
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020 7881

Edge-Aided Computing and Transmission
Scheduling for LTE-U-Enabled IoT

Hongli He, Member, IEEE, Hangguan Shan , Member, IEEE, Aiping Huang , Senior Member, IEEE,

Qiang Ye , Member, IEEE, and Weihua Zhuang , Fellow, IEEE

Abstract— To facilitate the deployment of private industrial
Internet-of-Things (IoT), applying long-term-evolution (LTE)
over unlicensed spectrum (LTE-U) is a promising technology,
which can deal with the licensed spectrum scarcity problem and
the stringent quality-of-service (QoS) requirement via centralized
control. In this paper, we investigate the computing offloading
problem for LTE-U-enabled IoT, where computing tasks on an
IoT device are either executed locally or offloaded to the edge
server on an LTE-U base station. Considering a constrained edge
computing cost (e.g., operation power consumption) for offloaded
tasks, the task scheduling problem is formulated as a constrained
Markov decision process (CMDP) to maximize the long-term
average reward, which integrates both task completion profit and
task completion delay. In order to address the uncertainty of task
arrivals and channel availability, a constrained deep Q-learning-
based task scheduling algorithm with provable convergence is
proposed, where an adaptive reward function can appropriately
bound the average edge computing cost. Extensive simulation
results show that the proposed scheme considerably enhances
the system performance.

Index Terms— Mobile edge computing, task offloading,
Internet-of-Things, LTE over unlicensed, constrained deep rein-
forcement learning.

Manuscript received July 31, 2019; revised April 7, 2020 and August 2,
2020; accepted August 3, 2020. Date of publication August 25, 2020;
date of current version December 10, 2020. This work was supported
in part by the National Key Research and Development Program of
China under Grant 2018YFE0126300, in part by the National Natural
Science Foundation Program of China under Grant 61771427 and Grant
U1709214, in part by the Huawei Technologies Company Ltd. under Grant
YBN2018115223, in part by the Ng Teng Fong Charitable Foundation
under Grant ZJU-SUTD IDEA, in part by the 5G Open Laboratory of
Hangzhou Future Sci-Tech City, and in part by the Faculty Research
Grant (FRG) from Minnesota State University, Mankato. This article was
presented in part at the IEEE GLOBECOM 2018 [1]. The associate editor
coordinating the review of this article and approving it for publication was
R. Tandon. (Corresponding author: Hangguan Shan.)

Hongli He and Aiping Huang are with the College of Information Science
and Electronic Engineering, Zhejiang University, Hangzhou 310027, China,
and also with the Zhejiang Provincial Key Laboratory of Information Process-
ing and Communication Networks, Zhejiang University, Hangzhou 310027,
China (e-mail: hongli_he@zju.edu.cn; aiping.huang@zju.edu.cn).

Hangguan Shan is with the College of Information Science and Elec-
tronic Engineering, Zhejiang University, Hangzhou 310027, China, also
with the Zhejiang Provincial Key Laboratory of Information Processing and
Communication Networks, Zhejiang University, Hangzhou 310027, China,
and also with the Zhejiang Laboratory, Hangzhou 310000, China (e-mail:
hshan@zju.edu.cn).

Qiang Ye is with the Department of Electrical and Computer Engineering
and Technology, Minnesota State University, Mankato, MN 56001 USA
(e-mail: qiang.ye@mnsu.edu).

Weihua Zhuang is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
wzhuang@uwaterloo.ca).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2020.3017207

I. INTRODUCTION

RECENTLY, there has been a soaring proliferation of
smart devices with ubiquitous interconnections for pro-

viding Internet-of-Things (IoT) services [2]. By enabling the
osmotic convergence of transmission, computing, and storage
on IoT devices, a diversity of promising applications have
emerged, encompassing smart homing, intelligent connected
vehicles, and wearable IoT systems [3]. While many IoT
applications can be supported via cellular networks, there are
certain entities that prefer their own private networks for rea-
sons such as data security and/or network controllability [4].
Without having licensed radio spectrum resources, these enti-
ties generally resort to operate their private networks using
unlicensed spectrum. One solution is to use non-3GPP air
interface technologies, such as low-power wide-area (LPWA)-
based systems over the unlicensed spectrum [5]. Most existing
LPWA-based systems such as long range (LoRa) over the
unlicensed spectrum are usually simplified for cost-saving
purposes, at the price of service performance [6]. On the other
hand, long-term evolution (LTE) over unlicensed spectrum
(LTE-U) provides an alternative solution that can share the
cellular IoT ecosystem with unlicensed spectrum resources and
satisfy the enterprise customers’ requirements for a dedicated
IoT network. Technically, many of the advanced wireless tech-
niques of LTE-U inherited from cellular systems are proven to
offer better performance for IoT connections than traditional
IoT technologies over the unlicensed spectrum, and overcome
performance limitations of existing LPWA systems [7]. For
better promoting the performance of LTE-U network in IoT
services, a lot of organizations, especially Multefire, have
proposed some dedicated modifications, for example, sup-
porting eMTC (with bandwidth of 1.4 MHz) in unlicensed
bands, supporting narrow band (NB)-IoT (with bandwidth
of 200kHz) in unlicensed bands, and being compatible with
lower spectrum bands (sub-1GHz). Currently, LTE-U-based
technology has been deployed in some practical IoT systems
such as Shanghai Yangshan Phase VI Port, where the LTE-U
network can support the automated guided vehicle controlling,
wireless close-circuit Television (CCTV), and remote crane
monitoring system in an area with length of 2350 meters and
seven berths [8].

Meanwhile, the constrained computational capability and
power capacity of IoT devices pose a significant challenge
for the quality-of-service (QoS) guarantee of the emerging
applications, especially for those with intensive computation,
e.g., image processing in multimedia IoT, although local

1536-1276 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6264-9858
https://orcid.org/0000-0002-9854-270X
https://orcid.org/0000-0002-8208-6295
https://orcid.org/0000-0003-0488-511X

7882 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

computing at the device can significantly reduce the latency
for transmission and the privacy leakage [9]. One simple
way to address this issue is to establish a sustainable tunnel
between the resource-limited devices and the cloud computing
system. However, cloud servers are usually located far away
from the end-devices, leading to high transmission delay over
backhaul link and excessive stress of traffic load on the core
networks [10]. To tackle these challenges, a mobile edge com-
puting (MEC) paradigm emerges via shifting some tasks from
the devices to vicinal computation capable entities, i.e., the
edge of wireless networks. The advent of MEC facilitates
the extension of cloud computing services to the edge within
the radio access network of the end-devices, and provides a
swift computing and mobility-aware support [11].

However, employing MEC for LTE-U-enabled IoT faces
significant challenges to satisfy the high reliability and low
latency requirements. Specifically, the task forwarding from
an IoT device to the edge server can be interrupted by other
transmissions from the legacy networks (e.g. a Wi-Fi network)
operating over the unlicensed bands, leading to a performance
degradation. Further, the carrier-sensing-based channel access
in LTE-U networks causes extra waiting time of detecting
channel availability in the reverse transmission from the edge
server to the IoT device, while the delay for the reverse
transmission over licensed spectrum is not considered in
existing studies due to small data size of task execution results.
Therefore, dynamics of the unlicensed channel availability lead
to long delay and unreliability in data transmission of the MEC
system, and make the delay analysis intractable.

In this paper, we study an edge-aided task scheduling
problem in an LTE-U-enabled network, where an LTE-U base
station (BS) helps IoT devices to decide whether tasks should
be locally computed or be offloaded to the edge server on
the LTE-U BS. Specifically, by taking account of the dynamic
queueing, transmission, and computing of the associated tasks,
we propose a state-wise model for the evolution of the MEC
system and the availability of wireless channels. Correspond-
ingly, the profit of task completion and the joint comput-
ing and transmission delay are integrated for evaluating the
effect of different task scheduling policies, under a constraint
of the edge computing cost (e.g., energy consumption for
offloaded tasks). The main contributions of this paper are
threefolded:

• The applicability of the constrained Markov decision
process (CMDP) framework is explored for the task
scheduling in an LTE-U-enabled IoT network for attain-
ing a high reward related to the profit and delay of task
completion, with a constraint of the average edge com-
puting cost. The random generation, transmission, and
computation of the tasks, the status of the edge server, and
the dynamics of the unlicensed channel availability are
captured in the proposed stochastic optimization-based
task scheduling framework;

• With no priori knowledge about channel status and
task arrivals, we propose a constrained deep Q-learning
(CDQL) solution for the task scheduling problem. Moti-
vated by applying the Lagrange duality in solving CMDP
problem with available environment information, we pro-

pose, for the first time, a subgradient-based reinforcement
learning algorithm to solve the cost-constrained task
scheduling, which is transfered to a standard reinforce-
ment learning problem without cost constraint when the
optimal Lagrange dual multiplier is given. Specifically,
the value of the Lagrange dual multiplier is proposed to
be updated based on the counted average edge computing
cost when the environment information is unavailable,
and the convergence of the subgradient-based learning
algorithm is proved;

• For implementing the proposed CDQL algorithm,
we modify the traditional deep Q-learning (DQL) archi-
tecture including the deep neural network (DNN) struc-
ture for estimating the Q-values, the preprocessing of
the training samples, and the pretraining with adaptive
learning rates to accelerate the learning for Q values.

The remainder of the paper is organized as follows: We
discuss the related work in Section II. System model is
described in Section III. In Section IV, we formulate the
edge-aided task scheduling problem as a CMDP framework
and present the CDQL algorithm in Section V. The customized
modification for the realization of our proposed algorithm is
presented in Section VI and simulation results are given in
Section VII, followed by conclusions in Section VIII.

II. RELATED WORK

There have been a collection of research works studying
how to guarantee the performance of IoT over the unlicensed
spectrum. For achieving extended coverage, low power con-
sumption, and massive connectivity over unlicensed spectrum,
NB-IoT-U, a cellular industrial IoT system over unlicensed
spectrum, is proposed by expanding NB-IoT technology in
sub-1-GHz [7]. In [12], a distributed channel sensing and
resource allocation scheme is proposed to achieve a high
resource reuse ratio for massive IoT connections via appro-
priately mitigating intra/inter-network interference over the
unlicensed spectrum. In order to extend the lifetime of IoT
devices, energy harvesting is enabled and analyzed for an
IoT network over unlicensed spectrum in [13]. In [14],
a cellular-user-aided relay scheme is proposed to bridge
the communication between an IoT device and its destined
BS via machine-to-machine communication over the unli-
censed spectrum, which reduces the energy consumption
and supports more connected devices. These works have
addressed many communication-related issues for the LTE-
U-enabled IoT, which builds a robust radio access network
for supporting services in terms of coverage, connectivity,
interference coordination, and energy consumption. However,
accommodating computing-intensive services in LTE-U-based
networks still faces significant challenges due to the unreliable
communication links over the unlicensed spectrum and the
complex orchestration for both transmission and computing
resources [15].

While the MEC in LTE-U-enabled IoT is under investigated,
applying MEC for licensed IoT has been exploited extensively.
The existing researches mainly use two kinds of methods to

HE et al.: EDGE-AIDED COMPUTING AND TRANSMISSION SCHEDULING FOR LTE-U-ENABLED IOT 7883

design the task scheduling strategy for edge computing. The
first one is Lyapunov-based method. In [16], by integrating
the queue length of edge servers, Chen et al. propose a
dynamic computing offloading scheme to achieve the tradeoff
between offloading cost and performance based on Lyapunov
optimization. In [17], considering the uncertainty and dynam-
ics of wireless channel state and task arrival process, and
the large scale of solution space, an energy-efficient task
offloading scheme is proposed by leveraging the Lyapunov
drift. To relieve the stringent requirement of tasks’ feed-
back, a scheduling algorithm tolerant to out-of-date network
knowledge is proposed in [18] and can achieve asymptotical
optimality with only partial information via applying both
the perturbed Lyapunov function and the knapsack problem
formulation. The queueing-theory-based and Lyapunov-drift-
based model in these papers can maintain the theoretical
stability of the MEC system when the task generation process
is dynamic. However, such models cannot integrate some non-
queue-based information, e.g., the channel access state of
the LTE-U network when employing listen-before-talk (LBT)-
based channel access schemes, and neglect the exploration
for the network statistics in a large time scale (e.g., task
generation). Therefore, such algorithms usually sacrifice their
performance for the system roubutness. The second one is
the reinforcement learning method. In [19], a reinforcement-
learning-based scheduling scheme is proposed for the virtual
machine assignment and task offloading in a space-air-ground
integrated network. In [20], considering the stochastic vehi-
cle traffic, dynamic computation requests, and time-varying
communication conditions, a semi-Markov process is formu-
lated and a deep reinforcement learning method is proposed
to obtain the optimal policies of computation offloading
and resource allocation. In [21], a multi-user multi-edge-
node computation offloading problem is formulated as an
unknown payoff game and solved by the distributed rein-
forcement learning method. In these works, the reinforce-
ment learning methods are mostly based on the Q-value
framework, and cannot be directly applied in the scenario
with an edge computing cost constraint. In the following,
we present a comprehensive CDQL-based task scheduling
framework for an LTE-U-enabled IoT with MEC to facilitate
the state-wise task offloading decision while guaranteeing
the edge computing cost constrained within the given cost
budget.

III. SYSTEM MODEL

A. Network Scenario

We consider an MEC-aided LTE-U-enabled IoT as shown
in Fig. 1, consisting of one LTE-U BS, and K LTE-U-enabled
IoT devices. Let the indexes of the K devices be denoted by
the elements in K = {1, 2, ..., K} and the index of the BS be 0.
Transmission and computing functions are both integrated in
the LTE-U BS operating over unlicensed spectrum. A channel
with bandwidth B is assigned for the MEC service supported
by an edge server on the LTE-U BS. The system evolves
over time in a slotted structure indexed by t (> 0) and the
length of each slot is τ . Because the IoT devices are normally

Fig. 1. The deployment scenario.

deployed for some dedicated services [22], we consider that
each device has only one application and needs to keep
performing one kind of corresponding task [23]. Due to the
stringent computing capability of the devices and the possible
low latency requirements, some tasks should be offloaded to
the edge server on the LTE-U BS which is empowered with
much richer computing resources.

The structure of tasks generated from the same device has
a consistent format. The task structure at device k is denoted
by Mk � (Lk, Xk, fk), where Lk denotes the size of the task
input (in bit), Xk is the required computation intensity (in CPU
cycles per bit), and fk is the profit for task completion [24].
These statistics can be obtained using the method proposed
in [25]. A linear dependancy is considered for two consecutive
tasks of the same device, i.e., a task of device k (∈ K) can
only be performed after the completion of its previous task.
In a practical scenario, an urgent task with high priority can
preempt the unserved low-priority tasks, which changes the
original serving order. However, such special cases do not
affect the system modeling under consideration in this work
because the computing of the reordered tasks leads to the same
reward (as specified in Section IV) when the scheduling policy
is fixed. By setting the duration of each time slot as a small
value, it is assumed that at most one task is generated at a
device within each time slot. The task arrival probability at
device k in slot t is denoted by pk(t). The computing capacity
(in the unit of cycles per second) of device k is represented
by Ck (k ∈ K) while the computing capacity of the BS is C0

(C0 � Ck, ∀k ∈ K).
Since an LTE-U network shares the unlicensed spectrum

with other legacy networks, e.g., Wi-Fi, for fair coexisting,
an LBT mechanism is applied for the LTE-U network [26].
By taking into account both flexibility and simplicity of the
channel access, a category 4 scheme (LBT with random
back-off and a contention window of variable size) defined by
3GPP is adopted in the LTE-U BS for the unlicensed channel
access [27]. The listening (i.e., channel sensing) of the LTE-U
network is executed by the BS and the channel-related state
is represented by tuple sC(t) = (a(t), b(t), m(t)), where a(t)
is the phase indicator, b(t) is the phase counter, and m(t) is
the backoff stage. When a(t) = 0 (or 1), the BS is under the
sensing (or transmission) phase. Meanwhile, b(t) is a backoff
counter with different indications under different phases. When

7884 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

the BS intends to access the channel, the backoff stage m(t)
is set as 0, and the backoff counter b(t) is randomly initialized
between 0 and W0 − 1. Then the BS senses the channel
at the beginning of each slot. The backoff counter b(t) is
decreased by 1 at each time slot under idle channel, while it
keeps frozen if the channel is busy. If there is no transmission
collision with other networks over the unlicensed channel after
the backoff counter b(t) is reduced to 0, the BS begins to
access the unlicensed channel for scheduling the devices to
do their task-related transmission. Under the collision case,
the backoff stage m(t) is increased by 1, and the backoff
window is doubled, i.e., Wm(t) = 2Wm(t)−1, where maximum
backoff stage is M . Then the backoff counter b(t) is randomly
reset between 0 and Wm(t) − 1 for the subsequent channel
sensing.

After successfully receiving the uplink grant signal,
the associated IoT devices immediately upload their task data
and equally share the available frequency bands. The uplink
transmission rate of device k at slot t is given by

rk(t) =
B

J(t)
log

�
1 +

Pk|hk(t)|2
σ2

�
(1)

where J(t) is number of devices with transmission demand
in slot t, Pk is the fixed transmission power of device k,
hk(t) is the channel gain from device k to the BS, including
the path loss and Rayleigh fading, and σ2 is the received
noise power. At the end of the transmission phase, a(t)
and b(t) are reset to 0 and W0, respectively, for the next
round of channel sensing. The Wi-Fi system works as one
external environmental element. Specifically, as the number
of Wi-Fi users increases, the average channel quality of the
LTE-U decreases, which leads to a longer transmission delay.
Hence, the tasks are more likely to be processed locally.
That is, the activity of Wi-Fi devices affects the evolution of
channel availability, hence the transmission delay and finally
the offloading decision.

B. Offloading Policy and Device Status

When a task becomes the head of the task queue in device
k at the beginning of time slot t, it is scheduled by the BS
for locally processing or offloading. The locally processing
at device k is denoted by action Ak(t) = 0 while offloading
decision is denoted by Ak(t) = 1. The decision epochs for
task processing are discussed in Section III-C. The device
status is highly dependent on its task that is being processed,
referred to as in-service task. The status of all devices is
captured by vector z(t) = (z1(t), z2(t), . . . , zk(t), . . . , zK(t)),
zk(t) ∈ {0, 1, 2, 3, 4}, k ∈ K. Specifically, for in-service task
of device k in slot t, zk(t) = 0 means that the task is being
locally processed (including the case that the task queue is
empty); zk(t) = 1 means that the device is uploading the
input data of the task to the BS; zk(t) = 2 denotes that the
in-service task of device k is queueing at the edge server;
zk(t) = 3 denotes that the task is being processed at the edge
server; zk(t) = 4 indicates that the task is accomplished by
the edge server and is waiting for returning task execution
result from the edge server. As shown in Fig. 2, the evolution

Fig. 2. The task processing flow.

for the device status depends on the availability of the unli-
censed channel and computing resources, as discussed in the
following subsections.

C. Task Backlog

Each device is equipped with a task buffer of capacity B̄k,
containing all its task backlog. The number of unaccomplished
tasks in the buffer of device k at the beginning of time slot
t is denoted by Bk(t). The generation of new tasks and the
processing of in-service task jointly decide backlog update,
expressed as

Bk(t + 1) = min
�
B�

k(t) + Yk(t), B̄k

�
(2)

where Yk(t) is a Bernoulli-distributed random variable with
parameter pk(t), indicating whether in slot t a new task is
generated at device k, and B�

k(t) denotes the updated backlog
size without new task generation, derived by

B�
k(t)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

Bk(t)− Ckτ

LkXk
,�Bk(t)�−

�
, if zk(t) = 0

Bk(t)− 1, ifzk(t) = 4 and

a(t) = 1
Bk(t), otherwise

(3)

where �·�− is the revised floor function mapping to the greatest
integer less than itself. The first subequation in (3) represents
the case that a task is being locally computed at device k,
and its backlog size is reduced by the normalized fraction.
The second subequation indicates that an in-service task of
device k has been completed at the edge server, and the
backlog is updated when the task execution result is returned
from the edge server once the channel is available.

The decision epochs for device k can be classified into two
categories. One is referred to as time slots with a local task
completion or a return of the task output from the edge, while
the local task backlog is not empty, which is expressed by
Hk = {t|t ∈ T 0

k , Bk(t + 1) > 0}, T 0
k = {t|B�

k(t) ∈
Z, B�

k(t) < Bk(t)}; The other is the case that a new task
is generated during slot t at device k when its task backlog
is empty at the slot beginning, which is denoted by Ek =
{t|Bk(t) = 0, Yk(t) > 0}. Therefore, the overall decision
epochs for device k are denoted as Ek = Hk

�
Ek.

D. Local Transmission Queue of Device

After a task of device k is scheduled to be offloaded, device
k pushes the task input data into its transmission queue for

HE et al.: EDGE-AIDED COMPUTING AND TRANSMISSION SCHEDULING FOR LTE-U-ENABLED IOT 7885

uploading to the edge server. We normalize the transmission
queue length of device k at the beginning of slot t with
regard to Lk, which is denoted by Fk(t). Because the tasks
are scheduled sequentially, there is at most one task in the
transmission queue, i.e., Fk(t) ∈ [0, 1]. The evolution of the
transmission queue length is given by

Fk(t + 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

Fk(t)− rk(t)τ

Lk
, 0

�
, if zk(t)=1 and

a(t)=1
Fk(t) + 1, if Ak(t) = 1
Fk(t), otherwise.

(4)

The first subequation in (4) means that the transmission
queue length of device k is decreased due to the uplink
transmission of its task input data when the LTE-U BS is
in the transmission phase. The second subequation indicates
that the transmission queue length is added by 1 if a new
task is to be offloaded to the edge server (Ak(t) = 1). The
epochs of transmission completion of device k are denoted
as T 1

k = {t|Fk(t + 1) = 0, Fk(t) > 0} and we have
the overall transmission completion epochs for any device as
T 1 =

�
k∈K
T 1

k .

E. Edge Computing Queue at Edge Server

After the uplink transmission for the task input of device k
is finished, the task is pushed into the edge computing queue.
A first-come-first-serve edge computing order is considered.
To guarantee that the tasks are served in an appropriate
sequence, an edge computing priority Wk(t) (k ∈ K) is used
for the in-service task from device k at time t. Once any new
task finishes its uploading for its input data and enters the
edge computing queue, the priority of all tasks at the edge
(including the new task) are increased by one, guaranteeing
that the earlier tasks are allocated with higher priority. The
update of the edge computing priority is denoted by

Wk(t)=

�
Wk(t) + 1, if t ∈ T 1 and k ∈ C (t)
Wk(t), otherwise

(5)

where C (t) is the set containing devices with tasks in the edge
computing queue, i.e., C (t) = {k|Wk(t) > 0 or t ∈ T 1

k }.
Moreover, for integrating the computing process of tasks at the
edge, the decimal part ofWk(t) is interpreted as the unfinished
task fraction of device k’s in-service task at the edge server,
which is normalized by LkXk. The computing-related update
for the priority is described as

Ŵk(t)=

⎧⎨
⎩max

Wk(t)− C0τ

LkXk
, �Wk(t)�−

�
, if zk(t)=3

Wk(t), otherwise.
(6)

In (6), the first subequation means that, if a task is being
processed at the edge server (zk(t) = 3), the decimal part
of its priority value is reduced by the normalized processed
fraction. Once a task releases the edge computing resources

due to the task accomplishment, its priority value is reset to
zero, which is denoted by

Wk(t + 1) =

�
0, if Ŵk(t) ∈ Z and zk(t) = 3
Ŵk, otherwise.

(7)

The task completion epochs of edge computing for device k
are denoted by set T 2

k = {t|Ŵk(t) ∈ Z, zk(t) = 3}. Since
the data size of task execution result is normally much smaller
than the input data size, the transmission of the output data
for all tasks is assumed to take only one time slot [28].

F. Delay Counter

Suppose that task i of device k is generated at T A
i , scheduled

at T S
i , and completed at T E

i . The delay of this task is calculated
as di = T E

i − T A
i . For recording the delay of each task,

a collection of counters should be maintained in each device,
which significantly increases the modeling complexity. Fortu-
nately, we can exploit the correlation between two successive
tasks in the same device to represent the delay in a more
effective way. Suppose that we have only one delay counter Dk

representing the number of slots between the generation epoch
of the in-service task of device k and the current slot. For task
i + 1 generated at T A

i+1, scheduled at T S
i+1, and completed at

T E
i+1, its scheduling delay of task i + 1 is given by

di+1 = T E
i+1 − T A

i+1 = T E
i+1 − T S

i+1 + T S
i+1 − T A

i+1. (8)

If task i has been completed when task i + 1 is generated,
the latter enters an empty task queue and the delay counter of
device k is directly used to record the delay of task i+1. If the
task buffer is not empty when task i+1 is generated, the delay
counter is being used by the former task i. The history
scheduling epochs and ending epochs before task i + 1 are
respectively denoted by T S

i =
�
T S

i�
�
i�≤i

and T E
i =

�
T E

i�
�
i�≤i

.
Actually, considering that the ending epoch of task i is actually
the scheduling epoch of task i + 1, i.e., T S

i+1 = T E
i , we have

di+1 =T E
i+1−T S

i+1+T E
i −(T A

i +Δi)=T E
i+1−T S

i+1+di−Δi

(9)

where Δi = T A
i+1−T A

i is the interval between the generations
of tasks i and i +1. Considering that the task arrivals of each
device in a period of interest can be modeled as a stationary
stochastic process, the expectation of Δi is denoted by Δ.
We calculate the expected delay of task i + 1 under the
condition of the real measured scheduling and ending epochs
history as

E
�
di+1

��T S
i+1, T

E
i+1

�
= T E

i+1 − T S
i+1� �� �

after scheduling

+ E
�
di

��T S
i , T E

i

�
−Δ� �� �

before scheduling

.

(10)

From (10), the expected delay of a task is divided by the
time before scheduling and that after scheduling. The expected
waiting time before scheduling is calculated based on the
expectation of previous task’s delay (E

�
di

��T S
i , T E

i

�
) and the

average interval of two successive task arrivals (Δ). Therefore,
we only set one delay counter for each IoT device for counting
the expected delay of the in-service task conditioned on the

7886 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

epochs of task scheduling and completion. Upon completing
the current task and scheduling the next task, the delay counter
is reset to the expected waiting time (E

�
di

��T S
i , T E

i

�
− Δ)

before scheduling for the next task. Thus, we obtain the
average delay of all tasks, sequentially, by only using the delay
counter information of the head-of-line task. The evolution of
the delay counter is given by

Dk(t + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dk(t)−Δ, if t ∈ Hk

0, if t ∈ Ek

Dk(t) + 1, if Bk(t) > 0 and t �∈ Ek
Dk(t), otherwise.

(11)

In (11) the first subequation indicates that a new task of device
k is scheduled at the end of slot t and its delay counter is
initialized as Dk(t) − Δ; the second subequation indicates
that when the task buffer is empty after a task completion at
the end of slot t, the delay counter is reset to 0; the third
subequation indicates that, when the task is being scheduled,
the delay is increased by one after each time slot. It is noted
that the delay counter can be negative due to the estimation
error between the true sampling interval of the two successive
tasks and its expectation. However, this potential negative
value can be balanced in the long-term evolution. Differ-
ent from directly estimating the delay information based on
LTE-U/Wi-Fi coexistence analysis such as in [29], [30] which
needs the specific information of Wi-Fi network, setting the
delay counter at each device can provide decision maker
with extra real-time information and make the task scheduling
strategy more intelligently without the coordination between
LTE-U and W-Fi.

IV. PROBLEM FORMULATION

To capture the dynamic evolution of task-related states,
we leverage a Markov decision process (MDP) framework
to model the complex interactions among the processes of
transmission, computing, and queueing in the MEC sys-
tem. Basically, an MDP is defined by a tuple of state
space S, decision space A, state transition probability
function P := S × A × S → R, and reward func-
tion R := S × A → R. The system state is defined
as s(t) = (z(t), B(t), F (t), W (t), D(t), a(t), b(t), m(t)),
where B(t), F (t), W(t), and D(t) are the vectorized values
of the task backlog sizes, transmission queue sizes, edge
computing priorities, and delay counters, respectively, of all
devices at time t, and their values can be obtained from the
derivations in Section III. In each generalized decision epoch,
denoted by t ∈ E =

�
k

Ek, an action A(t) = [Ak(t)]k∈K is

taken. The available action space is dependent on the current
state and is expressed as

A(t) =

��
Ak(t) (12)

where

��
is the cumulative Cartesian product operation, and

Ak(t) is the sub-space containing the available actions for

device k. Specifically, we have

Ak(t) =

�
{0, 1} if t ∈ Ek
{0} otherwise

(13)

which indicates that the decision space of device k
includes both local computing (Ak(t) = 0) and offloading
(Ak(t) = 1) when the current slot is a decision epoch of
the device, otherwise, it is just set as 0 to keep the notation
consistent.

The state transitions consist of three steps: The first one is
to update B(t), F (t), W(t), and D(t); The second one is to
update the channel status based on the transition probability
of different states, which depends on the external environment
and the LBT setting of the LTE-U BS [31]; The third one
is to update the task status, given by (14), shown at the
bottom of the next page. In (14), the first case represents that,
in a decision epoch, the task status changes into the local
computing status if Ak(t) = 0 or the transmission status if
Ak(t) = 1; The second case indicates that the task transits
into the edge queueing status after it finishes uploading the
task input data and the edge server is occupied; In the third
case, if the edge computing queue is empty, the task directly
begins to be served by the edge server after its transmission of
the task input, or the task status transits from edge queueing
status to the edge computing status when other tasks with
higher priority have all been completed; The forth case means
that a completed task of device k begins to wait at the BS for
returning its output data back to device k when the channel is
accessible.

After each task is completed under state s(t), a reward
Rk(s(t)) is generated for device k, including both the positive
profit (1− η)fk and the negative delay-related impact −ηDk,
given by

Rk(s(t)) =

�
(1− η)fk − ηDk(t), if t ∈ T 0

k

0, otherwise
(15)

where η ∈ [0, 1] is a weight parameter to balance the tradeoff
between the profit and delay of the task completion. The
reward function can be customized in different forms for
the worst-case delay guarantee. For example, in [32], a hard
delay deadline is set for offloading or local execution of
each task. If a task computing delay exceeds the deadline,
the task would be dropped, and a large dropping cost is added
into the computing cost function in the form of a weighted
negative indicator function on satisfying the required delay
bound, to guarantee the worst-case delay to the maximum
extent.

Meanwhile, a device-related cost Gk, is generated when
each task of device k is executed at the edge server for cap-
turing the cost of task transmission, service maintenance, e.g.,
energy consumption, and wear and tear of the equipment [33].
The cost function is represented by

Ck(s(t)) =

�
Gk, if t ∈ T 0

k and zk(t) �= 0
0, otherwise.

(16)

HE et al.: EDGE-AIDED COMPUTING AND TRANSMISSION SCHEDULING FOR LTE-U-ENABLED IOT 7887

Thus, the overall reward and cost for this network are
defined as

R(s(t)) =
�
k∈K

Rk(s(t)) (17)

C(s(t)) =
�
k∈K

Ck(s(t)). (18)

Because the system evoloves in a Markov way, to maximize
the expectation of the long-term average reward subject to
edge computing cost constraint, a CMDP problem for choosing
the optimal task scheduling action in each time slot can be
formulated as P0,

P0 : max
π

E

�
lim

T→∞
1
T

T�
t=0

R(s(t))
����π

�

s.t. E

�
lim

T→∞
1
T

T�
t=0

C(s(t))
����π

�
≤ C̄ (19)

where π is a stationary policy mapping from state s(t) to
action A(t). For the scenario with some urgent tasks of
high priority, although the delay calculation in (11) for each
task may be biased due to the reordered task computing, for
one fixed policy, it can still complete the same number of
tasks within the same time regardless of the serving order,
i.e., the sum of the task completion profit and the sum of the
task completion delay are the same. Therefore, the average
performance of P0 in (19) under the above formulation is still
the same as that of the scenario without reordering the tasks.

V. ALGORITHM FOR TASK SCHEDULING

If we know the environment information, i.e., the state tran-
sition probabilties P (s|s�, A�), the CMDP defined as P0 can
be equivalently transformed to a linear programming (LP)
problem [34], given by

max
x

�
s∈S

�
A∈A(s)

x(s, A)R(s) (20a)

s.t.
�
s�∈S

�
A�∈A(s�)

x(s�, A�)P (s|s�, A�)

=
�

A∈A(s)

x(s, A), ∀s ∈ S (20b)

�
s∈S

�
A∈A(s)

x(s, A) = 1 (20c)

�
s∈S

�
A∈A(s)

x(s, A)C(s) ≤ C̄. (20d)

In (20), variable x(s, A) can be interpreted as the long-run
visiting probability to the state-action pair (s, A), R(s) is the
reward under state s, and C(s) is the generated cost under
state s. Constraint (20b) is the global balance equations for
the steady-state probabilities, (20c) implies that the sum of all
state-action pairs’ probabilities is equal to 1, (20d) shows that
the edge computing cost should be limited by cost budget C̄.
For brevity, time index t is written as the subscript in the
following. Different from the deterministic policy in traditional
MDP, the optimality can be achieved only when the policy is
a mapping from a state to a distribution of available actions
in the CMDP, defined by

P (At = A|st = s) =
x(s, A)�

A�∈A(s)

x(s, A�)
. (21)

The LP problem in (20) can be solved in general via methods
such as simplex algorithm and interior-point algorithm [34].
However, it is impractical to apply an LP-based algorithm in
this scenario since the transition probabilities (i.e., P (s�|s, A))
cannot be known as a priori, and the high dimensional state
representation leads to an exponentially increasing space com-
plexity for x(s, A).

A. Task Scheduling Without Edge Computing Cost Constraint

When the state transition probabilities are not accessible,
reinforcement learning (RL) can be leveraged to gradually
extract the optimal policy by interacting with the environment.
However, the constrained RL is an elusive challenge due to
the difficulty of transferring from value-based formulation in
RL to the LP-based formulation in CMDP. In order to find
a solution to the cost-constrained task scheduling problem,
we first design an algorithm to deal with the case in which
the average edge computing cost constraint is removed. The
simplified problem for maximizing the long-term average
reward is then approximated by maximizing the accumulated
discounted reward [35], i.e.,

P1 : max
π

E

� ∞�
t=0

γtR(st)
����π

�
(22)

where γ (< 1) is the discount factor to represent that the
learning agent pays more attention to the current reward than
the future reward. The larger γ, the closer the optimal solution
of P1 approaches the undiscounted one.

When the state transition probabilities are unknown,
Q-learning is a common model-free RL method which can

zk(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak(t), if t ∈ Ek
2, if zk(t) = 1 and t ∈ T 1

k and k �= argmax
k∈K
Wk(t + 1)

3, if zk(t) = 1 and t ∈ T 1
k and k = argmax

k∈K
Wk(t + 1), or

if zk(t) = 2 and t∈ T 2 and k = argmax
k∈K
Wk(t + 1)

4, if zk(t) = 3 and t ∈ T 2
k

zk(t), otherwise.

(14)

7888 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

learn the optimal policy via successively updating its esti-
mation about the Q-values based on the interaction with the
external environment [36]. The Q-values can be interpreted as
an evaluation for how good a state-action pair is. Therefore,
when the estimation about the Q-values is accurate, the action
with the largest Q-value, i.e., arg max

A∈A(s)
Q(s, A), should be

taken when the learning agent observes state s. The traditional
tabular Q-learning maintains the estimation for Q-values by
constructing a Q-value table for all state-action pairs with
size

�
s∈S
|A(s)|, where | · | is the set cardinality. In each

decision epoch, an action is chosen probabilistically based on
the current state st and the Q-value table, and the probability
for choosing action At is expressed as

P (At|st)=

⎧⎨
⎩1− �+

�

|A(st)|
, if At = argmax

A
Q(st, A)

�
|A(st)| , otherwise

(23)

where � is a tradeoff coefficient balancing between exploitation
(choosing the most promising action) and exploration (trying a
random action). After the action, a reward, R(st), is fed back
and the next state st+1 is observed. Based on the full backup
equation, only the Q-value for state-action pair (st, At) in the
Q-table is updated [37], given by

Q(st, At)

(1−β)Q(st, At) + β

�
R(st) + γ max

A∈A(st+1)
Q(st+1, A)

�
(24)

where β is the learning rate which balances the learning step
length and the learning accuracy. Such an action selection and
Q-value updating mechanism can guarantee that the optimal
policy can be obtained with probability 1 [37]. However,
the traditional tabular Q-learning is considerably space-costly
for recording the Q-values of all possible state-action pairs,
and has the curse of dimension problem when it is applied
in our task scheduling problem with multi-dimensional state.
To overcome the high space complexity, we adopt a DQL
method [38] instead, to approximate Q-values via a DNN,
i.e., Q(·; θ), where θ is the network parameter consisting
of the weights and biases for connecting the neural units
of different layers in the DNN. The detailed DQL for task
scheduling without the edge computing cost constraint is given
in Algorithm 1.

The proposed algorithm is executed at the beginning of each
slot by the LTE-U BS which is able to observe the system
states via the inherent reporting scheme of LTE. There are
two DQNs, i.e., the evaluation network and the target network,
and their parameters are denoted by θ and θ�, respectively.
The evaluation network can directly obtain an evaluation
Q-value for a state-action pair via a forwarding calculation.
Alternatively, the target Q-value for a state-action pair sample
(sj , Aj) can be estimated via the full backup equation in (24),
i.e.,

yj = Rj + γ max
A∈A(sj+1)

(Q�(sj+1, A; θ�)) (25)

Algorithm 1 DQL Algorithm for Task Scheduling
Initialize:
Set an empty replay memory Ψ with capacity M ;
Randomly initialize the parameter of the evaluation DQN

(Q) as θ;
Initialize the parameter of target DQN (Q�) as θ� = θ;
Initialize � = 1 and state s0;
while t < T do

if t ∈ E then
Choose action based on (23);
Execute the action and observe the reward Rt and the

next state st+1;
else

Set At = 0;
end if
Decay the exploration probability �← max{�φ, �min};
Store transition vector (st, At, Rt, st+1) in Ψ;
Sample random minibatch of transitions (sj ,Aj ,Rj ,sj+1)

from Ψ;
Calculate the target Q value of (sj , Aj), i.e., yj , based

on (25);
Perform a gradient decent on θ for minimizing |yj −

Q(sj , Aj ; θ)|2;
t = t + 1;
Every N steps set θ� = θ;

end while
Output: Evaluation DQN with parameter θ .

where Rj is the reward feedback under state-action pair
(sj , Aj), sj+1 is the following state, and the Q-value for sj+1

is derived from the forwarding calculation based on the target
network. The action selection in DQL is the same as in (23),
where the Q-value calculation is based on the evaluation
network. The exploration probability � gradually decays with a
rate φ to transfer its concern from exploration to exploitation.
After the action selection, a transition sample including the
current state, current action, reward feedback, and the next
state, is stored in the replay memory. The transition samples
in the replay memory are randomly selected for the gradient-
decent-based training of the evaluation DQN for shrinking the
gaps between the evaluation Q-values and the target Q-values.
After every N steps, the target DQN gets updated using θ,
the parameter of the trained evaluation DQN. The design of
two separated DQNs reduces the oscillations and avoids the
divergence of the policy. By iteratively training the evaluation
DQN, the agent can gradually obtain the optimal policy [39].

B. Task Scheduling With Edge Computing Cost Constraint

Developing a solution for the constrained task scheduling is
mainly inspired by [40], where the constraint can be integrated
into the reward function by an appropriate weight, λ, leading
to a new MDP with a revised reward and no constraint. From
the perspective of the DQN formulation with parameter θ,
the original problem P0 with constraint can be expressed as

P2: max
θ

Vπ(θ) s.t. E(C(t)|π(θ)) ≤ C̄ (26)

HE et al.: EDGE-AIDED COMPUTING AND TRANSMISSION SCHEDULING FOR LTE-U-ENABLED IOT 7889

where π(θ) is the policy that the action with the maximal Q
value for the current state is selected based on a DQN para-

meterized by θ, and Vπ(θ) = lim
T→∞

1
T E

� ∞�
t=0

R(st)
��π(θ)

�
is

the expectation of the long-term average reward under policy
π(θ). The objective of task scheduling is to maximize the
average reward while guaranteeing the edge computing cost
constraint. The Lagrange function and the dual function of
prime problem P2 are expressed, respectively, as

L(θ, λ) = Vπ(θ) − λ
�
E(C|π(θ)) − C̄

�
, λ > 0 (27)

g(λ) = sup
θ

�
Vπ(θ) − λ

�
E(C|π(θ)) − C̄

��
. (28)

Because the underlying problem is a CMDP with a standard
LP form in (20), it is obvious that the dual problem (i.e.,
min
λ>0

g(λ)) has the same solution as the prime problem, and

the dual function is reformulated as

g(λ)

=sup
θ

lim
T→∞

E

�
T�

t=0
r(st, At)−λ

T�
t=0

(C(st, At)− C̄)
����π(θ)

�
T

.

(29)

Theorem 1: Function g(λ) is continuous even when the
scheduling policy is restricted to be deterministic policy, which
means that, for each state, there is only one optimal action and
random policy is not allowed.

Proof: See Appendix A.
Therefore, the optimal expected reward in P2 is the same

as the optimal value of g(λ∗) when the optimal Lagrange
multiplier λ∗ is found. Accordingly, the constrained scheduling
problem can be transformed as another scheduling problem
without constraint, but with a revised reward function, given
by

R�(st) = R(st)− λ∗(C(st)− C̄). (30)

It is noted that the revised MDP and the original MDP have the
same state space, action space, and transition probabilities. In
order to obtain the optimal Lagrange multiplier and the optimal
scheduling policy under the average edge computing cost
constraint, an iteration-based algorithm is developed based on
the subgradient theory, which is presented in Algorithm 2. The
key idea is to use the counted average edge computing cost
to update the Lagrangian multiplier, where αi is the step size
for updating of λ, and [·]+ is the non-negative function.

Assumption 1: In Algorithm 2, the counted average edge
computing cost, Ci, has mean of μi = E [C|π(θi)] and
relatively small variance σi with σi ≤ Mμi, where M is a
large positive constant.

Assumption 2: The DQL algorithm without constraint in
Algorithm 1 can obtain the optimal policy when any revised
reward function with determined λ is given.

For Assumption 1, if we count the average edge computing
cost in a long term, the variance can be small enough according
to the law of large numbers; For Assumption 2, many existing
works prove that the DQL algorithm is effective in addressing
such scheduling problems [41].

Algorithm 2 CDQL Algorithm for Task Scheduling With
Edge Edge Computing Cost Constraint

Initialize:
Set i = 0, λi = 0, and the step size αi = 0.5;
while 1 do

Set the reward function as: Ri(s) = R(s)− λiC(s);
Run Algorithm 1 with reward function Ri and obtain the

optimal policy π(θi);
Count the average edge computing cost Ci;
Update λ as: λi+1 =

�
λi + (Ci − C̄)αi

 +
;

Update the step size as αi+1 = α0/(i + 1);
i = i + 1;

end while
Output: λi and DQN with parameter θ

Theorem 2: In Algorithm 2, when i → ∞, λ converges to
optimal λ∗ with probability 1 under Assumptions 1 and 2.

Proof: See Appendix B.

VI. REALIZATION OF THE CDQL

To enhance the performance and efficiency of the proposed
CDQL-based task scheduling algorithm, we make the follow-
ing customized modifications for its realization:

• Structure of the DQN: The output dimension in the con-
ventional DQN is usually the same as the size of action
space, in order to identify the difference for adopting
different available actions. However, the available action
space in our problem varies with different states and
the generalized action space is 2K , which indicates that
constructing a DQN where the last output layer has the
same size as the action space is unrealistic in the practical
implementation. Therefore, we construct the output layer
as shown in Fig. 3, where the Q-value for a state-action
pair is calculated based on the action value layer, action
mask, and the base value node. The base value node can
be considered as a basic estimation of the average Q-value
of the current state, while the action value layer with
size 2K depicts the effect of each device’s action on the
overall Q-value. Specifically, the (2k−1)-th or 2k-th node
in the act-value layer represents the Q-value bias when
action 0 or 1 is adopted for device k. The input action
makes up the action mask layer by a binary coding, and
extracts only the act-value of the selected action to the
Q-value output. The Q-value under this modified structure
is calculated as

Q(s, A; θ) = Base_value(s; θ)
+ Action_value(s; θ)Action_mask(A)T.

(31)

• Preprocessing of data samples: The traditional mem-
ory replay of DQL records all past samples of the
state-action pairs, rewards, and future states. However,
in our problem, there are many time slots in which
no action is required. In other words, regardless of the
adopted policy, these transitions are the same, which

7890 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

means that feeding these transition samples in the learn-
ing process cannot provide any extra information for the
policy learning but leads to some redundant processing
time. To utilize the data samples in a more efficient
way, the samples for training are compressed with form
(st, At, T, Rt∼T , st+T), where st is a state under a
decision epoch, At is its corresponding action, T is the
number of the slots between the former decision epoch
and the later decision epoch, st+T is the state under

the later decision epoch, and Rt∼T =
t+T�
i=t

γi−tRi is the

accumulated discounted rewards between slot t and t+T .
With the modified memory replay design, the target Q
value for state-action pair (st, At) is calculated as

y = Rt∼T + γT max
A∈A(st+T)

Q(st+T , A; θ). (32)

• Pretraining for the Q-value: The objective of training
the network is to 1) approximate the Q values for different
state-action pairs with high accuracy and 2) learn the
optimal policy based on the trained DQN. However,
the adopted policy is not stationary in the initial stage
of the DQN training and affects both input (i.e., input
action) and output (i.e., output Q values) of the DQN.
Such a recurrent effect of the policy makes it necessary
to choose a very small learning rate (e.g., 10−6) to
guarantee the convergence and stability of the concurrent
learning of both Q-value and policy, which leads to very
time-consuming training process. Therefore, we treat the
policy as a random policy in the initial training stage
to reduce the impact of the policy dynamics, and set
learning rate at a relatively large value (e.g., 10−3).
At the same time, the accumulated discounted reward,

Q̂(t) =
t�

i=t−1000

Ri is counted as an approximation

of Q-value under the random policy. After the output
Q-value roughly approximates the real discounted accu-
mulated reward, e.g., 0.9 < Q(st,At;θ)

Q̂(t)
< 1.1, we reduce

the learning rate to a small value to further optimize the
policy.

VII. PERFORMANCE EVALUATION

In this section, simulation results are presented to investi-
gate the performance of the proposed computing offloading
scheme. A python-based simulator including the LBT, data
transmission, and computing is adopted for the simulation.
In the simulation, we consider an LTE-U-enabled IoT network
consisting of a BS with the coverage radius of 100m. There
are in total 16 randomly distributed IoT devices associated
with the BS. The LTE-U network is operated on the band
of 5GHz and the distance-dependant path loss model is given
by [42]

PL(R) = 38.46 log10(R) + 20 log10(R) + 0.7R (33)

where R is the distance from the device to the LTE-U
BS. Small-scale Rayleigh fading is also considered, where
channel power gain follows an exponential distribution with
unit mean. The noise power spectrum density is -174dBm/Hz.

Fig. 3. The modified structure of DQN.

The dedicated bandwidth for the computing offloading service
is 1.4 MHz and is equally allocated to all devices with trans-
mission demand. There are 6 Wi-Fi devices with full-buffer
traffic model randomly located in the network coverage area,
employing the IEEE 802.11ac distributed coordination func-
tion (DCF) protocol for channel access with the same config-
uration in [26]. The task input data size of different devices
(Lk) follows a uniform distribution from 15 Kbits to 20 Kbits.
The workloads for all devices are set as 200 cycles/bit. The
computing capacity of the edge server and the IoT devices are
5 G cycles/s and 500 M cycles/s. If not specified, the defaulted
task arrival rate at each device is set as 100/s. There are two
backoff stages for LTE-U’s LBT-based channel access and the
values of the backoff windows are set as 8 and 16 as the
channell access priority 2 in [43]. The time duration of each
successful transmission phase is 10ms. The cost for computing
a task at the edge server is set as 5 and the edge computing
cost budget is 3/ms. The duration of each slot is 1ms. The
reward of completing a task is set as a random value between
6 and 9 for different devices. The weight for delay, η, is set
as 0.1, and the discount factor is set as γ = 0.99.

The DQN is implemented based on Tensorflow [44], which
is an open-source library. Unless otherwise specified, the struc-
ture and setting for the DQNs are set as follows: There are
three hidden layers with (256, 128, 64) neural units in the
DQN structure of Fig. 3. ReLu is the activation function for all
the hidden layers and there is no nonlinear activation function
for other layers. The replay memory can store M = 5000
transition samples and the training batch size is set as 64.
The parameter of the target DQN is replaced after every
N = 50 slots. The learning rates for the pretraining and
training are set as 10−3 and 10−6, respectively. Every learning
episode consists of 5×105 time slots. In one eposide learning,
the naive Q-learning without the customized modifications is
selected as the benchmark. In addition, a Lyapunov optimizatin
(LO)-based scheduling algorithm is set as the task scheduling
benchmark. Because the delay term in the reward function (15)
depends on the stochastic channel states in the following
time slots, and cannot be determined in the current slot in

HE et al.: EDGE-AIDED COMPUTING AND TRANSMISSION SCHEDULING FOR LTE-U-ENABLED IOT 7891

Fig. 4. Q values in the initial training stage without pretraining.

which the decision is made. Therefore, for the benchmark
comparison, the delay-related term in (15) is estimated based
on the environment statistics. For guaranteeing the average
computing cost within the computing budget, a virtual queue
method is applied [45].

In Fig. 4, we compare the evaluation Q-values with the
target Q-values in the early training phase when there is
no pretraining for Algorithm 1, where both Q-values are
averaged by a moving window of size 10. It is shown that
the Q-value of the target network is always higher than
that of the evaluation network in the initial training stage.
Actually, such gap is mainly due to their underestimations
of the Q-values with the small weight initialization for the
two DQNs. Recall that the target Q-value is calculated by
yj = Rj + γ max

A�∈A(sj+1)
(Q�(sj+1, A

�; θ�)). Although the

future part of the target Q-value is also underestimated as
that of the evaluation Q-value, the target Q-value has the
instant reward (usually being positive) feedback as a cor-
rection, making the Q value of the target network larger
than that of the evaluation network. When a small learn-
ing rate is applied for the stable convergence of the DQN,
many learning steps would be wasted to reduce such a
gap, which makes the training inefficient. Therefore, it is
essential to design an adaptive learning rate scheme for the
DQN to properly estimate the Q-values in the early training
stage.

In Fig. 5, the reward convergence process in the first eposide
(with λ = 0) is given under our proposed Q-learning algorithm
with customized modifications and the naive Q-learning algo-
rithm. It can be found that when the learning rate is high
(e.g., 10−3), the naive learning process is highly unstable
and even becomes worse after training. When the learning
rate is small (e.g., 10−6), although the average reward can
coverge to a steady and high level, the learning process is
considerably slow. However, in our proposed learning with
customized modifications, the learning rate is adaptive, i.e,
a high learning rate in the pretraining and a low learning
rate after the pretraining, the achieved average performance is
much better and stable, and takes only less than half time of
the learning with fix rate of 10−6, validating the effectiveness
of our proposed modifications.

Fig. 5. Training process with different learning rate settings.

Fig. 6. Convergence of Algorithm 2.

The convergence process of Algorithm 2 is shown in Fig. 6,
where the average modified reward, average reward, and aver-
age cost are given. When the learning agent keeps receiving
the cost feedback via the interaction with the environment
and adapting the weight for edge computing cost, the average
cost gradually matches the cost budget, and all average mod-
ified reward, average reward and average cost become stable,
validating the effectiveness of Algorithm 2 for guaranteeing
the cost budget. Note that pretraining is applied only in the
first episode, while the learning in the subsequent episodes
is directly trained based on the DNN parameters in the
former episode. However, we can see the learning process can
converge quickly when the target (accumulative revised reward
function) is changed. It is because that some learned features
in the hidden layers can be shared as common knowledge
among the learning models with different objectives. Such a
phenomena can be interpreted as the advantage of transfer
learning [46].

In Fig. 7, we compare the performance of our proposed
algorithm with that of the LO algorithm. One can notice that,
for both algorithms with the same average edge computing
cost constraint, as the task arrival rate increases, the average
task profit increases with a decreasing marginal gain due
to the gradually saturated communication and computing
capability of the system, while the average delay increases
considerably. However, our proposed CDQL algorithm always

7892 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

Fig. 7. Performance comparison between CDQL and LO.

Fig. 8. Average offloading ratio versus task arrival rates.

outperforms the LO algorithm in terms of both average
profit and delay. The reasons are two-folded: Firstly, the LO
algorithm suffers from the inaccuacy of the reward based on
the estimated task completion delay; Secondly, the main idea
of the LO algorithm is to utilize the relationship between
the queue drift and the adopted actions, thus cannot exploit
the environment dynamics, while our proposed algorithm
can learn the channel state evolution and the task arrival
pattern, leading to higher task completion profit and lower
delay.

The average offloading ratios for both CDQL algorithm
and LO algorithm with different task arrival rates are shown
in Fig. 8, where both algorithms maintain the same edge
computing cost budget. Due to more intelligent scheduling
for task offloading, the proposed CDQL algorithm achieves a
higher offloading ratio, leading to more efficient utilization of
the edge computing resources, especially when the task arrival
rate is small. However, when the task arrival rate increases,
the utilization of edge computing resources becomes gradually
saturated.

Figure 9 compares the average offloading ratio with per-task
completion profit for randomly chosen 8 IoT devices in the
LTE-U network when the task arrival rate is set as 160/s. It is
found out that a device with a higher task profit can have a
larger offloading ratio. Because the computing capability of the

Fig. 9. Offloading ratio and task profit for different IoT devices.

Fig. 10. Average offloading ratio versus number of Wi-Fi devices.

edge server is much powerful than the IoT device, processing
task at the edge server is usually a more efficent way than local
computing. By using our proposed task scheduling algorithm,
the system can intelligently allocate more computing resources
(i.e., higher offloading ratio) to those devices with higher
profit because the proposed algorithm can exploit the diversity
among different devices, the system state and the channel
availability information.

Figure 10 illustrates the average offloading ratios when
the LTE-U-enabled IoT coexisting with different number of
Wi-Fi devices. It can be found out when the number of Wi-Fi
devices is small, the offloading ratio maintains a stable level
even if the number of Wi-Fi devices increases. It is because
under such a condition the edge computing cost budget is
the main bottleneck for offloading tasks. When the number
of Wi-Fi devices further increases, the unlicensed channel
becomes more crowded and offloading tasks to the edge server
may lead to a high transmission delay. Therefore, offloading
may not be a more efficient selection and the offloading ratio
decreases. However, it can be seen that the LO algorithm is not
as intelligent as our proposed algorithm in terms of adapting
the offloading ratio to the network environment.

VIII. CONCLUSION

In this paper, we propose an RL-based method to solve
the task scheduling problem for the computing offloading in

HE et al.: EDGE-AIDED COMPUTING AND TRANSMISSION SCHEDULING FOR LTE-U-ENABLED IOT 7893

an LTE-U-enabled IoT network. We aim to maximize the
average reward that integrates both task completion profit
and task delay, while guaranteeing average edge computing
cost constraint. We formulate the scheduling problem as a
CMDP to capture the dynamics of the unlicensed channels’
availability and the task traffic. To deal with the exponentially
increased space complexity due to the high state dimensions
in conventional Q-learning, we utilize a DQL-based method
to approximate Q values of different state-action pairs, instead
of using the traditional tabular method. Based on the duality
theory, a CDQL framework is proposed to integrate the aver-
age edge computing cost constraint into the DQL framework.
Specifically, we define a revised reward function that combines
the original reward and the edge computing cost weighted
by an appropriately determined Lagrange multiplier, such that
the constraint can be removed in the CDQL framework. In
addition, a sub-gradient-based method is proposed to search
for the optimal Lagrange multiplier, and the convergence of the
searching algorithm is proved. Simulation results demonstrate
that our proposed algorithm considerably improves the system
performance in terms of the task completion profit and the task
completion delay. For the future work, we will extend our
work to the scenario where each device can learn the optimal
task scheduling policy in a distributed way via multi-agent
reinforcement learning.

APPENDIX A

To prove that g(λ) is a continuous function, we should
prove that for any λ and any �, there exists δ such that,
as long as �λ� − λ� ≤ δ, we have |g(λ) − g(λ�)| ≤ �, where
� · � and | · | are Euclidean norm function and absolute-value
function, respectively. The available policy set is denoted as
L = {1, 2, .., L}, where L ≤ |A||S| is the number of all
available deterministic policies, and is a very large but finite
positive integer. The optimal policy for λ is denoted as λ, i.e.,

lλ

=arg max
l∈L

lim
T→∞

1
T

E

�
T�

t=0

R(st)−λ

T�
t=0

(C(st)−C̄)
����π(θ)

�
.

(34)

For each deterministic policy l ∈ L, function L(θ(l), λ)
in (27) with a given θ is continuous with λ, where θ(l) is
the parameter for policy l. Therefore, we conclude that there
exists δl such that, for any �, as long as �λ� − λ� ≤ δl,
|L(θ(l), λ) − L(θ(l), λ�)| ≤ �. It is natural to postulate that
we choose δ = min

l∈L
δl. For any λ� that satisfies �λ�− λ� ≤ δ,

we can have

g(λ)− g(λ�) = L(θ(lλ), λ)− L(θ(lλ�), λ�)
(a)

≤ L(θ(lλ), λ�) + �− L(θ(lλ�), λ�)
(b)

≤ L(θ(lλ), λ�) + �− L(θ(lλ), λ�) ≤ �. (35)

In (35), inequality (a) holds because L(θ(lλ), λ) ≤
L(θ(lλ), λ�) + � as �λ� − λ� ≤ δ ≤ δlλ and inequality (b)
holds because θ(lλ�) is the optimal policy parameter over any
other parameter under Lagrangian multiplier λ�.

Further,

g(λ)− g(λ�) = L(θ(lλ), λ) − L(θ(lλ�), λ�)
(c)

≥ L(θ(lλ), λ) − (L(θ(lλ�), λ) + �)
(d)

≥ L(θ(l�λ), λ) − (L(θ(lλ�), λ) + �) ≥ −�

(36)

where inequality (c) holds because L(θ(lλ�), λ�) ≤
L(θ(lλ�), λ) + � as �λ� − λ� ≤ δ ≤ δlλ� and inequality (d)
holds because θ(lλ) is the optimal policy parameter over any
other parameter under Lagrangian multiplier λ.

As a result, we can conclude that, as long as �λ�−λ� ≤ δ =
min
l∈L

δl, |g(λ)− g(λ�)| ≤ �, i.e., g(λ) is a continuous function.

APPENDIX B

Lemma 1: Suppose {Xn, n ≥ 1} are independent
non-negative random variables with E(Xn) = μn,

V ar(Xn) = σ2
n. Define for n ≥ 1, Sn =

n�
i=1

Xi, and suppose

that
�

μi =∞ and σ2
n ≤ Mμn for some M > 0 and all n.

Then sequence Sn/E(Sn) converges to 1 in probability.
Proof: According to Chebychev’s inequality, for any

� > 0, we have

P{|Sn/E(Sn)− 1| ≥ �} ≤ Var(Sn/E(Sn))
�2

=
Var(Sn)

E2(Sn)�2
.

(37)

For Sn =
n�

i=1

Xi, we have

P{|Sn/E(Sn)− 1| ≥ �} ≤
Var

�
n�

i=1

Xi

�

E2

�
n�

i=1

Xi

�
�2

=

n�
i

σ2
i�

n�
i

μi

�2

�2

≤
M

n�
i

μi�
n�
i

μi

�2

�2

=
M

n�
i

μi�2
. (38)

Therefore, when n→ +∞, we can obtain that

lim
n→+∞ P {|Sn/E(Sn)− 1| ≥ �} = 0. (39)

Definition 1: A subgradient of convex function f at x is
any vector z that satisfies the inequality f(y) ≥ f(x) +
zT(y−x) for all y ∈ domf , where domf is the domain of
function f [47].

Lemma 2: The subgradient of function g(λ) can be denoted
as h(θλ) = E [C|π(θλ)] − C̄, where θλ is the value of
θ when L(θ, λ) gets the supremum given λ, i.e., θλ =
argmax

θ
L(θ, λ).

Proof: For any λ� > 0, we have

g(λ�)
= max

θ
L(θ, λ�) = max

θ

�
Vπ(θ) + λ�h(θ)

≥ Vπ(θλ) + λ�h(θλ) = Vπ(θλ) + λh(θλ) + (λ� − λ)h(θλ)
= g(λ) + h(θλ)(λ� − λ). (40)

7894 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

Assume that the subgradient of function g(λ) is bounded,
i.e., �h(λ)�2 ≤ G. We prove the convergence by showing
that the distance between optimal λ∗ for the minimal g(λ)
and λi converges to zero. In the i-th iteration of Algorithm 2,
the counted subgradient function is defined as h̄i = Ci − C̄,
and the measurement error for the expectation of average
cost is defined as ni = Ci − E[C|π(θi)]. Thus the true
subgradient in the i-th iteration of Algorithm 2 is denoted
as hi = E [C|π(θi)]− C̄ = h̄i − ni. Accordingly, we have

�λi+1 − λ∗�22
=

!!!�λi − αih̄i

 + − λ∗
!!!2

2

≤
!!λi − αih̄i − λ∗!!2

2
= �λi − αi(hi + ni)− λ∗�22

≤ �λi − λ∗�22 − 2αihi(λi − λ∗)− 2αini(λi − λ∗)

+ α2
i �hi + ni�22

≤ �λi − λ∗�22 − 2αi(g(λi)− g∗)− 2αini(λi − λ∗)

+ α2
i �hi + ni�22 . (41)

Applying the inequality above recursively, we have

�λi+1 − λ∗�22 ≤

�λ1 − λ∗�22 − 2
i�

k=1

αk(g(λk)− g∗) +
i�

k=1

α2
k �hi + ni�22

−
i�

k=1

2αknk(λk − λ∗). (42)

Based on the fact that �λi+1−λ∗�22 ≥ 0 and �λ1−λ∗�2 must
be bounded by some large number which is denoted by M ,
we have

2
i�

k=1

αk(g(λk)− g∗) ≤M2 +
i�

k=1

α2
k �hi + ni�22 + zi

(43)

where zi =
i�

k=1

2αknk(λk − λ∗). Then denoting the best

result of g(λ) before the i− 1 iterations as gbest
i , i.e., gbest

i =
max
k<i

g(λk), we have

i�
k=1

αk(g(λk)− g∗) ≥
"

i�
k=1

αk

#
min
k<i

(g(λk)− g∗)

=

"
i�

k=1

αk

#
(gbest

i − g∗). (44)

We can further obtain the inequality

gbest
i − g∗

≤
M2 +

i�
k=1

α2
k �hi + ni�22 + zi

i�
k=1

αk

=
M2 +

i�
k=1

α2
k �hi + ni�22

i�
k=1

αk

+

i�
k=1

2αk(hk − h̄k)(λk − λ∗)

i�
k=1

αk

.

(45)

When we choose αi as square summable but not summable,

i.e.,
∞�
i

α2
i < ∞, and

∞�
i

αi = ∞, it is obvious that the

first term
M2+

i�

k=1
α2

k	hi+ni	2
2

i�

k=1
αk

converges to 0 in probability.

The second term is denoted as

i�

k=1
2αk(hk−h̄k)(λk−λ∗)

i�

k=1
αk

=

i�

k=1
2αkhk(λk−λ∗)

i�

k=1
αk

−
i�

k=1
2αkh̄k(λk−λ∗)

i�

k=1
αk

=
i�
k

ak −
i�
k

bi, where

i�
k

ak = E

�
i�
k

bi

�
. Therefore, based on Lemma 2, the term

in (45) converges to 0 in probability.

REFERENCES

[1] H. He, H. Shan, A. Huang, Q. Ye, and W. Zhuang, “Reinforcement
learning-based computing and transmission scheduling for LTE-U-
enabled IoT,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1–6.

[2] Q. Ye and W. Zhuang, “Distributed and adaptive medium access control
for Internet-of-Things-Enabled mobile networks,” IEEE Internet Things
J., vol. 4, no. 2, pp. 446–460, Apr. 2017.

[3] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, and X. S. Shen, “Security
and privacy in smart city applications: Challenges and solutions,” IEEE
Commun. Mag., vol. 55, no. 1, pp. 122–129, Jan. 2017.

[4] D. Puthal, S. P. Mohanty, V. P. Yanambaka, and E. Kougianos, “PoAh: A
novel consensus algorithm for fast scalable private blockchain for large-
scale IoT frameworks,” 2020, arXiv:2001.07297. [Online]. Available:
http://arxiv.org/abs/2001.07297

[5] Z. Qin, F. Y. Li, G. Y. Li, J. A. McCann, and Q. Ni, “Low-power wide-
area networks for sustainable IoT,” IEEE Wireless Commun., vol. 26,
no. 3, pp. 140–145, Jun. 2019.

[6] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA tech-
nology: LoRa and NB-IoT,” ICT Express, vol. 3, no. 1, pp. 14–21,
Mar. 2017.

[7] MulteFire Alliance, “Multefire release 1.1 technical overview white
paper,” MulteFire Alliance, Fremont, CA, USA, Tech. Rep., Dec. 2018.

[8] S. Tatesh, eLTE Brings Yangshan Port Into Automation Era. Shenzhen,
China: Huawei Technologies, 2018.

[9] C. Long, Y. Cao, T. Jiang, and Q. Zhang, “Edge computing framework
for cooperative video processing in multimedia IoT systems,” IEEE
Trans. Multimedia, vol. 20, no. 5, pp. 1126–1139, May 2018.

[10] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
IoT architecture based on transparent computing,” IEEE Netw., vol. 31,
no. 5, pp. 96–105, Aug. 2017.

[11] X. Chen, Q. Shi, L. Yang, and J. Xu, “ThriftyEdge: Resource-efficient
edge computing for intelligent IoT applications,” IEEE Netw., vol. 32,
no. 1, pp. 61–65, Jan. 2018.

[12] G. Hattab and D. Cabric, “Distributed wideband sensing-based
architecture for unlicensed massive IoT communications,” 2018,
arXiv:1812.06238. [Online]. Available: http://arxiv.org/abs/1812.06238

[13] J. Ho and M. Jo, “Offloading wireless energy harvesting for IoT
devices on unlicensed bands,” IEEE Internet Things J., vol. 6, no. 2,
pp. 3663–3675, Apr. 2019.

[14] H. Zhang, B. Di, K. Bian, and L. Song, “IoT-U: Cellular Internet-
of-Things networks over unlicensed spectrum,” IEEE Trans. Wireless
Commun., vol. 18, no. 5, pp. 2477–2492, May 2019.

[15] S. Baidya and M. Levorato, “Edge-assisted content and computation-
driven dynamic network selection for real-time services in the urban
IoT,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), May 2017, pp. 796–801.

[16] Y. Chen, N. Zhang, Y. Zhang, and X. Chen, “Dynamic computation
offloading in edge computing for Internet of Things,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4242–4251, Jun. 2019.

[17] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, “Energy
efficient dynamic offloading in mobile edge computing for Internet of
Things,” IEEE Trans. Cloud Comput., early access, Feb. 11, 2019, doi:
10.1109/TCC.2019.2898657.

http://dx.doi.org/10.1109/TCC.2019.2898657

HE et al.: EDGE-AIDED COMPUTING AND TRANSMISSION SCHEDULING FOR LTE-U-ENABLED IOT 7895

[18] X. Lyu et al., “Optimal schedule of mobile edge computing for Internet
of Things using partial information,” IEEE J. Sel. Areas Commun.,
vol. 35, no. 11, pp. 2606–2615, Nov. 2017.

[19] X. Cheng et al., “Space/Aerial-assisted computing offloading for IoT
applications: A learning-based approach,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 5, pp. 1117–1129, May 2019.

[20] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158–11168,
Nov. 2019.

[21] T. Quang Dinh, Q. Duy La, T. Q. S. Quek, and H. Shin, “Learning
for computation offloading in mobile edge computing,” IEEE Trans.
Commun., vol. 66, no. 12, pp. 6353–6367, Dec. 2018.

[22] H. Habibzadeh, Z. Qin, T. Soyata, and B. Kantarci, “Large-scale
distributed Dedicated- and non-dedicated smart city sensing systems,”
IEEE Sensors J., vol. 17, no. 23, pp. 7649–7658, Dec. 2017.

[23] A. M. Haubenwaller and K. Vandikas, “Computations on the edge in
the Internet of Things,” Procedia Comput. Sci., vol. 52, pp. 29–34,
Jan. 2015.

[24] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Aug. 2017.

[25] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4,
pp. 23–32, Apr. 2013.

[26] H. He, H. Shan, A. Huang, L. X. Cai, and T. Q. S. Quek, “Proportional
fairness-based resource allocation for LTE-U coexisting with Wi-Fi,”
IEEE Access, vol. 5, pp. 4720–4731, 2017.

[27] Study on Licensed-Assisted Access to Unlicensed Spectrum, Stan-
dard 3GPP TR 36.889 May 2015.

[28] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[29] M. Hirzallah, M. Krunz, and Y. Xiao, “Harmonious cross-technology
coexistence with heterogeneous traffic in unlicensed bands: Analysis
and approximations,” IEEE Trans. Cognit. Commun. Netw., vol. 5, no. 3,
pp. 690–701, Sep. 2019.

[30] G. J. Sutton, R. P. Liu, and Y. J. Guo, “Delay and reliability of load-
based listen-before-talk in LAA,” IEEE Access, vol. 6, pp. 6171–6182,
2018.

[31] M. Hirzallah, W. Afifi, and M. Krunz, “Full-duplex-based rate/mode
adaptation strategies for Wi-Fi/LTE-U coexistence: A POMDP
approach,” IEEE J. Sel. Areas Commun., vol. 35, no. 1, pp. 20–29,
Jan. 2017.

[32] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[33] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[34] H. C. Tijms, A 1st Course Stochastic Models. Hoboken, NJ, USA: Wiley,
2003.

[35] J. N. Tsitsiklis and B. Van Roy, “On average versus discounted
reward temporal-difference learning,” Mach. Learn., vol. 49, nos. 2–3,
pp. 179–191, Nov. 2002.

[36] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[37] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2011.

[38] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[39] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. Conf. Artif. Intell. (AAAI), Mar. 2016,
pp. 2094–2100.

[40] A. M. Makowski and A. Schwartz, “Optimal index policies for MDPs
with a constraint,” in Proc. 30th IEEE Conf. Decis. Control, Dec. 1991,
pp. 471–476.

[41] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602. [Online]. Available: http://arxiv.org/abs/1312.5602

[42] F. Liu, E. Bala, E. Erkip, M. C. Beluri, and R. Yang, “Small-cell
traffic balancing over licensed and unlicensed bands,” IEEE Trans. Veh.
Technol., vol. 64, no. 12, pp. 5850–5865, Dec. 2015.

[43] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer
Procedures (Release 14), Standard 3GPP TS 36.213 2019.

[44] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. OSDI, Nov. 2016, pp. 265–283.

[45] N. Lu, B. Ji, and B. Li, “Age-based scheduling: Improving data freshness
for wireless real-time traffic,” in Proc. 18th ACM Int. Symp. Mobile Ad
Hoc Netw. Comput., Jun. 2018, pp. 191–200.

[46] Y. Bengio, “Deep learning of representations for unsupervised and trans-
fer learning,” in Proc. ICML Workshop Unsupervised Transf. Learn.,
Jul. 2011, pp. 17–37.

[47] S. Boyd and J. Park, “Subgradient methods,” in Notes for EE364b.
Stanford, CA, USA: Stanford Univ. 2013.

Hongli He (Member, IEEE) received the B.Sc. and
Ph.D. degrees in information and communication
engineering from Zhejiang University, Hangzhou,
China, in 2014 and 2020, respectively. He is cur-
rently a Senior Engineer with Huawei Technolo-
gies Company Ltd. His research interests include
vehicular ad-hoc networks, cellular networks over
unlicensed spectrum, edge computing, and deep
reinforcement learning in wireless communication.

Hangguan Shan (Member, IEEE) received the B.Sc.
degree in electrical engineering from Zhejiang Uni-
versity, Hangzhou, China, in 2004, and the Ph.D.
degree in electrical engineering from Fudan Uni-
versity, Shanghai, China, in 2009. From 2009 to
2010, he was a Post-Doctoral Research Fellow
with the University of Waterloo, Waterloo, ON,
Canada. Since 2011, he has been with the College
of Information Science and Electronic Engineer-
ing, Zhejiang University, where he is currently an
Associate Professor. He is also with the Zhejiang

Provincial Key Laboratory of Information Processing and Communication
Networks, Hangzhou, SUTD-ZJU IDEA, Hangzhou, and the Zhejiang Labo-
ratory, Hangzhou. His current research interests include cross-layer protocol
design, resource allocation, and the quality-of-service provisioning in wireless
networks. He has served as a Technical Program Committee Member of
various international conferences, including the IEEE Global Communica-
tions Conference, the IEEE International Conference on Communications,
the IEEE Wireless Communications and Networking Conference, and the
IEEE Vehicular Technology Conference (VTC). He co-received the Best
Industry Paper Award from the 2011 IEEE WCNC held in Quintana Roo,
Mexico. He is currently an Editor of the IEEE TRANSACTIONS ON GREEN

COMMUNICATIONS AND NETWORKING.

Aiping Huang (Senior Member, IEEE) graduated
from the Nanjing Institute of Posts and Telecom-
munications, China, in 1977, and received the M.S.
degree from the Nanjing Institute of Technology
(Southeast University), China, in 1982, and the
Licentiate of Technology degree from the Helsinki
University of Technology (HUT), Finland, in 1997.

She was an Engineer with the Design and Research
Institute of Posts and Telecommunications Ministry,
China, from 1977 to 1980. From 1982 to 1994, she
was with Zhejiang University (ZJU), China, as an

Assistant Professor and then an Associate Professor. She was a Visiting
Scholar and a Research Scientist with HUT (Aalto University) from 1994 to
1998. Since 1998, she has been a Full Professor with ZJU. She has published a
book and more than 160 articles in refereed journals and conferences on com-
munications and networks and signal processing. Her current research interests
include heterogeneous networks, performance analysis, and cross-layer design,
planning, and optimization of cellular mobile communication networks. She
serves as the Vice Chair for the IEEE ComSoc Nanjing Chapter.

7896 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 12, DECEMBER 2020

Qiang Ye (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
the University of Waterloo, Canada, in 2016. He was
a Post-Doctoral Fellow and a Research Associate
with the University of Waterloo from Decem-
ber 2016 to September 2019. He has been an
Assistant Professor with the Department of Elec-
trical and Computer Engineering and Technology,
Minnesota State University, Mankato, USA, since
September 2019. He has published more than
40 technical articles in different international jour-

nals/conferences. His current research interests include artificial intelligence
and machine learning for future networking, 5G and beyond networks,
software-defined networking and network function virtualization, network
slicing, and the Internet of Things. He served as a Technical Program Com-
mittee (TPC) Member for several international conferences, including the
IEEE GLOBECOM’20, VTC’17, VTC’20, and ICPADS’20. He serves as an
Editor for the International Journal of Distributed Sensor Networks (SAGE
Publishing) and Wireless Networks (SpringerNature) and as an Area Editor
for the Encyclopedia of Wireless Networks (SpringerNature).

Weihua Zhuang (Fellow, IEEE) has been with the
Department of Electrical and Computer Engineer-
ing, University of Waterloo, Canada, since 1993,
where she is currently a Professor and a Tier I
Canada Research Chair of wireless communication
networks. She is a fellow of the Royal Society
of Canada, the Canadian Academy of Engineering,
and the Engineering Institute of Canada. She is an
Elected Member of the Board of Governors and the
VP Publications of the IEEE Vehicular Technology
Society. She was a recipient of the 2017 Technical

Recognition Award from the IEEE Communications Society Ad Hoc and
Sensor Networks Technical Committee and several best paper awards from
IEEE conferences. She was the Technical Program Chair/Co-Chair for the
IEEE VTC Fall 2016 and Fall 2017, the Editor-in-Chief of the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY from 2007 to 2013, and an
IEEE Communications Society Distinguished Lecturer from 2008 to 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

