduling schemes, the failure rate of our CORA algo-
rithm is consistently the lowest. Because our CORA algorithm
is able to flexibly utilize the computational and communication
resources of vehicles, edges, and cloud.

Fig. 7 shows the average processing delay with different
computation resources of the edge server. We can find out that
the processing delay decreases as the computation resource
increases of all methods. Random scheduling has the highest

Fig. 8. Reward of the training process.

latency due to improper scheme. When the available computing
resources of edge servers are lacking, the processing delay of
cloud computing is lower than edge computing. In contrast,
when the available computing resources are abundant, the pro-
cessing delay of edge computing is lower than that of cloud
computing. CORA can determine the optimal workload slicing
ratio in any case to minimize the overall processing delay. In
addition, Fig. 7 also indicates that in our dynamic scenario, edge-
cloud collaboration can effectively deal with various workload
conditions.

C. Comparison Experiments With DRL Algorithms

Besides traditional scheduling approaches, we further im-
plement two DRL approaches for comparison to verify the
convergence and performance of the CORA method. We select
DQN and DDPG algorithms, which have been widely applied
in unsupervised reinforcement learning.

1) Deep Q network (DQN): The action space of the DQN
is discrete. Therefore, in our experiments, we have to
cut the original continuous value actions into discrete
intervals, including the task slicing ratio and the bandwidth
allocation ratio. The number of intervals will be further
discussed in the following discussions.

2) Deep deterministic policy gradient (DDPG): DDPG in-
herits the advantages of the DQN, and it uses strategy
gradient technology to solve the problem caused by a
high-dimensional action space. The action space of DDPG
is continuous.

Fig. 8 shows the convergence and performance of the three
approaches. We can observe from the experimental results that
both DDPG and CORA converge rapidly before 20 episodes,
while the convergence rate of the DQN is the slowest, because the
DQN has low learning efficiency in a high-dimensional action
space. Furthermore, we can also see that DQN performs the
worst among the three algorithms. The system cost of CORA
is slightly better than that of DDPG. In addition, the training
process of CORA is more stable, because CORA delays the
update of actor network to make the training of the actor network
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Fig. 9. System cost with different number of vehicles.

Fig. 10. Average processing delay with different number of vehicles.

more stable. In summary, our CORA algorithm has the best
performance among the three DRL methods.

Fig. 9 illustrates the processing cost with different number
of vehicles. We can see that, with the increase of vehicles in
each zone, the processing costs grow up for all the three algo-
rithms. Also, the DQN performs the worst due to its inadequate
capability in dealing with optimization problems with a high-
dimensional action space. Our CORA has the best performance
among different vehicle numbers. This is because the network
of CORA has two more critic networks than DDPG, then we can
choose smaller values to estimate Q value and avoid overestima-
tion. Therefore, our CORA performs slightly better than DDPG.

Fig. 10 illuminates the average processing delay with different
number of vehicles. With the increase of vehicles in one zone,
more vehicles join the computation offloading process, resulting
in more interference between V2R channels. Meanwhile, the
bandwidth of the RSUs are fixed. Therefore, each vehicle is
allocated less bandwidth resource which leads to processing
delays going up. Comparing to DQN and DDPG, our CORA
is able to achieve the minimum processing delay by adjusting
its policies to the dynamic environment.

Fig. 11 shows the processing cost of system with different
number of discretization levels of the DQN. It is shown that the

Fig. 11. System cost with different number of discretization levels in the DQN.

Fig. 12. Number of iterations for convergence with different number of
vehicles.

system cost can be further minimized by dividing the continuous
action space into more discrete slices in the DQN. However,
DQN still performs worse than DDPG and CORA, and suffers
from high computational overhead. Due to the strong ability in
dealing with continuous action space and fine-grained dynamic
optimization, our approach performs the best among the three
DRL approaches.

Fig. 12 shows the numbers of iterations for convergence
with different number of vehicles. As the number of vehicles
increases, the number of iterations required for different DRL
algorithms to reach convergence also increases. Because the
increase in the number of vehicles causes the state action space of
the DRL model to become larger. Therefore, the DRL algorithm
requires more training iterations to obtain the optimal policy.
Moreover, our CORA algorithm consistently requires the least
number of iterations compared to DQN and DDPG. Because we
use TD3 as the basis of the CORA algorithm, and TD3 delays
the update of the actor network and makes the training of the
actor network more stable and faster.

Authorized licensed use limited to: Memorial University. Downloaded on June 23,2023 at 23:49:12 UTC from IEEE Xplore.  Restrictions apply. 



2510 IEEE SYSTEMS JOURNAL, VOL. 17, NO. 2, JUNE 2023

VI. RELATED WORK

Cloud computing, edge computing, and their collaboration
can effectively reduce the computation workload of mobile
devices, making it possible for various data-intensive and
computational-intensive mobile services. In such scenarios,
CORA are the most important factors affecting the QoS, which
have attracted much attention from the researchers. There have
been several existing works dedicating to the modeling and
optimization of CORA.

Chen et al. [17] investigated the multiuser task offloading
problem in end-edge cloud systems where all user devices
compete for limited communications and computing resources.
A game-based decentralized task unloading method was pro-
posed to obtain the Nash equilibrium unloading strategy. Feng
et al. [18] studied the transmission and offloading strategies in
the Internet of Things (IoT) and the fog computing system sup-
ported by nonorthogonal multiple access. Li et al. [19] studied a
joint RSUs selection and resource allocation problem. The ob-
jective was to reduce the total task offloading delay constrained
by bandwidth and computing resources. Ni et al. [20] studied the
task allocation in mobile crowdsensing. Ning et al. [16] proposed
an offloading system for vehicle edge computing to jointly
optimize task scheduling and resource allocation strategies to
maximize quality of experience (QoE). Zhao et al. [4] designed
a cloud-edge cooperative offloading method, which can effec-
tively improve the system utility. Zeng et al. [21] proposed
an edge computing model for volunteer-assisted vehicles. The
volunteer vehicles were encouraged to help overloaded vehicular
edge computing (VEC) servers by receiving rewards from VEC
servers. Lyu et al. [22] proposed a semidistributed heuristic
offloading decision algorithm to maximize system utility. Liu
et al. [23] considered that vehicles can be used as mobile edge
servers to provide computing service for nearby devices. The
optimization objective was maximizing the long-term utility of
IoV. However, most of the aforementioned works used binary
schemes for task offloading. Although the efficiency of the opti-
mization algorithms is commonly extremely high, in large-scale
systems with complex edge-cloud collaboration, such schemes
are so primitive to obtain the optimal policies.

Partial offloading technique has been proposed recently. In
large-scale systems with complex edge-cloud collaboration,
partial offloading approach can obtain a more flexible com-
putational offloading strategy compared to binary offloading.
Li et al. [8] proposed a task partial offloading and scheduling
algorithm to determine the execution order of task offloading.
Ning et al. [24] considered the partial offloading problem of
cloud-edge collaboration, which was solved by the iterative
heuristics method. Dai et al. [25] proposed a partial compu-
tation offloading scheme where vehicle tasks are divided into
two parts and processed as local and edge computation to
effectively improve the vehicle performance. Ren et al. [26]
proposed a joint computation method for offloading and trans-
mitting the power network allocation scheme, which considers
both binary offloading and partial offloading. Zhao et al. [27]
considered partial offloading of computational tasks from ve-
hicles to other vehicles, unmanned aerial vehicles (UAVs),

and MEC servers at fixed locations. Zhang et al. [28] pre-
sented a load balancing of computational resources on edge
servers and proposes a load balancing task offloading scheme.
Feng et al. [18] proposed a transmission and offloading strate-
gies for IoT, where the tasks of fog nodes can be partially
computed locally and another part computed by other idle
fog nodes. The dynamic of the network environment and the
randomness of vehicle traffic in the IoV scenario usually cannot
be ignored. For example, users tend to offload computing when
the edge servers have rich computing resources, while they
prefer local computing when the edge servers are busy. However,
most of the aforementioned works do not take into account these
dynamic factors.

Recently, the emergence of DRL has attracted much at-
tention in the community of IoV. As a novel powerful tool
for solving mathematical problems with a high computational
complexity, some well-designed DRL-based approaches can
solve the computing offloading and resource allocation problems
with high efficacy. Cui et al. [29] proposed a satellite-assisted
vehicle-to-vehicle (V2V) communication scenario. In this work,
the Lagrange multiplier method and DRL were used to solve
joint offloading and resource allocation problem to maximize
the long-term reward of offloading. Lee et al. [30] proposed
a circumstance-independent approach to effectively solve the
resource allocation problem in different network environments
based on DRL. Yang et al. [31] used the DRL algorithm to
effectively solve the intelligent transmission scheduling problem
of IoT system under high-dimensional variables. Ye et al. [32]
proposed a V2V communication distributed resource alloca-
tion mechanism based on the DQN. The agent of the DRL
model can effectively minimize the interference of vehicle-
to-infrastructure connections. Luo et al. [33] presented a joint
data scheduling problem for communication and computational
resource allocation and uses an enhanced DQN algorithm to
solve the problem. Zhan et al. [34] investigated an important
computational offloading scheduling problem in a typical VEC
scenario and unites the DRL algorithm and convolutional neural
network to find the optimal offloading policy. Ke et al. [35]
designed a task computational offloading model for a heteroge-
neous vehicular network. The model is trained using the Dueling
DQN algorithm. Tian et al. [36] proposed a multiintelligence
DRL-based resource allocation framework to jointly optimize
the channel allocation and power control.

Different from the aforementioned works, in this article,
we consider the collaboration of CC and MEC for IoV and
try to obtain the near-optimal offloading policy with arbitrary
proportion between CC and MEC. To make the computation
offloading policy more flexible and better adapted to dynamic
environment, we consider both binary offloading and partial
offloading. Furthermore, we fully consider the dynamics of
the computing and communication systems, including random
traffic flow, dynamic computing resources of the edge servers,
and bandwidth resources of the MBSs. Finally, we construct
more actor networks and critic networks in our DRL algorithm to
make our training process more stable avoiding overestimation
without introducing additional notable computational overhead.
Our approach is expected to be more powerful in obtaining
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the long-term optimal CORA policies, and more practical in
real-world dynamic IoV scenarios.

VII. CONCLUSION

In this article, we study the problem of CORA for edge-cloud
collaboration in IoV based on DRL. The objective of the problem
is to minimize the total cost of processing tasks with the delay
and transmission rate constraints. Furthermore, we consider a
dynamic traffic scenario in which the vehicle density, the channel
states of R2B connections, the computing resources of the ES,
and the bandwidth of the MBS are time varying. We reconstruct
the problem into an MDP model, and design a CORA algorithm
based on DRL. Extensive simulation experiments are conducted,
and we compare our CORA algorithm with existing non-DRL
algorithms and DRL algorithms. The results show that our
algorithm outperforms other algorithms in processing delay and
cost. In the future, we will consider the scenario that multiple
vehicles compete for computing resources of edge servers.
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