
Reinforcement Learning-based Computing and
Transmission Scheduling for LTE-U-Enabled IoT

Hongli He∗, Hangguan Shan∗, Aiping Huang∗, Qiang Ye†, Weihua Zhuang†
∗College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China

{hongli he, hshan, aiping.huang}@zju.edu.cn
†Department of Electrical & Computer Engineering, University of Waterloo, Canada

{q6ye, wzhuang}@uwaterloo.ca

Abstract—To facilitate the private deployment of industrial
Internet-of-Things (IoT), applying LTE in unlicensed spectrum
(LTE-U) is a promising approach, which both tackles the problem
of lacking licensed spectrum and leverages an LTE protocol to
meet stringent quality-of-service (QoS) requirements via cen-
tralized control. In this paper, we investigate the computing
offloading problem in an LTE-U-enabled IoT network, where
the task on an IoT device is either carried out locally or is
offloaded to the LTE-U base station (BS). The offloading policy
is formulated as an optimization problem to maximize the long
term discounted reward, considering both task completion profit
and the task completion delay. Due to the stochastic task arrival
process at each device and the Wi-Fi’s contention-based random
access, we reformulate the computing offloading problem into a
Q-learning problem and solve it by a deep learning network-
based approximation method. Simulation results show that the
proposed scheme considerably enhances the system performance.

Index Terms—Mobile edge computing, offloading, IoT, LTE-U,
deep reinforcement learning.

I. INTRODUCTION

Over the last decade, the soaring proliferation of Internet-of-
Things (IoT) has attracted great attention from both academia
and industry. IoT is to integrate a large number of miscel-
laneous devices, including vehicles, wearable items, home
appliances, and sensors to achieve ubiquitous information
access and seamless communication interaction [1]. Benefiting
from the IoT paradigm, various new applications have been
developed, encompassing smart grids, virtual power plants,
smart homes, intelligent transportation, and smart cities [2][3].

Due to hardware constraints of IoT devices, including lim-
ited computational and energy resources, fulfilling computa-
tionally intensive tasks for intelligent IoT applications requires
remote execution from computationally powerful clouds. How-
ever, the cloud computing resources are normally deployed far
from the end-devices, resulting in high communication delay
and substantial stress on backhaul and fronthaul links [4]. To
this end, shifting some of the tasks back to the vicinity of IoT
devices is a potential approach to address these issues, which
facilitates the advent of the edge computing. By making the
computing resources available in the proximity of the end-
devices, the computation-intensive data can be processed near
the IoT devices, promising computation augmenting services
with short latency [5].

However, it is difficult for some non-cellular-carrier en-
terprises to reap these benefits. In deploying industrial IoT,
private organizations want to take advantage of the central-
ized control pattern of the cellular network; However, they

are not authorized to use the licensed spectrum. Therefore,
applying the LTE-like technology to a private industrial IoT
network is a promising solution, especially when there are no
available licensed radio resources. There are existing studies
on the deployment of private industrial IoT systems with
unlicensed spectrum and the edge computing in IoT networks.
Two technologies of low-power WAN (LPWAN) operating
in unlicensed spectrum, SigFox and LoRa (Long Range), are
evaluated and compared in terms of coverage range, frequency
bands, and data rates in [6]. In [7], the challenges of applying
the edge computing in the unlicensed spectrum are identified,
in terms of security, reliability, and network coordination. In
[8], a scheduling algorithm tolerant to out-of-date network
knowledge is proposed to relieve the tasks’ feedback in the
edge computing for an IoT network. The proposed framework
achieves an asymptotically optimality with only partial infor-
mation via applying both the perturbed Lyapunov function
and the knapsack problem modelling. In [8], an online task
offloading algorithm with Lyapunov optimization is proposed
to handle the tradeoff in terms of average response time,
average monetary, and energy costs in the IoT. However, the
dynamic channel availability and the on-off channel access
scheme in the LTE-U network will have great impact on the
deployment of edge computing system for the IoT, which
requires further studies.

In this paper, we consider the tasks offloading problem in
an LTE-U-enabled IoT network, where high dynamics of the
channel availability pose significant challenges on the reliable
data transmission and delay evaluation. Taking account of the
stochastic arrival process of computing tasks and the highly
fluctuant channel availability, we formulate the problem as
a Markov decision based (MDP)-framework and derive the
state evolution equation under different policies. In order to
reduce the exponential space complexity due to the high
dimension of the states in the traditional tabular method, we
utilize a deep learning network to approximate the Q values
of different state-action pairs to learn the optimal policy.
Simulation results demonstrate that our proposed algorithm
considerably improves the system performance.

The remainder of the paper is organized as follows. System
model is presented in Section II. In Section III, we formulate
the edge computing offloading problem into a deep Q-learning
(DQL) framework to decide where the new task should be
executed. Numerical results are given in Section IV, followed
by conclusions in Section V.

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

Wi-Fi

Wi-Fi

LTE-U BS

Task B

Task C

TaskA

Fig. 1. The deployment scenario.

II. SYSTEM MODEL

A. Deployment Scenario

We consider a mobile edge computing network, consisting
of one LTE-U base station (BS) and K LTE-U-enabled IoT
devices, illustrated in Fig. 1. Let K = {1, 2, ...,K} be the
set of indexes of the K devices, and the BS be indexed by 0.
The BS operates in an unlicensed spectrum and there is a band
with bandwidth B dedicated for the edge computing offloading
service. The BS has both edge computing and wireless trans-
mission functions to serve the devices. The transmission and
computing process evolves over time according to a slotted
structure indexed by t (t > 0) and the slot length is τ .
The devices need to keep performing some tasks based on
the steady stream of data collected from the environment.
Because the devices are usually designed for some specific
services, we consider each device only performs one certain
kind of task [9]. The data structure of different tasks to be
processed keeps the same in the temporal order for one device,
but varies among different devices. Due to limited computing
capacity of the devices and the various delay requirements for
different real-time applications, some computing tasks should
be offloaded to the BS which has a much more powerful
computing capability. As LTE-U is a technology deployed
in an unlicensed spectrum, it is required to fairly share with
the other legacy networks, e.g., Wi-Fi, which introduce some
inevitable interference to the LTE-U networks. Let ϑ(t) denote
an abstract of the external effect (including the number of
of active Wi-Fi stations (STAs), their transmission power,
and their traffic load etc.) on the transmission of the LTE-
U network in the tth slot. The interference at the BS receiver
is represented as stochastic function f(ϑ(t)). If the channel
is available for the LTE-U network, the value of f(ϑ(t))
is known at the beginning of each slot via the reporting
mechanism in LTE and remains the same in the whole slot.

B. Task Model

The task generated from device k is denoted as Mk ,
(Lk, Rk, Xk), where Lk is the task input-data size (in the
unit of bit), Rk is the task completion reward, and Xk is
the computation workload/intensity (normally in CPU cycles
per bit) [10]. We consider a linear dependancy between two
neighbouring tasks generated from a device, i.e., a subsequent
task can be performed upon the completion of its previous task.
We assume that at most one task is generated at a device within
each time slot, since the duration of each time slot is set to a

small value. The probability of a new task arriving at device
k within slot t follows a Bernoulli distribution with parameter
pk(t). We denote the computing capacity (in the unit of cycles
per second) of device k as Ck (k ∈ K), and C0 represents the
computing capacity of the BS, which is much more powerful
than those of its associated devices, i.e., C0 >> Ck,∀k ∈ K.

C. Transmission Model

Since the unlicensed spectrum is shared between LTE-U
and Wi-Fi network to guarantee the fairness of the channel
utilization, the listen-before-talk (LBT) mechanism is adopted
for the LTE-U network to mitigate the transmission inter-
ference with Wi-Fi users [11]. Considering the flexibility of
adjusting the interaction between the LTE-U network and
the Wi-Fi network, Category 4 channel access scheme (LBT
with random back-off and a contention window of variable
size) is adopted in the LTE-U network to sense and occupy
the unlicensed spectrum resources [12]. The channel access
process of the LTE-U network is initiated by the BS and is
described by a two-stage backoff process, sC = (a(t), b(t)),
where a(t) is the contention stage and b(t) is the backoff
counter (t > 0). When the LTE-U intends to access the
unlicensed channel, the BS first generates a backoff counter
b(t) randomly between 0 and the initial backoff window size
W0, and then begins to sense the channel at the beginning
of each slot. If the channel is idle, its backoff counter b(t) is
reduced by 1; Otherwise the counter keeps frozen. Only when
the backoff counter b(t) is decreased to 0, can the LTE-U
BS accesses the unlicensed channel and schedules the devices
to do their uplink transmission. Once transmission collisions
happen with other networks’ devices, the backoff stage of
the BS a(t) is increased by one, and the backoff counter is
randomly re-selected in a doubled window size. It is noted
that other channel access schemes (e.g., category 2 and 3 in
[12]) can also be applied if the channel process state sC in
the transmission modelling is modified correspondingly. When
the channel is available for the LTE-U network, the bandwidth
resources are equally shared among the associated devices and
the uplink transmission rate of the device k at slot t is given
by

rk(t) =
B

K
log

(
1 +

pk|hk(t)|2

σ2 + f(ϑ(t))

)
(1)

where pk is the fixed transmission power of device k, hk(t) is
the channel gain, including the path loss and Rayleigh fading,
from the device k to the BS, and σ2 is the noise power.

D. Offloading Policy and System Status

When a new task is generated at device k, the task is
either computed locally or offloaded to the BS, which is
decided by the controller in the BS. Let Ak(t) = 0 denote
the action that the new task is to be processed by device k
in slot t + 1 and Ak(t) = 1 denote the action that the new
task is to be processed by the BS. The decision epochs for
task processing will be discussed in detail in Section II-E.
Based on the different task offloading policies, the device-
dependent task status at slot t is described by vector z(t) =
(z1(t), z2(t), ..., zk(t), ..., zK(t)), zk(t) ∈ {0, 1, 2, 3, 4}, k ∈
K, where in slot t, zk(t) = 0 indicates that the task of device

k is scheduled locally for processing (including the case that
there is no task to process); zk(t) = 1 indicates that the input
data of the task of device k is being forwarded to the BS;
zk(t) = 2 denotes that the task of device k is waiting in the
mobile edge computing queue; zk(t) = 3 denotes that the
task of device k is being computed at the BS; zk(t) = 4
means that the task of device k is completed at the BS and
is waiting for transmitting the output data. The task status of
all devices is updated at the beginning of each time slot. The
status transitions depend on the availability of transmission
resources and computing resources, which will be elaborated
in the following subsections.

E. Task Buffer

Each device has a task buffer containing all the tasks to be
scheduled. We use Bk(t) to represent the number of tasks in
the task buffer at the beginning of time slot t. The evolution
of the buffer size of device k depends on both the new task
arrival and the in-service task processing, and its update is
described as

B(t+ 1) = B′
k(t) +Ok(t) (2)

where the B′
k(t) is the updated buffer size due to the task

processing and Ok(t) = 1 with probability pk(t) represents
that a new task is generated within slot t, otherwise Ok(t) = 0
with probability (1−pk(t)). The update of the buffer size due
to in-service task processing at device k is given by

B′
k(t) =

max

{
Bk(t)−

Ckτ

LkXk
,⌊Bk(t)⌋−

}
, ifzk(t) = 0

Bk(t)− 1, ifzk(t) = 4 and b(t) = 0

Bk(t), otherwise
(3)

where ⌊Bk(t)⌋− is the modified floor function mapping to
the greatest integer less than itself. The first equation in
(3) represents the case that the task of device k is locally
processed, where the buffer size of device k is reduced by the
normalized fraction at the end of slot t, but the subsequent
task at device k cannot be processed in the same slot, i.e.,
B′

k(t) ≥ ⌊Bk(t)⌋−. The second equation in (3) indicates the
case that the task of device k is completed at the BS, where
the buffer size of device k is only updated after transmitting
the output data back when the channel is available.

The decision epochs for device k can be divided into two
cases. One is that there is a task completed (either is completed
locally or obtain the output data from the BS) and the task
buffer size is still larger than 0, which is denoted by Ek =
{t|t ∈ T 0

k , Bk(t + 1) > 0}, with T 0
k being the set of time

slots in which some tasks of device k are completed, i.e.,
T 0
k = {t|B′

k(t) ∈ Z, B′
k(t) < Bk(t)}; The other is that

the task buffer of device k is empty at the beginning of slot
t but a new task arrives within slot t, which is denoted by
Ek = {Bk(t) = 0, Ok(t) > 0}. Therefore, the overall decision
epochs for device k can be denoted as Ek = Ek

∪
Ek. Note

that the task scheduling decision epochs are logically after the
new task arrival when they are in the same time slot.

F. Local Transmission Queue

When a task of device k is decided to be offloaded to the BS,
the device should transmit its input data of size Lk to the BS.
The normalized transmission queue length (to Lk) of device
k at the beginning of time slot t is denoted by Qk(t). Since
the tasks at the same device are processed sequentially and
device k only starts to transmit the input data of a subsequent
task after receiving the completely processed output data of
the previous task (from the BS or locally), the value of the
transmission queue length cannot exceed 1, i.e., Qk(t) ∈ [0, 1].
The transmission queue size of device k is updated by

Qk(t+ 1) =
max

{
Qk(t)−

rk(t)τ

Lk
, 0

}
, if zk(t)=1 and b(t)=0

Qk(t) + 1(Ak(t) = 1), if t ∈ Ek
Qk(t), otherwise

(4)

where 1(·) is the indicator function. The first equation in (4)
indicates that the task of device k transmits its input data
to the BS when the channel is available and its transmission
queue size is reduced by the normalized fraction; The second
equation in (4) indicates that, when the slot is a decision epoch
of device k and the task is to be offloaded to the BS, the
transmission queue of device k should be increased by one.

Upon completing the transmission of the device k’s input
data, the task of device k is put into the edge computing queue
and we denote the transmission completion epochs as T 1

k =
{t|Qk(t+ 1) = 0, Qk(t) > 0} and T 1 =

∪
k∈K

T 1
k .

G. Edge Computing Queue

The tasks in the BS edge computing queue are served in
a first-come-first-serve order, and therefore the priority value
Pk(t) (k ∈ K) is used to specify the service order of tasks in
the queue at the beginning of slot t. When a new task is put
into the queue, the priority value of all the tasks in the queue
(including the new task) is increased by one, which guarantees
that the earlier tasks can be served with a higher priority. This
process is denoted by

P k(t)=

{
Pk(t) + 1, if t ∈ T 1 and k ∈ K (t)

Pk(t), otherwise
(5)

where K is the set of devices whose tasks are in the edge
computing queue, i.e., K (t) = {k|Qk(t) > 0 or t ∈ T 1

k }.
Moreover, in order to model the edge computing process for
the task of device k, the decimal part of Pk(t) is denoted as the
normalized remaining fraction (to LkXk) of device k’s task
being processed at the BS. The impact of edge computing on
the priority values of different devices is described as

P̂k(t) =max

{
P k(t)−

C0τ

LkXk
, ⌊P k(t)⌋

−
}
, if zk(t) = 3

P k(t), otherwise
(6)

where the first equation indicates that the task of device k is
being processed at the BS and its remaining fraction of the

task is reduced by the normalized completed part. In addition,
once a task of device k is completed by the BS in slot t, its
corresponding priority is reset to zero, indicating the release
of the computing resources, denoted by

Pk(t+ 1) =

{
0, if P̂k(t) ∈ Z and zk(t) = 3

Q̂k, otherwise.
(7)

The task completion epochs of device k are denoted as
set T 2

k =
{
t|P̂k(t) ∈ Z, zk(t) = 3

}
. Since the output data

size is normally much smaller than the input data size, the
transmission of the output data for all tasks is assumed to
take only one time slot [13].

H. Scheduling Epochs

One scheduling objective is to minimize the average delay
of each task. Since the delay from a task arrival to its
scheduling cannot be controlled directly, we only take into
account the delay from the task scheduling to its completion
(when locally computed) or the receiving of the output data
(when offloaded to the BS). Therefore, the scheduling epoch
of the current task of device k in slot t is denoted by Dk(t)
and it evolves as

Dk(t+ 1) =

{
t+ 1, if t ∈ Ek
Dk(t), otherwise

(8)

where the first equation indicates that a new task of device k
is scheduled at the end of slot t and therefore the index of
the next time slot is recorded in the task scheduling epoch
memory.

III. PROBLEM FORMULATION

In order to capture the highly dynamic task states at different
devices, we formulate the computing offloading problem as
an MDP-based framework which aims at maximizing the
system reward. Basically an MDP problem can be cast into
four elements, i.e., the state space S , decision space A, state
transition probabilities function P := S × A × S → R, and
reward function R := S ×A → R.

The system state is described by a tuple, s(t) =
(z(t),B(t),Q(t),P (t),D(t), a(t), b(t)), where B(t),Q(t),
P (t), and D(t) are the vectors respectively representing
the values of the buffer size, transmission queue size, edge
computing priority, and scheduling epochs of all K devices.
Note that state s(t) captures the values at the beginning of
slot t.

A decision is made only in a decision epoch, i.e., t ∈ E =∪
k

Ek, and is denoted as A(t) = (A1(t), A2(t), ..., AK(t)). Its

feasible space is related to the current state and is calculated
as

A(t) =

⊗∏
Ak(t) (9)

where

⊗∏
is the cumulative Cartesian products of each

task’s feasible action space Ak(t). In (9), Ak(t) = 1(t ∈
T A
k){0, 1}

∪
1(t /∈ T A

k){0} indicates that when it is a decision
epoch for device k, it can choose Ak(t) ∈ {0, 1}, otherwise it
can only use the defaulted value, i.e., Ak(t) ∈ {0}.

The state transitions include three aspects: The first one is
the update of B(t), Q(t), P (t), and D(t), discussed in the
preceding section; The second one is to update the channel
access process and transition probability P (at+1, bt+1|at, bt)
decided by the external environment; The third part is the
transitions of the task status, given by

zk(t+ 1) =

Ak(t) if t ∈ Ek
2 if zk(t) = 1 and t ∈ T 1

k and k ̸= argmax
k∈K

Pk(t+ 1)

3 if zk(t) = 1 and t ∈ T 1
k and k = argmax

k∈K
Pk(t+ 1)

3 if zk(t) = 2 and t∈ T 2 and k = argmax
k∈K

Pk(t+ 1)

4 if zk(t) = 3 and t ∈ T 2
k

zk(t) otherwise.
(10)

The first case in (10) indicates that the task status transits into
the local computing status (if Ak(t) = 0) or the transmission
status (if Ak(t) = 1) at the beginning of slot t + 1 after
deciding where to process the next task; The second case
denotes that the task status transits from transmission status
into the edge computing queue waiting status when there
are other tasks waiting in the edge computing queue; The
third case indicates that the task directly transits into the
edge computing status after the transmission because the edge
computing queue is empty; The forth case indicates that the
task status transits from edge computing queue waiting status
to the edge computing status when other tasks are completed
(i.e., t ∈ T 2 =

∪
k∈K

T 2
k), and has the highest queue priority

(i.e., k = argmax
k∈K

Pk(t+ 1)); The fifth case indicates that
the completed task of device k begins to wait at the BS for
the channel availability for transmitting its output data back
to the device k.

After each task is completed, a reward is achieved for the
network, and the delay1 is required to be low. Therefore the
reward function is defined as

R(s(t))=
∑
k∈K

[
ηRk + (1− η)(t−QD

k (t))
]
1(tk ∈ T 0

k) (11)

where weight η ∈ [0, 1] is a parameter to adjust the impor-
tance preference between the task reward and the delay. Our
objective is to maximize the cumulative discounted reward by
choosing the optimal action in each time slot based on the
given state. Therefore, the problem is formulated as

max
A0

∞∑
t=0

γtR(st,At) (12)

where γ is the discounted factor, and for brevity, the time
index t is written as the subscript of the state and action in
the following context.

If necessary network information is known as a priori, the
computing offloading problem can be formulated as an MDP

1The delay is defined as the duration from the instant that a task arrives
at the task queue till the instant that the task processing is completed and
received by the device.

with four complete elements and be solved via traditional
value iteration algorithms or policy iteration algorithms [14].
Although we can describe the temporal interactions among
these states, the stochastic task arrival process at each device
and the uncontrollable random access from Wi-Fi devices to
the unlicensed channel make the overall state transition proba-
bilities inaccessible. Therefore, we leverage the reinforcement
learning algorithm to solve this problem with partially known
network information.

Q-learning is a common model-free method of reinforce-
ment learning which can learn the optimal policy via suc-
cessively interacting with the environment and updating its
knowledge from the reward feedback [15]. The basic idea is
to improve evaluations of the quality of particular actions at
specific states based on the Bellman equation, given by,

Q(st,At) =

(1−β)Q(st,at) + β
(
R(st,At) + γmax

A
Q(st+1,A)

)
(13)

where β is the learning rate controling the learning speed and
accuracy. However, the traditional tabular Q-learning has the
curse of dimension problem, resulting in the large memory
requirement which increases exponentially with the state and
action dimensions. To overcome this high space complexity,
we adopt a deep Q-learning method [16] to approximate the
corresponding Q values of state-action pairs, i.e.,

Q(s,A) ≈ Q̂(s,A; θ) (14)

where Q̂(·; θ) is the deep learning network function with
structure and parameter denoted by θ. The detailed algorithm
is given in Algorithm 1.

Algorithm 1 DQL algorithm for computing offloading
Initialize:
Set replay memory D to capacity N ;
Randomly set action-value functionQwith weight θ;
Set action-value function Q̂with weight θ′ = θ;
Initialize state s0;
while 1 do

if t ∈
∪
k

T A
k then

With probability ϵ to select a random action At,
otherwise select At = argmax

A
Q(st,A; θ);

Execute the action and observe the reward of the
next state st+1;

else
Set At = 0;

end if
Store the transition (st,At, Rt, st+1) in D;
Sample random minibatch of transitions (sj ,Aj ,Rj ,sj+1)
from D;
Set yj = Rj + γmax

A′
(Q̂(sj+1,A

′; θ′));

Perform a gradient decent step on |yj −Q(sj ,Aj ; θ)|2
with respect to θ ;
t = t+ 1;
Every C steps set θ′ = θ;

end while

The proposed algorithm is executed by the LTE-U BS which
can collect the system states via the reporting scheme with
little transmission resource consumption. There are two deep
learning networks with parameter θ and θ′, respectively. The
first one is to select action by comparing their Q values while
the second one is to calculate the target Q values yj via the
Bellman equation. The two separated deep learning networks
can reduce the oscillations or divergence of the policy. Variable
ϵ is set to balance the exploitation and exploration for the
DQL method. When the system reaches a decision epoch,
it selects the random policy with probability ϵ, or selects
the policy that maximizes the corresponding prediction Q
value with parameter θ. After the replay memory is updated,
the deep learning neural network for approximation is also
updated based on the gradient decent of the random sampled
minibatch, aiming at minimizing the square error between the
approximated values and the updated values from the Bellman
function.

IV. PERFORMANCE EVALUATION

In this section, simulation results are presented to investi-
gate the performance of the proposed computing offloading
scheme, in comparison with a benchmark. We consider an
LTE-U network consisting of a BS with the coverage radius
of 100m. There are 10 randomly distributed IoT devices
associated with the BS. The LTE-U network is operated on
the band of 5GHz and the distance-dependant path loss model
is given by [17]

PL(R) = 38.46 log10(R) + 20 log10(R) + 0.7R (15)

and the small-scale fading gain is also considered, which
follows an exponential distribution with unit mean. The noise
power spectrum density is -174dBm/Hz. The dedicated band-
width for the computing offloading service is 5MHz and is
equally allocated to all devices. Meanwhile, there are also 10
Wi-Fi STAs randomly located in the network coverage area,
employing the IEEE 802.11ac distributed coordination func-
tion (DCF) protocol for channel access. The task input data
size of different devices (Lk) follows a uniform distribution
from 15 Kbits to 20 Kbits. The workloads for all devices are
set as 200 cycles/bit. The length of each slot is 1ms. The
reward of each device’s completed task is a random integer
between 1 and 3. We assume that the average task arrival
rates at all devices are 0.18 task/s. The defaulted weight η is
set as 0.9. We apply a four-layer deep learning network with
(48, 48, 24, 24) neuro units, to approximate the Q values. The
size of the minibatch for the stochastic gradient decent in the
deep learning networks is set as 32. All the simulation results
are performed for 76800 time slots.

We first compare our algorithm with the random policy
which indicates that a new task is either executed locally
or offloaded to the BS with probability 0.5. Fig. 2 shows
the performance comparison between the DQL with different
learning rate α (which is the learning rates in the deep learning
network, instead of that in (13)) and the random policy. It can
be seen that all the DQL algorithms can nearly converge to
a much higher reward level than the random policy (which
fluctuates significantly between 1.3-1.6 due to the stochastic

0 800 1600 2400
Number of updations of the DQL network

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

A
ve

ra
ge

 r
ew

ar
d

va
lu

e
DQL with = 10-5

DQL with = 10-4

DQL with = 10-3

Random policy

-10 0 10

1.4

1.45

1.5

1.55

Fig. 2. The convergence process of DQL.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18
Arrival rate of task in each IoT device

1.2

1.4

1.6

1.8

2

2.2

2.4

A
ve

ra
ge

 r
ew

ar
d

va
lu

e
in

 e
ac

h
sl

ot

DQL
Random policy

Fig. 3. The reward comparison between DQL and Random policy versus task
arrival rate.

decision) after only 800 updations, because they exploit the
channel status and task status to decide to whether perform
the task locally or offload it to the BS. The impact of different
learning rates is also shown on the reward curve. When the
learning rate is high (e.g., 10−3), it has better performance
than that with small learning rates in the initial training phase.
However, a high learning rate degrades the stability of the
learning process even in the converging state, which is also a
challenging problem in DQL.

In Fig. 3, given different task arrival rates, we compare
the performance of the proposed algorithm with the random
policy with a 95% confidence interval. Our proposed algorithm
always outperforms the benchmark with a varying task arrival
rate. The overall performance of our proposed algorithm
increases with the task arrival rate due to a higher probability
that the computing resources are occupied by the devices’
tasks.

V. CONCLUSION

In this paper, we propose a reinforcement-learning-based
method to solve the computing offloading problem for the
LTE-U-enabled IoT networks. Both the task completion re-
ward and the task computing delay are considered in this
framework. To resolve the exponential space complexity due
to the high dimensions of the states, we utilize a deep
learning method to approximate the Q values of different
state-action pairs, instead of the traditional tabular method.
Simulation results demonstrate that our proposed algorithm
considerably improves the system performance in terms of the
task completion reward and the task completion delay.

ACKNOWLEDGMENT

This work was supported in part by the research grant from
the Natural Sciences and Engineering Research Council of
Canada, in part by the National Natural Science Foundation
Program of China under Grants 61671407, 61771427, and
U1709214, and in part by the Zhejiang Provincial Public
Technology Research of China under Grant 2016C31063, and
China Scholarship Council.

REFERENCES

[1] Q. Ye and W. Zhuang, “Distributed and adaptive medium access
control for Internet-of-Things-enabled mobile networks,” IEEE
Internet of Things Journal, vol. 4, no. 2, pp. 446–460, Apr.
2017.

[2] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, and X. S. Shen,
“Security and privacy in smart city applications: Challenges and
solutions,” IEEE Commun. Mag., vol. 55, no. 1, pp. 122–129,
Jan. 2017.

[3] Q. Ye and W. Zhuang, “Token-based adaptive MAC for a
two-hop Internet-of-Things enabled MANET,” IEEE Internet
of Things Journal, vol. 4, no. 5, pp. 1739–1753, Oct. 2017.

[4] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge:
A scalable IoT architecture based on transparent computing,”
IEEE Network, vol. 31, no. 5, pp. 96–105, Aug. 2017.

[5] X. Chen, Q. Shi, L. Yang, and J. Xu, “Thriftyedge: Resource-
efficient edge computing for intelligent IoT applications,” IEEE
Network, vol. 32, no. 1, pp. 61–65, Jan. 2018.

[6] W. Yang, M. Wang, J. Zhang, J. Zou, M. Hua, T. Xia, and
X. You, “Narrowband wireless access for low-power massive
Internet of Things: A bandwidth perspective,” IEEE Wireless
Commun., vol. 24, no. 3, pp. 138–145, Jun. 2017.

[7] B. P. Rimal, D. P. Van, and M. Maier, “Mobile edge computing
empowered fiber-wireless access networks in the 5G era,” IEEE
Commun. Mag., vol. 55, no. 2, pp. 192–200, Feb. 2017.

[8] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis,
and A. Paulraj, “Optimal schedule of mobile edge computing
for internet of things using partial information,” IEEE J. Sel.
Areas Commun., vol. 35, no. 11, pp. 2606–2615, Nov 2017.

[9] A. M. Haubenwaller and K. Vandikas, “Computations on the
edge in the Internet of things,” Procedia Computer Science,
vol. 52, pp. 29 – 34, May 2015.

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,
“A survey on mobile edge computing: The communication
perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp.
2322–2358, Aug. 2017.

[11] H. He, H. Shan, A. Huang, L. X. Cai, and T. Q. S. Quek,
“Proportional fairness-based resource allocation for LTE-U co-
existing with Wi-Fi,” IEEE Access, vol. 5, pp. 4720–4731, Apr.
2017.

[12] 3GPP TR 36.889, “Study on licensed-assisted access to unli-
censed spectrum,” May 2015.

[13] X. Chen, “Decentralized computation offloading game for mo-
bile cloud computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 4, pp. 974–983, Apr. 2015.

[14] H. C. Tijms, A First Course in Stochastic Models. John Wiley
and sons, 2003.

[15] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, p. 529, Feb.
2015.

[17] F. Liu, E. Bala, E. Erkip, M. C. Beluri, and R. Yang, “Small-
cell traffic balancing over licensed and unlicensed bands,” IEEE
Trans. Veh. Technol., vol. 64, no. 12, pp. 5850–5865, Dec. 2015.

