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Abstract
Building digital twins (DTs) in industrial Internet-

of-Things (IIoT) is challenging, especially consider-
ing complex and large-scale network architectures, 
real-time data requirements, and computational 
demands. Traditional modeling-based approaches, 
relying on either small datasets with physics-based 
models or large datasets processed through arti-
ficial intelligence (AI) techniques, face limitations 
in adaptability and accuracy. In this article, we 
propose a hybrid DT framework to address these 
challenges, which integrates both physics-based 
models and AI techniques. The physics-based 
models, grounded in communication, computing, 
and caching (3C) resources, ensure alignment 
with known system behaviors and predetermined 
assumptions, while the AI components dynamically 
adapt to real-time network environments, allowing 
the DT to learn from the evolving environments. 
The proposed DT framework incorporates layers 
that support real-time data acquisition, data pro-
cessing, and decision-making through continuous 
feedback, enhancing system performance and 
enabling proactive maintenance, quality control, 
and optimization. A hybrid model-based case study 
demonstrates that the proposed framework can 
reduce packet queuing size and improve network 
performance under varying network load and out-
age conditions. Finally, open research issues for DT 
in IIoT are discussed.

Introduction
The industrial Internet-of-Things (IIoT), as one of 
the major technological advancements toward 
industrial automation, focuses on an integration 
of interconnected devices across multiple sec-
tors to boost efficiency, reliability, and data-driven 
decision-making [1]. Leveraging cyber-physical 
systems, advanced data analytics, and cloud com-
puting, IIoT enhances production processes and 
product quality through continuous monitoring 
and predictive maintenance [2, 3]. To accommo-
date the extensive data generated by sensors and 
devices, IIoT relies on robust connectivity solu-
tions that enable rapid data transfer across the 
industrial environment, from on-site machinery 
to centralized cloud-based analytics. These net-
works require high reliability, minimal latency, and 
stringent security measures to protect sensitive 
industrial data.

However, the challenges of IIoT are manifold,  
caused by the intricate dynamics of large-scale 
network architectures, real-time data demands, 
and advanced computational requirements [4, 5]. 
Compounding these challenges, IIoT is vulnera-
ble to various bias issues, including observation, 
inductive, and learning biases, which arise during 
data collection and processing stages, as shown 
in Fig. 1. As IIoT grows increasingly complex, 
characterized by ultra-dense and heterogeneous 
architectures involving a large number of devic-
es, managing such complex structures becomes 
exceedingly difficult [5]. First, this complexity can 
lead to observation bias caused by measurement 
inaccuracies or sampling limitations, leading to 
data that poorly reflects the actual network state. 
As these networks generate vast amounts of real-
time data, any inaccuracies in data collection can 
compromise the quality of information available 
for analysis and decision-making [6]. Moreover, 
the necessity for rapid data processing in IIoT 
intensifies the issue of inductive bias, which refers 
to the assumptions or predefined rules that artifi-
cial intelligence (AI) algorithms use to make pre-
dictions about future data patterns. Challenges 
arise with inductive bias in IIoT due to the vari-
ability of industrial environments. If the training 
data used by machine learning models does not 
fully represent the diverse conditions in large-scale 
IIoT, the inductive bias can lead to incorrect gen-
eralizations. This is particularly critical in applica-
tions requiring real-time data, such as autonomous 
vehicles, where erroneous predictions can have 
severe consequences. Furthermore, learning bias 
within AI-driven network management systems 
can lead to resource allocations that favor subop-
timal solutions, misaligning with real-world opera-
tional needs [7, 8]. For instance, in IIoT, learning 
bias may result in resource allocation strategies 
that prioritize specific data patterns while ignoring 
others or may favor responses that work well with 
historical data but become ineffective under new 
conditions. Consequently, as IIoT continues to 
grow in complexity, traditional models struggle to 
balance accuracy with computational feasibility, 
rendering them less effective for real-time service 
provisioning and network deployment.

Digital twins (DTs) offer a potential way of 
bridging the gap between complex physics-based 
models and intelligent, data-driven models to tack-
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le IIoT challenges and bias issues [4]. As a virtual 
counterpart of a physics-based system, process, 
or service, a DT enables real-time predictions 
and informed decision-making without impacting 
physical operations. In the IIoT domain, DTs can 
optimize industrial operations, anticipate mainte-
nance needs, and guide decision-making process-
es. Recent research has explored DT applications 
in IIoT. Tao et al. reviewed DT use cases across 
industries, emphasizing their role in smart man-
ufacturing and outlining future integration chal-
lenges [9]. Okegbile et al. highlighted AI and 
blockchain’s role in advancing DT capabilities for 
real-time monitoring and predictive maintenance, 
introducing AI techniques such as transfer and 
federated learning [10]. Yu et al. proposed digital 
twin edge networks (DTENs), utilizing federated 
learning to enhance privacy and address resource 
constraints in DT models of IoT devices [11]. 
These studies primarily focus on advancing DT 
capabilities with AI, blockchain, and refined net-
work architectures to better align virtual models 
with physical counterparts. The scalability issues 
of their proposed solutions can be further investi-
gated in real-world industrial environments, which 
often involve diverse system configurations that 
may not align perfectly with the theoretical mod-
els. New modeling of DTs needs to be established 
by developing dynamic virtual representations of 
physics-based systems or services and, through 
the integration of AI techniques to improve pre-
diction accuracy, resource management, and 
decision-making, thereby facilitating continuous 
learning and adaptation to address the diversity 
and dynamics in IIoT services.

However, existing methodologies are insuffi-
cient to meet the modeling requirements of DTs, 
much less overcome the aforementioned chal-
lenges, particularly the limitations arising from 
relying on small datasets coupled with extensive 
physics-based modeling and large datasets pro-
cessed by AI techniques, as shown in Fig. 2. First, 
physics-based models developed with predefined 
rules and parameters frequently demonstrate 
limitations in accuracy when operational data is 
insufficient. This constraint presents challenges 
in effectively monitoring system variations and 

responding to unforeseen operational events, 
including system anomalies, mechanical faults, 
and component failures. Second, AI techniques 
that process vast amounts of data without incor-
porating fundamental physics can identify pat-
terns and correlations but risk producing results 
that are physically implausible or inconsistent 
with specific rules and assumptions, leading to 
non-generalizable decisions. The proposed hybrid 
DT model combining physics-based models with 
AI techniques can overcome the aforementioned 
challenges by ensuring physical plausibility and 

FIGURE 1. The influence of observation, inductive, and learning biases affecting decision-making in IIoT.
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The hybrid DT model combines physics-based models and AI techniques to achieve 
physically plausible predictions with real-time adaptability.
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enhancing the overall system performance. Specif-
ically, the physics-based model, built on communi-
cation, computing, and caching (3C) resources, 
provides a structured framework that adheres to 
known physical laws and system behaviors. Mean-
while, AI components enable DTs to dynamically 
adjust to real-time data, learning from new net-
work information and adapting to unforeseen 
environment changes. This integration can allow 
DTs to accurately model complex systems even 
when data is incomplete and the physics rules are 
partially understood, providing robust and adap-
tive solutions that harness the strengths of phys-
ics-based models and AI techniques.

By integrating data-driven AI techniques with 
physics-based principles, DTs can mitigate obser-
vation, inductive, and learning biases that typically 
compromise predictive model accuracy in com-
plex IIoT environments. DTs mitigate this by con-
tinuously assimilating data from multiple sources 
and sensors and ensuring a comprehensive and 
precise representation of the physical system. 
By incorporating fundamental physics laws and 
domain knowledge into AI techniques, DTs pro-
vide strong theoretical constraints that guide the 
learning process, ensuring predictions remain con-
sistent with known physical behaviors and enhanc-
ing generalization performance. In essence, DTs 
harmoniously blend data-driven AI with phys-
ics-based models, ensuring that system learning 
and predictions are both informed by empirical 
data and grounded in physical reality, leading to 
more accurate, reliable, and robust outcomes in 
managing the complexities of IIoT environments.

In this article, we specify the generation of 
DT for services in IIoT and investigate the hybrid 
model to build the specific DT framework by inte-
grating both physics-based models and AI tech-
niques. The proposed IIoT DT framework presents 
a sophisticated solution to the complexities of the 
IIoT, primarily by linking intricate physical systems 
with intelligent, data-driven models. This hybrid 
model can facilitate ongoing learning and adap-
tation, effectively addressing the diversity and 
dynamic aspects of IIoT services. Furthermore, we 
provide a case study to demonstrate the effective-
ness of the proposed hybrid DT framework for 
IIoT services.

The Generation of DT
Generating DTs for a specific service in IIoT using 
a hybrid modeling approach involves a strategic 
integration of physics-based models and AI tech-
niques. Initially, network virtualization technolo-
gy is applied to pool 3C resources essential for 
constructing the DT’s physics-based part, which 
forms the foundation of the digital representa-
tion and simulates the known physical and engi-
neering principles governing the system [12]. 
The generated physics-based model ensures that 
DT adheres to the theoretical constraints of the 
physical world, providing a reliable baseline from 
which more detailed analyses can be derived. 
Concurrently, data-driven AI techniques pro-
cess large volumes of data generated within the 
IIoT environment, detecting patterns, identifying 
anomalies, and predicting future states based on 
historical and real-time data. These adaptive AI 
techniques are crucial for responding to the fre-
quent and unpredictable changes in complex IIoT 

systems. The integration of AI techniques with the 
physics-based model allows the DTs to dynamical-
ly update and refine their predictions and simu-
lations, thus enhancing their accuracy and utility. 
This hybrid DT model combines the robustness of 
3C-based physical modeling with the adaptability 
of AI-driven methods to improve performance in 
dynamic industrial settings.

Physics-Based Model for DT Generation
The use of 3C resources (i.e., communication, 
computing, and caching) is essential in generat-
ing DTs for effective support of network services 
within IIoT environments. These resources form 
the foundation of the DT’s physics-based model, 
enabling the simulation and dynamic manage-
ment of network operations. Network virtualiza-
tion technology plays a critical role by abstracting, 
pooling, and efficiently allocating these resources 
to meet the specific demands of DT generation. 
This virtualization enables flexible pre-reservation 
and dynamic allocation of resources, promoting 
a scalable and adaptable DT deployment model 
that allows efficient resource reallocation based 
on fluctuating operational needs.

Specifically, communication resources are 
important for ensuring continuous and efficient 
data flow across the IIoT [13]. It involves the 
transmission of industrial data between devices 
and from devices to central servers. Computing 
resources refer to the processing power required 
to handle and analyze incoming data streams. In 
IIoT, computing resources are generally distrib-
uted with edge devices processing data locally 
to reduce response time and the load on central 
servers. Caching resources involves temporarily 
storing data at strategic points within the network 
to minimize access time and reliance on constant 
communication with the central database. This 
is especially beneficial in environments where 
data needs to be accessed frequently or quickly, 
as it significantly reduces latency and bandwidth 
usage, which are critical for the performance of 
real-time applications.

In a hybrid DT model, the physics-based model 
is constructed based on the state and availability of 
virtualized 3C resources, represented as variables 
in service-oriented objectives. For example, Com-
munication resources are modeled by bandwidth, 
latency, and data transfer rates, which guarantee 
that data flow between devices and central serv-
ers stays within network constraints. Computing 
resources are modeled as processing capacity at 
various nodes, with objective functions distribut-
ing tasks across edge and cloud resources to min-
imize response time and optimize throughput, 
constrained by processing capacity and energy 
consumption. Caching resources are optimized by 
modeling the cache size and data access frequen-
cy, positioning frequently accessed data closer to 
the edge, thereby reducing communication over-
head. The physics-based model of DT can then 
be formulated as a constrained optimization prob-
lem, balancing the utilization of communication, 
computing, and caching resources to meet real-
time operational demands. By solving this problem, 
the DTs can dynamically adjust their physics-based 
model in response to changing 3C resource con-
ditions, ensuring efficient, real-time operation and 
accurate reflection of the physical system.

The use of 3C resourc-
es (i.e., communica-
tion, computing, and 
caching) is essential 
in generating DTs for 
effective support of 
network services within 
IIoT environments. 
These resources form 
the foundation of the 
DT’s physics-based 
model, enabling the 
simulation and dynam-
ic management of net-
work operations. 
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Additionally, container technology is implement-
ed in conjunction with virtualized 3C resources to 
facilitate DT development. The containerization 
approach effectively segregates DT resources from 
the underlying infrastructure, facilitating consistent 
deployment across multiple environments. This 
architectural strategy enhances system scalabili-
ty and flexibility through streamlined updates and 
modifications while fostering seamless integration 
across various IIoT platforms. Through the strategic 
utilization of virtualized resources and containeriza-
tion methodologies, the DT framework can effec-
tively model the operational characteristics and 
conditions of the requisite IIoT services, thereby 
enabling enhanced operational decisions and effi-
ciency improvements.

AI Techniques for DT Generation
Physics-based models derived from virtualized 
3C resources rely on predefined parameters and 
rules grounded in physics laws. Consequently, 
these models are typically static and lack adapt-
ability to unforeseen changes or anomalies in the 
operational environment, making them less effec-
tive in dynamic or complex scenarios where rapid 
adjustments are essential. To address these lim-
itations, integrating AI techniques, such as deep 
reinforcement learning (DRL) or machine learning 
(ML), into the physics-based model is critical.

AI techniques process historical and real-time 
data, continuously learning and refining their under-
standing of the system [14, 15]. This AI integration 
enables a DT not only to represent the current state 
of the system but also to forecast future behaviors, 
make autonomous decisions, and prescribe actions 
that enhance performance. In IIoT, optimal service 
decisions are learned through environmental inter-
actions where the DT receives feedback (rewards or 
penalties) based on its actions. This continuous learn-
ing process strengthens the DT’s ability to manage 
complex systems effectively, particularly in dynamic 
and unpredictable industrial settings. The feedback 
loop between real-world conditions and the DT 
allows AI to refine its decision-making, making it valu-
able for applications such as resource allocation, pre-
dictive maintenance, and operational optimization.

Integrating AI algorithms into a DT phys-
ics-based model requires a structured approach 
for seamless data processing and predictive capa-
bility refinement. A commonly used AI method 
for this integration is deep reinforcement learn-
ing (DRL), as it learns optimal strategies through 
trial and error and adapts to changing condi-
tions. For example, a deep Q network (DQN) 
can be incorporated into the DT physics-based 
model to support continuous improvement. The 
integration process begins with data collection 
and preprocessing, where data from real-world 
conditions, including sensor readings, resource 
usage, network traffic, and operational metrics, 
is gathered. Both historical data (for training) and 
real-time data (for updates) are collected. Pre-
processing steps involve cleaning, normalizing, 
and structuring the data, addressing outliers and 
missing values to ensure model accuracy. Feature 
extraction identifies critical attributes that define 
the system’s state. Next, a virtual environment is 
created in which the DQN can operate, replicat-
ing the DT operational conditions and resources, 
such as communication, computing, and cach-

ing, enabling real-time interaction and learning. 
Within this environment, the DT’s current state, 
including resource usage, latency, and network 
performance, is represented, forming the basis for 
AI-based state representation.

The framework incorporates action space 
definition and reward mechanisms, establishing 
specific learning actions such as resource reallo-
cation and caching adjustments. These actions 
are evaluated based on performance metrics, 
including latency reduction and operational effi-
ciency improvements. Through systematic explo-
ration and observation, the AI algorithm develops 
its understanding of optimal policies by imple-
menting learning methodologies and analyzing 
outcome-based rewards. The DT’s evolution 
encompasses comprehensive model refinement 
and deployment processes, utilizing controlled 
testing environments to validate AI model per-
formance and ensure operational alignment with 
physical systems. A feedback mechanism facili-
tates real-time adaptation of the AI model, incor-
porating current system data to maintain precise 
synchronization between the DT and actual 
operations, particularly during periods of variable 
system demands and network conditions. This 
advanced integration enables the DT to conduct 
precise simulations, generate accurate predic-
tions, and implement optimized decision-making 
protocols, thereby enhancing operational efficien-
cy in complex operational environments.

Hybrid Model for DT Generation
Integrating data-driven insights with domain-spe-
cific knowledge enables a robust hybrid model 
for DT development, which is particularly valuable 
for enhancing accuracy, stability, and adaptabili-
ty in the demanding context of IIoT. This hybrid 
model addresses traditional model limitations 
by combining physics-based models, initialized 
from virtualized 3C resources, with AI techniques. 
The physics-based model establishes structure 
and adherence to established physics laws, while 
the AI component allows the DT to dynamically 
adjust to real-time data, improving predictions, 
optimization, and decision-making within com-
plex IIoT environments. The physics-based model 
captures known physics laws, constraints, and sys-
tem behavior, making it deterministic and reliable 
for well-understood processes. The AI techniques 
extend the DT capabilities by overcoming the stat-
ic limitation of physics-based models, allowing us 
to learn from both historical and real-time data 
and adapt to dynamic and unpredictable chang-
es in industrial scenarios. Feedback mechanisms 
within the AI layer refine the model predictions, 
transforming the DT from a descriptive tool into 
a prescriptive one capable of autonomous deci-
sion-making to optimize operations, minimize 
downtime, and adjust to the complexities of IIoT 
systems. The following steps outline the construc-
tion of the hybrid DT model, as shown in Fig. 3.

Step 1: Build the physics-based model. Start 
by constructing the physics-based model using 
virtualized 3C resources, incorporating known 
physics-based rules, system constraints, and oper-
ational principles. 

Step 2: Integrate AI techniques. Incorporate 
AI techniques to process historical and real-time 
data, which can support the DT learning from 

Physics-based models 
derived from virtual-

ized 3C resources rely 
on predefined parame-

ters and rules grounded 
in physics laws. Conse-

quently, these models 
are typically static and 

lack adaptability to 
unforeseen changes 
or anomalies in the 

operational environ-
ment, making them less 

effective in dynamic 
or complex scenarios 

where rapid adjust-
ments are essential.
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past and ongoing events, refining its understand-
ing of the system’s behavior dynamically.

Step 3: With both the physics-based model 
and AI techniques in place, the DT model is 
constructed. This hybrid model combines the 
structured, physics-based foundation of the phys-
ics-based model with the adaptive, learning-based 
approach of AI techniques. 

Step 4: Train the AI model. Train the overall 
physics-based model with embedded AI tech-
niques using both historical data (to establish 
baseline patterns) and real-time data (to adapt 
to current conditions), in which allows the DT to 
become proficient in recognizing complex pat-
terns and making decisions.

Step 5: Continuous feedback loop. Establish 
a continuous feedback mechanism where the AI 
learns from the real-world performance of the sys-
tem, feeding that knowledge back into the model. 
The AI component adjusts its predictions and rec-
ommendations as the physical system evolves.

Step 6: Model refinement. Continuously 
update both the physics-based model and AI-driv-
en insights, ensuring that the DT is always aligned 
with the current state of the physical system.

Proposed DT Framework for IIoT
The proposed DT framework for services in IIoT 
enables real-time monitoring, simulation, and opti-
mization of industrial processes by integrating phys-
ics-based models derived from 3C resources with 
AI techniques. The DT framework, as shown in 
Fig. 4, consists of multiple layers, starting with the 
physical and data acquisition layer, followed by the 
communication layer. Data is then stored and pro-
cessed by the data management layer, which then 
feeds into the DT core, where physics-based mod-
els are integrated with AI techniques. The frame-

work is completed by the application layer and 
security layer, which enables communication with 
external systems to ensure effective monitoring, 
control, optimization, and protection.

Specifically, the physical layer forms the foun-
dation of the DT framework, comprising industri-
al assets equipped with embedded 3C resources 
that enable intelligent operations. Here, computing 
resources manage data processing; communication 
resources facilitate information exchange and con-
trol resources support autonomous functionality, 
collectively establishing the base for DT operations. 
The data acquisition layer captures real-time data 
through sensors and IoT devices, which track crit-
ical operational metrics such as temperature, pres-
sure, and vibration. Local edge computing devices 
then preprocess this data to reduce transmission 
loads, enhancing responsiveness in time-sensitive 
applications. The communication layer ensures 
reliable data flow across the system through net-
works and protocols, utilizing wired and wireless 
connections like Ethernet, WiFi, and 5G, alongside 
standardized communication protocols such as 
message queuing telemetry transport (MQTT) and 
OLE for process control unified architecture (OPC 
UA), to enable interoperability within the IIoT eco-
system. The data management layer oversees the 
lifecycle of collected data, employing data storage 
solutions (databases, data warehouses, data lakes) 
to retain historical and real-time data. Data pro-
cessing tools handle tasks like cleaning, filtering, 
and aggregating, preparing data for accurate mod-
eling and analysis. The physics-based model layer 
leverages virtualized 3C resources to implement 
mathematical models that predict system behavior 
across various scenarios. This layer incorporates 
system dynamics modeling to analyze component 
interactions, ensuring adherence to fundamental 
physics principles. The AI techniques layer enhanc-
es system adaptability through the strategic imple-
mentation of machine learning, deep learning, and 
reinforcement learning algorithms. These advanced 
technologies enable sophisticated data analysis, 
pattern recognition, and iterative decision optimi-
zation. The AI components demonstrate particular 
effectiveness in monitoring real-time network con-
ditions through the analysis of continuous sensor 
data streams. Through systematic integration of 
physical system feedback, these AI components 
maintain precise digital twin synchronization with 
actual network conditions, even during dynamic 
fluctuations in bandwidth or node performance. 
The integration of physics-based parameters with 
empirical data analysis enables the AI components 
to deliver consistent performance adaptation in 
variable IIoT environments while maintaining com-
putational precision. The DT core layer serves 
as the central integration point, combining phys-
ics-based models with artificial intelligence capa-
bilities through an advanced hybrid integration 
engine. This integration establishes a sophisticated 
environment for conducting virtual experimenta-
tion and scenario analysis within a controlled sim-
ulation framework. The system’s real-time analytics 
capabilities deliver actionable insights that enable 
informed, forward-looking decision-making. Final-
ly, the application layer functions as the interface 
between humans and the DT, featuring user inter-
faces like dashboards and control panels, decision 
support systems, and alert mechanisms, making 

FIGURE 3. DT Generation in IIoT. A hybrid DT model with the integration of virtualized 
3C resources, AI techniques, and continuous feedback for model refinement and align-
ment with real-world conditions.
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operational insights actionable for predictive main-
tenance, quality control, and process optimization. 
The security layer fortifies the DT framework by 

implementing authentication, encryption, and intru-
sion prevention to safeguard data integrity and 
compliance, ensuring system reliability.

FIGURE 4. Layered DT framework for IIoT with the sequential flow and interactions between physical assets, data acquisition, communication, data man-
agement, physics-based and AI models, the DT core, and application and security layers to ensure comprehensive monitoring, control, and optimization in 
IIoT environments.
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The DT framework operates through a sequen-
tial flow across these layers to create a com-
prehensive virtual representation of industrial 
systems. Starting with the physical layer, industrial 
assets equipped with 3C resources generate real-
time data via embedded sensors and actuators. 
This data is collected and locally processed by 
sensors and edge computing devices in the data 
acquisition layer to reduce latency and perform 
preliminary analysis. The processed data is then 
transmitted over wired or wireless networks using 
standard protocols in the communication layer. 
Then, in the data management layer, the data is 
stored in databases or data lakes and processed 
to be suitable for modeling and analysis. The phys-
ics-based model layer uses this data to feed math-
ematical models and simulations based on physics 
laws, while the AI techniques layer concurrently 
analyzes the data to detect patterns and optimize 
control strategies using machine learning, deep 
learning, and reinforcement learning. The DT 
Core merges output from the physics-based mod-
els and AI techniques to run virtual experiments 
and provide real-time analytics. Users interact with 
the digital twin through dashboards and decision 
support systems in the application layer, receiv-
ing actionable insights and alerts. Throughout 
this process, the security layer protects data and 
system access with authentication, encryption, 
and intrusion detection. Through this synergistic 
interplay, each layer not only performs its function 
but also enhances the capabilities of the others, 
leading to improved efficiency, real-time respon-
siveness, and proactive decision-making.

Case-Study: DT-Enabled  
Channel Access Control for IIoT

The network consists of a single access point (AP) 
connected to multiple IoT devices in a star topol-
ogy, where each device communicates directly 
with the central AP. There are scatterers uniformly 
distributed in this industrial environment, leading 
to significant multipath fading due to signal reflec-
tions, which affect data packets transmitted from 
devices to the AP. This network includes a DT that 
acts as a virtual counterpart to the physical IoT 
devices, replicating their functions and gathering 
data transmitted through a gateway to the network 
controller. The DT employs a parallel learning and 
optimization (PLO) scheme that utilizes memory 
recall techniques to bolster real-time decision-mak-
ing and optimize channel access management, 
effectively reducing transmission latency.

In building the DT, key components such as 
IoT devices, data collection systems, and a control 
center are integrated. IoT devices gather real-time 
data, which is transmitted to the control center 
via a gateway. Here, the DT processes this data 
using advanced algorithms to predict outcomes 
and suggest operational adjustments. This setup 
supports not only real-time monitoring and simu-
lation but also predictive maintenance and deci-
sion support. The continuous data loop from IoT 
devices to the DT and back to the devices forms 
the DT core, allowing dynamic adjustments based 
on real-time data. This DT leverages the strengths 
of physics-based models, which provide struc-
tured, law-based predictions, and AI techniques, 
which adapt to new data and evolving conditions, 
enhancing the system’s capacity to manage com-
plex and changing industrial IoT environments.

The proposed PLO scheme, as shown in Fig. 5, is 
structured to optimize operations through a contin-
uous cycle that updates knowledge of physical IoT 
devices based on the outcomes of prior actions. This 
cycle begins with data collection from IoT devices, 
which is then analyzed and transformed into action-
able knowledge. This knowledge guides subsequent 
actions, generating new data that refines and expands 
the knowledge base, enabling ongoing operational 
adaptation and improvement. This scheme ensures 
that both the physical IoT devices and their DT 
counterparts operate autonomously yet interactive-
ly, based on distinct yet complementary principles. 
Here, knowledge acts as a bridge, assimilating data to 
dynamically adjust operations. It is structured around 
an inverse model that uses revised policies to guide 
decisions, establishing a feedback loop with the real-
world environment. As shown in Fig. 6, this synthesis 
of components and methods results in a resilient, 
efficient, and adaptive DT framework with the PLO 
scheme that significantly improves the performance 
and reliability of IIoT systems.

Challenges and Open Research Issues

Current Challenges
Implementing DTs for IIoT environments presents 
several challenges across technical, organizational, 
and operational domains. These challenges impact 
multiple layers within the DT framework, from data 
acquisition to integration. Below, we specify the 
possible challenges in DT implementation for IIoT, 
highlighting their impact on each layer.

FIGURE 5. The PLO scheme for IIoT channel access management with process flow for 
updating and learning for IIoT devices, showcasing the interactions between the DT, con-
trol center, gateway, and IIoT devices through data collection, model training, temporal dif-
ference calculations, and continuous updates for optimal decision-making and adaptation.
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Data Integration and Management: The inte-
gration and management of data in IIoT envi-
ronments present significant challenges due to 
diverse data streams originating from multiple 
devices with distinct formats and protocols, which 
creates complexity in establishing standardized 
formats for DTs. The management of data quality 
becomes particularly challenging when addressing 
the requirements of high-velocity data genera-
tion, system scalability, and real-time processing 
capabilities, particularly in scenarios involving 
data inconsistencies or gaps. To address these 
challenges, organizations can implement several 
strategic solutions: ETL tools facilitate data stan-
dardization processes, data federation enables 
efficient cross-source queries, semantic integration 
ensures meaningful data interpretation, and edge 
computing architecture optimizes performance 
through localized processing.

Interoperability Issues: The diverse protocols 
and standards implemented across IIoT devices 
and systems present challenges for communica-
tion and integration initiatives. Communication 
infrastructure must effectively manage multiple 
protocols, including MQTT, OPC UA, HTTP, and 
Modbus, while integration processes address 
compatibility limitations with legacy systems that 
lack contemporary API functionality. To enhance 
system interoperability, organizations are imple-
menting strategic solutions such as open standards 
adoption (OPC UA and MQTT), protocol-bridging 
middleware deployment, and the development 
of modular frameworks incorporating abstraction 
layers and API-driven architectures.

Computational and Storage Requirements: 
DT implementations require substantial comput-
ing and storage resources to execute sophisti-
cated physical simulations, conduct real-time 
analytics, and facilitate AI model training, partic-
ularly for advanced deep learning frameworks. 
To effectively address scalability considerations 
related to hardware constraints and associated 
costs, organizations can leverage cloud comput-
ing solutions that provide flexible, cost-effective 
resource allocation. Additionally, implementing 
strategic algorithm optimization approaches, 
including model compression methodologies, 
optimized code structures, and distributed pro-
cessing frameworks, can significantly enhance 
operational efficiency while managing computa-
tional requirements.

Model Accuracy and Maintenance: Maintain-
ing model accuracy in dynamic industrial envi-
ronments is challenging, as physics-based models 
become outdated due to equipment upgrades, 
process changes, and parameter drift, while AI 
techniques face data drift and obsolescence with-
out regular retraining. Hybrid models combining 
physics-based and AI techniques require continu-
ous validation through performance monitoring, 
feedback loops, and anomaly detection, alongside 
automated retraining with adaptive algorithms 
and robust version control to ensure alignment 
with real-world conditions.

Addressing these challenges requires a com-
bination of innovative technological solutions. 
Effectively tackling these issues will enhance DT 
efficiency, predictive capabilities, and provide 
a competitive advantage in the evolving IIoT 
landscape.

Open Research Issues
Future research directions for DTs in IIoT focus on 
addressing current challenges and exploring new 
avenues for innovation.

First, seamless multi-source data fusion will be 
prioritized to develop advanced algorithms for 
integrating data from diverse sources, such as sen-
sors, edge devices, and cloud systems, to support 
smooth real-time operations. Cognitive DTs repre-
sent another critical direction, advancing beyond 
asset simulation to autonomously interpret and 
analyze data, generating actionable insights and 
recommendations. The development of self-learn-
ing DTs will leverage AI, particularly deep reinforce-
ment learning (DRL), to transition from reactive 
to proactive systems, optimizing operations in 
response to dynamic conditions. Emphasis will also 
be placed on creating green DTs, which prioritize 
energy efficiency by minimizing power consump-
tion across devices and infrastructure, thus aligning 
with sustainability goals. Research on lifecycle DTs 
will expand to provide continuous monitoring and 
optimization across an asset’s entire lifecycle—from 
design to disposal. Integrating AR/VR-enhanced 
DTs is expected to offer immersive interfaces, 
enabling users to interact with and control IIoT 
systems remotely. Cross-domain DTs will facili-
tate inter-industry collaboration, spanning fields 
such as manufacturing, healthcare, and logistics, 
to optimize operations through shared data and 
synchronized performance. Efforts will also target 
the development of intuitive user interfaces, mak-
ing DTs accessible to non-expert users to broad-
en adoption. Lastly, establishing interoperability 
standards will be essential, with research directed 
toward universal protocols and open communica-
tion standards to support seamless cross-platform 
integration and foster collaboration across diverse 
systems and manufacturers.

Research in these areas will establish DTs as a 
critical component of IIoT and a driver of innova-
tion and transformation across industries.

Conclusion
In this article, we investigated the potential of DTs 
as a solution to address the challenges posed by 
the increasing complexity of future IIoT, particular-

FIGURE 6. Impact of DT on average queue size under vary-
ing network load and outage conditions, demonstrating 
that the implementation of DT significantly reduces queu-
ing delays across different outage levels (33 %, 51 %, and 
68 %) compared to scenarios without DT support.
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ly in network management, data processing, and 
latency reduction. Accordingly, within the pro-
posed hybrid DT framework, we proposed a PLO 
scheme that integrates physics-based models with 
advanced AI techniques to dynamically and accu-
rately model the channel access optimization ser-
vices. The proposed scheme enables continuous 
learning and adaptation, enhancing decision-mak-
ing and operational efficiency in highly dynamic 
and heterogeneous IIoT environments. With our 
scheme, IIoT can achieve improved reliability, per-
formance, and adaptability to evolving industrial 
scenarios, addressing the challenges posed by 
ultra-dense, heterogeneous network architectures.
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