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Abstract—In this paper, we present a three-layer (i.e., device,
field, and factory layers) deterministic federated learning (FL)
framework, named DetFed, which accelerates collaborative learn-
ing process for ultra-reliable and low-latency industrial Internet
of Things (IoT) via integrating 6G-oriented Time-sensitive Net-
works (TSN). Utilizing dispersive local data, industrial IoT devices
distributively train a deep neural network (DNN) model, and the
updated model parameters are aggregated at their associated field
servers every round or at a centralized factory server every a few
rounds. Aiming at optimizing the learning accuracy of FL without
affecting the co-transmission of burst traffic (e.g., safety-critical
traffic), an integrated TSN is considered to establish connections
among the three layers, where a cyclic queuing and forwarding
mechanism is deployed in each switch to support deterministic
model parameter transmission with microsecond-level delay and
near-zero packet loss requirements. To improve the FL perfor-
mance, we formulate a multi-objective stochastic optimization
problem to simultaneously maximize the scheduling success ratio
and learning accuracy while satisfying the deterministic require-
ments of delay, jitter, and packet loss. Since the objective function is
implicit and the available time slots of the considered TSN in each
FL round are temporally correlated, the problem is difficult to solve
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in real time. Therefore, we transform the problem into a Markov
decision process formulation and propose a dynamic resource
scheduling algorithm, based on deep reinforcement learning, to
make optimal resource scheduling decisions while adapting to
device heterogeneity and network dynamics. Experimental results
based on real-world dataset demonstrate that the proposed DetFed
significantly accelerates FL convergence and improves learning
accuracy as compared to state-of-the-art benchmarks.

Index Terms—Co-transmission, deep reinforcement learning,
deterministic federated learning, industrial Internet of Things,
resource scheduling.

I. INTRODUCTION

THROUGH integrating emerging artifical intelligence tech-
niques, sixth generation (6 G)-enabled industial Internet of

Things (IoT) is expected to realize advanced industiral automa-
tion [1], [2], [3]. In such a scenario, an unprecedented amount
of data is generated by dispersed industrial IoT devices, which
needs to be distributively processed at the network edge due
to delay requirements and privacy regulations [4], [5]. Over the
past few years, a considerable amount of research efforts aiming
at satisfying these requirements have led to the emergence of
many novel distributed learning paradigms, which can leverage
a large amount of dispersive data and computing power resources
without transmitting raw data across the network [6], [7], [8]. In
particular, federated learning (FL) has been proposed to enable
collaborative deep neural network (DNN) model training among
devices and a centralized server via periodically exchanging
model parameters (i.e., FL traffic), for the purpose of achieving
high learning accuracy with preserved data privacy and reduced
communication overhead [9], [10].

Operating FL over resource-constrained and time-sensitive
industrial IoT faces a big challenge, that is, how to simultane-
ously transmit the FL traffic and traditional industrial traffic (e.g.,
time-triggered traffic, event-driven traffic, and best-effort traffic)
over the same network and satisfy their diversified require-
ments [11]. In such a case, reliably aggregating the device-side
model parameters in the centralized server is important to ac-
celerate FL convergence [12]. Time-sensitive Networks (TSN),
evolved from traditional industrial Ethernets, can provide multi-
ple traffic flows with bounded end-to-end delay, jitter, and packet
loss in local area networks, which is envisioned as a candidate
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Fig. 1. CQF-based mechanism for deterministic traffic scheduling.

for 6G-oriented ultra-reliable and low-latency communication
techniques [13], [14], [15]. By introducing the synchronized
time-scheduled approaches to traffic shaping mechanisms, such
as cyclic queuing and forwarding (CQF) proposed by IEEE
802.1Qch, TSN is endowed with flexible temporal resource
scheduling capabilities to support deterministic traffic transmis-
sion [16].

As shown in Fig. 1, the CQF mechanism is able to provide each
traffic flow with predictable and strictly bounded hop-by-hop
transmission delay via periodically exchanging the receiving and
sending statuses of Ping-Pong queues, which are deployed on
each switch port operated by a couple of gates (i.e., RX-gate
and TX-gate) [17]. The gate operations are controlled by a gate
control list (GCL) to forward traffic, which takes the scheduling
cycle as an operation cycle. Assume that the scheduling cycle
is divided into two time slots, e.g., an even time slot T0 and
an odd time slot T1. In T0, the receiving queue Q1 opens the
RX-gate to receive traffic from upstream nodes, and the sending
queueQ0 opens the TX-gate to send traffic to downstream nodes.
In T1, the operations are performed in reverse. With the CQF
mechanism, the TSN can support deterministic transmission
for FL traffic between any two adjacent nodes, such that the
FL convergence can be efficiently accelerated. However, when
multiple industrial IoT devices participate in FL, all the devices
interact with the centralized server in a parallel manner, resulting
in inefficient resource preemption and increased transmission
delay especially when the number of devices is large. To ac-
celerate FL convergence, how can we schedule multiple traffic
flows to facilitate FL over industrial IoT in an efficient way needs
further investigation [18].

In this work, we propose a novel deterministic FL framework,
named DetFed, which accelerates collaborative FL process via
6G-oriented ultra-reliable and low-latency communication tech-
niques. The DetFed is composed of three layers, i.e., device,
field, and factory layers. To provide the learning process with
deterministic guarantee in delay, jitter, and packet loss, a wireless
and wired integrated TSN is utilized to establish connections
among the three layers, in which each switch is deployed
with a CQF mechanism to support efficient model parameter
distribution and aggregation. Aiming at optimizing the learn-
ing accuracy without affecting the transmission of burst traffic
(e.g., safety-critical traffic), device-side updated models are

periodically aggregated by their associated field servers or by a
centralized factory server over the wireless and wired integrated
TSN. In this way, the amount of transmitted model parameters
among the field servers and the factory server can be effectively
reduced, hence saving bandwidth occupancy on the industrial
buses that can be used to support burst traffic transmission. As a
result, more model parameters can be aggregated at the two-level
server sides within the hierarchical DetFed, which significantly
improves the learning accuracy.

To further improve the performance of DetFed, we propose a
learning-based dynamic resource scheduling algorithm over the
wireless and wired integrated TSN. The increase of the number
of devices and network nodes may lead to intolerable time over-
head in resource scheduling, because traditional optimization
methods and heuristic schemes cannot adapt to network dynam-
ics, which requires repeatedly resource scheduling calculations
when a new device participates in the DetFed thus slowing
down the FL convergence. To address this challenging issue, we
investigate a resource scheduling problem in DetFed, which is
formulated as a multi-objective stochastic optimization problem
for maximizing the learning accuracy as well as the scheduling
success ratio by optimizing temporal resource allocation for the
wireless and wired integrated TSN. Since the objective function
of the DetFed is implicit and the available time slots of the
considered TSN in each FL round are temporally correlated,
the problem is difficult to solve on-the-fly. We transform the
problem into a Markov decision process (MDP) formulation,
and propose a dynamic resource scheduling algorithm, based on
deep reinforcement learning (DRL), to solve the MDP. Extensive
simulation results on real-world dataset with non-independent
and identical distribution (non-IID) demonstrate that the pro-
posed DetFed framework with the dynamic resource scheduling
algorithm can significantly improve the learning accuracy as
compared to the benchmarks. The main contributions of this
paper are summarized as follows:
� We present a hierarchical deterministic FL framework for

the time-sensitive industrial IoT, in which FL can effi-
ciently operate with bounded end-to-end delay, jitter, and
packet loss guarantee via temporal resource scheduling for
the wireless and wired integrated TSN;

� We formulate the multi-dimensional resource scheduling
as a multi-objective stochastic optimization problem to
maximize the FL performance over the TSN with determin-
istic service quality guarantee, which is then transformed
into an MDP;

� We propose a dueling double deep Q-network (D3QN)
based resource scheduling algorithm to efficiently deter-
mine temporal resource allocation for FL traffic within the
integrated TSN. After offline training, the proposed algo-
rithm can facilitate FL convergence and adapt to network
dynamics due to the traffic-by-traffic scheduling ability.

The reminder of this paper is organized as follows. Related
works are reviewed in Section II. A deterministic FL framework
is proposed in Section III. Section IV presents the system model,
and formulates the optimization problem with multiple objec-
tives. Section V transforms the formulated problem into an MDP,
and proposes a dynamic resource scheduling algorithm. Section
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VI provides the simulation results, followed by the concluding
remarks in Section VII.

II. RELATED WORK

FL has gained significant attention from both industry and
academia due to the significant growth in data traffic generated
at the network edge. It is regarded as a key enabling technology to
achieve ubiquitous intelligence in envisioned 6 G networks [19],
[20]. Extensive research efforts have been devoted to resource
management to accelerate FL convergence [21]. Chen et al. [22]
propose a joint learning and communications framework for fa-
cilitating FL over wireless networks, in which spectrum resource
alloction and user selection are jointly optimized to achieve a
significant FL accuracy improvement. Wan et al. [23] aim to
minimize the time and energy consumption during FL process
through optimizing spectrum bandwidth allocation and the num-
ber of local updates per iteration. T. Dinh et al. [24] investigate
a heterogeneous computing resource optimization problem, in
which the local computation rounds and the global communica-
tion rounds are scheduled to speed up FL convergence at the cost
of on-device computing power and spectrum resources. Taking
into account the unreliable and resource-constrained wireless
networks, Salehi et al. [25] proposed a novel FL framework
to ensure extremely high transmission success probability via
dynamically scheduling the participating devices for each FL
round. Zhang et al. [26] study the joint optimization of the
power allocation and learning rate adjustment to obtain the best
estimate of the gradient updates while minimizing the impact of
the communication error. In summary, most of these works adopt
frequency division multiplexing as a main communication mode
to support FL model parameter distribution and aggregation.
Due to the limited spectrum resources, such a mode is generally
difficult to guarantee deterministic delivery of FL traffic. Thus,
in large-scale device scenarios, only a part of devices can be
selected to participate in model training or only a few updated
parameters can be uploaded to the global server, which signif-
icantly slows down FL convergence speed, degrades learning
accuracy, and occupies network resources.

Recently, a line of research works are proposed to improve
transmission determinacy [27]. Atallah et al. [28] studies an
iterated integer linear programming based scheduling scheme to
attain high scheduling scalability, in which time-triggered traffic
is divided into multiple subsets and each subset is scheduled
incrementally. Yan et al. [29] proposes a CQF-based injection
time planning algorithm to optimize the network throughput of
time-sensitive traffic. Zhao et al. [30] considers a credit-based
shaper to reduce the pessimism for the worst-case end-to-end
delays of audio-video bridging traffic. More prominently, a few
pioneering works focus on the co-transmission for multiple types
of traffic. Yuan et al. [31] present a deadline monotonic schedul-
ing algorithm to ameliorate the traffic transmission sequence of
switch exports via dividing the queue priority into more levels,
thereby satisfying the coordinated transmission requirements of
time-triggered traffic and best-effort traffic. Huang et al. [17]
propose a time-aware cyclic-queuing mechanism to support the
co-transmission of cyclic flows and isochronous flows. To sum

up, most of them are dedicated to supporting deterministic traffic
transmission for traditional industrial applications (e.g., control-
and/or safety-critical applications). How to provide industrial
intelligent applications with deterministic transmission services,
especially realizing the co-transmission of FL traffic and clas-
sical industrial traffic, is still a challenging issue needs to be
solved.

Different from the existing works, our paper focuses on
facilitating efficient FL in time-sensitive industrial IoT which
is to ensure the end-to-end deterministic transmission of FL
traffic among devices and servers. Furthermore, taking traffic
time-varying property and network dynamics into account, we
propose a learning-based temporal resource scheduling algo-
rithm to accelerate FL convergence over a wireless and wired
integrated TSN.

III. DETFED: A DETERMINISTIC FL FRAMEWORK

A. Framework Design

In the considered time-sensitive industrial IoT, we adopt a
hierarchical FL framework enhanced by a two-level aggregation
scheme to facilitate efficient model training [21]. As shown in
Fig. 2, the framework consists of the device, field, and factory
layers. The detailed descriptions of each layer in the framework
are given as follows.
� Factory Layer: A global server and a central controller

are deployed at the factory management center. The global
server is responsible for initializing a set of model pa-
rameters at the beginning according to the application
requirements and performing factory-level aggregation for
updated model parameters (i.e., FL traffic) from distributed
field servers every a few field aggregations. The controller
is in charge of collecting network information and enforc-
ing traffic scheduling decisions, as well as coordinating FL
among three layers with deterministic guarantee of delay,
jitter, and packet loss.

� Field Layer: Multiple TSN switches are deployed to pro-
vide deterministic transmission services for industrial IoT
devices, in which a part of TSN switches endowed with a
wireless access module are deployed to connect the devices
into the factory network. The rest of the TSN switches are
connected to the controller. In addition, each production
line is equipped with a field server to aggregate model
parameters from industrial IoT devices every FL rounds.

� Device Layer: Industrial IoT devices endowed with certain
storing and computing resources, such as industrial gate-
ways (IGW), are distributively located in production lines
within a smart factory. In each FL round, IGWs receive
the global parameters that are transmitted from the factory
server or field servers, and perform local training for further
parameter updating.

The DetFed framework can support efficient FL with de-
terministic requirements through integrating delay-guaranteed
TSN into a hierarchical aggregation scheme. On one hand,
parameter aggregation and distribution are determinately coor-
dinated among the three layers by accurate traffic scheduling.
As such, more updated model parameters can be uploaded
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Fig. 2. Hierarchical deterministic FL framework for time-sensitive industrial IoT.

to the field servers or a factory server, thus accelerating FL
convergence. On the other hand, model parameters are infre-
quently transmitted between the field and factory layers, thereby
effectively avoiding bandwidth resource preemption with burst
traffic in terms of factory bus.

B. Two-Level Deterministic Aggregation Scheme

In the framework, we consider a set of TSN switches to
support deterministic data transmission. The set of wired TSN
switches is denoted by I = {1, 2, . . . , I}. The set of wireless
TSN switches is denoted byJi = {1, 2, . . . , |Ji|}, which is con-
nected to a wired TSN switch i ∈ I. Let Kj = {1, 2, . . . , |Kj |}
be the set of IGWs associated with wireless TSN switch j ∈ Ji.
For IGW k, a set of data samples are stored locally, denoted by
Si,j,k = {(us, vs)}s. Here, us and vs are the input and the label
of each sample, respectively, s is the sample index. The training
and testing sample sets of the IGWs are denoted by Strain

i,j,k and
Stest
i,j,k, respectively. The training and testing sample sets of the

IGWs within the coverage of field server i are denoted by Strain
i

and Stest
i , respectively. Here, we have Strain

i,j,k ∪ Stest
i,j,k = Si,j,k,

Strain
i ∪ Stest

i = Si, and Si = ∪j∈Ji,k∈Kj
Si,j,k. A summary of

important notations in this paper is given in Table I.
In the following, we elaborate the operation mechanism of the

deterministic FL in detail, which is illustrated in Algorithm 1.
1) Initialization stage: Once the factory management center

receives an FL task, the factory server will instantiate a set of
parameters θ∗ for obtaining the required learning model, such
as a convolutional neural network-based industrial inspection
model that can provide real-time quality detection services for
industrial machinery.

2) Multi-dimensional resource scheduling: After completing
the model initialization stage, the central controller then makes
network resource scheduling decisions for FL round r ∈ R to
support deterministic model parameter transmission. Here, the
decisions include the amounts of time slots in wireless and wired

TSN that are allocated to transmit model parameters among the
IGWs, field servers, and a factory server. With these decisions,
the FL can efficiently operate by orchestrating the dispersed
IGWs, and achieve a higher accuracy through aggregating more
model parameters with deterministic service quality guarantee.

3) Deterministic parameter distribution: Given the resource
scheduling decisions, the aggregated model parameters can be
distributed from the field servers or a factory server to the
IGWs in each FL round. Due to adopting the deterministic
traffic scheduling mechanism, the parameter distribution can
have a high schedulability, such that more IGWs can receive
the distributed model parameters to participate in the current FL
round.

4) Local training: When the distributed model parameters
θi, ∀i ∈ I are received, the IGWs can start local training using
their sample sets for one round. To speed up convergence rate, we
adopt a stochastic gradient descend method to iterate the model
parameters, that is, θi,j,k = θi − η∂l((us, vs) | θi,j,k)/∂θi,j,k.
Here, θi,j,k is the locally trained parameters of each IGW, η is
the learning rate, and l((us, vs) | θi,j,k) is the training loss with
regards to each sample held by the IGWs.

5) Deterministic field aggregation: Once completing the lo-
cal training, field servers will asynchronously aggregate the
trained model parameters from the IGWs via deterministic
resource scheduling, namely, mod(r, rg) �= 0. Meanwhile, the
global model parameters θi can be updated through a Fed-
erated Averaging algorithm that performs a weighted aver-
age calculation for all the aggregated parameters, i.e., θi =
1/|Stest

i |∑i∈I,j∈Ji,k∈Kj
|Stest

i,j,k|θi,j,k. Here, |Stest
i,j,k| and |Stest

i |
are the numbers of testing samples locally stored at each IGW
and at all IGWs associated with field server i. Thus, the learning
accuracy of the updated model is given by

Afi(θi) =
1

I

∑
i∈I

Ai(θi), (1)

Authorized licensed use limited to: Memorial University. Downloaded on April 12,2024 at 03:34:26 UTC from IEEE Xplore.  Restrictions apply. 



5166 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

TABLE I
SUMMARY OF IMPORTANT NOTATIONS

where Ai(θi) denotes the learning accuracy on testing sam-
ples of the IGWs that are associated with field server i
in terms of its aggregated parameters θi, and Ai(θi) =
1/|Stest

i |∑s∈Stest
i

a((us, vs) | θi). Here, a((us, vs) | θi) is
the learning accuracy on each testing sample held by the IGWs.
Then, the aggregated model parameters of field servers will be
distributed to their associated IGWs for a new round update.

6) Deterministic factory aggregation: After rg field aggre-
gations, the factory server will aggregate model parameters
from field servers via deterministic resource scheduling for
the considered TSN networks, namely, mod(r, rg) = 0. Then,
the global model parameters can be updated via the Federated
Averaging algorithm, i.e., θ = 1/|Stest|∑i∈I |Stest

i |θi. The

Algorithm 1: DetFed.

learning accuracy can be described as

Afa(θ) =
1

|Stest|
∑

s∈Stest

a((us, vs) | θ), (2)

where Stest = ∪i∈IStest
i , |Stest| is the total number of test-

ing samples stored at all the IGWs, and a((us, vs) | θ) is the
learning accuracy on each testing sample of all the IGWs with
parameters θ aggregated by the factory server.

In the considered scenario, the proposed DetFed framework
adopts synchronous FL paradigm, which is operated round-by-
round. In each FL round, due to the heterogeneous computing
resources of IoT devices, the delay for local training is different
for each device. Whenever the local training stage is completed,
each IoT device will send a signaling to its associated field
server or the factory server. Once the signaling from the last
participating IoT device is received, the field server will syn-
chronously aggregate model parameters from their participating
devices every FL round, and the factory server will aggregate
model parameters from the edge servers every a few FL rounds.
To maintain time synchronization within the considered net-
work scenario, the clock synchronizing mechanism IEEE 1588
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is deployed at the TSN switches and IoT devices. As such,
the FL traffic of heterogeneous IoT devices can be scheduled
synchronously.

Computation complexity analysis: Different from the conven-
tional FL framework that aggregates model parameters only
by one centralized server, a set of additional field servers are
deployed in the proposed DetFed framework to aggregate the
uploaded model parameters from their connected IoT devices.
The computation complexity of both frameworks is mainly
composed of local training and model aggregation. For the local
training stage, both frameworks have the same computation
complexity when they train the same DNN model. For the model
aggregation stage, the computation complexity of the DetFed is
slightly higher than the conventional FL. However, the model ag-
gregation can be implemented via a low-complexity algorithm,
e.g., FedAvg, in which model parameters are simply aggregated
via a weighted average method. We assume that the training
computation complexity is denoted as Otra(·), and that the
computation complexity of operating the FedAvg is denoted as
Oagg(·). The aggregation computation complexity of the DetFed
is denoted as (I+1)×Oagg(·). Here, I is the number of field
servers, and 1 indicates to the factory server. Thus, the total com-
putation complexity of the DetFed is Otra(·)+(I+1)×Oagg(·).
Here, we have Otra(·)� (I+1)×Oagg(·).

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, an FL traffic model is presented, followed by
a wireless and wired integrated scheduling model to support
deterministic model parameter distribution and aggregation.
Then, we formulate a multi-objective optimization problem
with multi-dimensional resource constraints to optimize the FL
performance while improving the scheduling capability of the
considered TSN.

A. FL Traffic Model

As previously described, the FL is a long-term and iterative
process, in which model parameters are interacted alternately
among IGWs, field servers, and a factory server. In such sce-
narios, whether the model parameters can reliably transmit
among the three layers is especially important to accelerate FL
convergence. For parameter distribution, if the global model
parameters can be distributed to more IGWs, the FL can take
full advantage of geographically dispersed data to train the
global model. For parameter aggregation, if more local trained
parameters can be uploaded to the field servers or the factory
server, the global model can achieve a faster convergence. Thus,
to ensure the deterministic parameter transmission during the
long-term learning process, we operate the hierarchical FL over
a TSN-enhanced network scenario, and define the model param-
eters as FL traffic with deterministic end-to-end transmission
requirements need to be guaranteed.

In the considered scenario, the transmitted FL traffic requires
the bounded end-to-end delay, jitter, and packet loss. As such,

each FL traffic can be described as

tk � {id, cycle, src, dst, path, de2e, je2e, pnum, psize, st},
∀tk ∈ K, k = 1, 2, . . . , |K| ,

(3)
where each traffic tk has ten features, including identifier num-
ber, traffic cycle, source and destination addresses, preset trans-
mission path, end-to-end delay and jitter requirements, packet
number and size, and sending time that is a decision variable
needs to be made by a resource scheduling algorithm. Here, the
sending time of a traffic means the timestamp when the traffic is
sent from a device’s network interface card (NIC). In addition,
|K| =∑i∈I

∑
j∈Ji

|Kj | denotes the total number of FL traffic
in each FL round.

B. Wireless and Wired Integrated Scheduling Model

As stated earlier, the FL operates round-by-round within
the hierarchical framework. To ensure a high convergence ef-
ficiency, the FL traffic should be transmitted among the three
layers. Taking into account the mobility, the industrial IoT de-
vices are connected to the corresponding wireless TSN switches
endowed with a wireless access module [32]. In addition to that,
FL traffic are forwarded by a set of wired TSN switches. In
each TSN switch, we deploy the CQF-based shaper to satisfy
the deterministic transmission requirements, which is endowed
with a queuing mechanism for shaping FL traffic to provide
each traffic with bounded delay, jitter, and packet loss [33].
To implement high-performance TSN, network adapters that
are programmable and support TSN functionality is required
at each IoT device of the communication link. In this work, the
industrial IoT devices are directly connected to the TSN switches
and each IoT device is equipped with a network adapter (e.g.,
Intel I225-V) to support FL traffic transmission. In the following,
several important constraints are defined:

1) Traffic Scheduling Cycle: In the CQF model, a pair of
Ping-Pong queues are introduced at each switch port, and
the open (i.e., sending) and closed (i.e., receiving) statuses of
Ping-Pong queues are periodically exchanged to forward traffic
that is controlled by GCLs, such that the hop-by-hop bounded
delay can be guaranteed to provide FL traffic with deterministic
transmission services [28]. Since the GCL calculations need to
be cyclically executed for all FL traffic, scheduling cycle SC
equals to the least common multiple of the set of traffic cycles,
namely,

SC = LCM(K[cycles]), (4)

whereSC should be a constant value,LCM(·) is the function to
return the least common multiple value, and K[cycles] denotes
the set of cycles of all FL traffic.

2) Time Slot Size: As defined by CQF, a scheduling cycle
SC should be divided into several time slots with the same
duration T . Thus, the number of time slots in each scheduling
cycle is Tnum = SC/T . To avoid data packets conflicting with
each other in the same time slot, the value of T should be within
[Tmin, Tmax].
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For the minimum value Tmin, it means the considered inte-
grated networks should be able to accommodate the largest size
of the FL traffic, i.e.,

Tmin = τsend + τprop + τproc + τqueue + τsync, (5)

where

τsend =

{
max(K[sizes])

Bacc , if ACC = True,

max(K[sizes])
Bcore , otherwise,

(6)

where τsend, τprop, τproc, τqueue, and τsync denote the packet
sending, propagating, processing, queuing, and synchroniz-
ing delays between any two adjacently connected nodes, re-
spectively. In addition, max(·) is the function to return the
largest value, K[sizes] denotes the set of data sizes of all
FL traffic, and Bacc = Racc log2(1 + pi,j |hi,j,k|2/μ2), ∀i ∈
I, j ∈ Ji, k ∈ Kj and Bcore denote the wireless and wired link
bandwidths, respectively. Here, ACC is True indicates that the
traffic is transmited between an IGW and a wireless TSN switch.
Also, Racc is the frequency band of the wireless networks, pi,j
is the transmission power, |hi,j,k|2 is the channel gain between
wireless TSN switch j and IGW k, and μ2 is the Gaussian noise.

For the maximum value Tmax, it means the size of time slots
should be larger than the greatest common divisor of the set of
traffic cycles, i.e.,

Tmax = GCD(K[cycles]), (7)

where GCD(·) is the function to return the greatest common di-
visor value. In addition, the scheduling cycle should be divisible
by T , i.e.,

SC % T = 0. (8)

3) Sending Time of FL Traffic: In each FL round, FL traffic
is transmitted among IGWs, field servers, and a factory server
bottom up or top down. In either case, however, the sending time
of each FL traffic should be smaller than its traffic cycle. In this
way, packets of different traffic cycles can be prevented from
preempting limited NIC resources in the meantime. Hence,

0 ≤ tk[st] < tk[cycle], ∀k ∈ K. (9)

Note that the sending time tk[st], namely injecting packets of
traffic k into which time slots within each scheduling cycle,
is determinied by a centralized network controller that is in
charge of global resource scheduling. In addition, similar to the
scheduling cycle, the traffic cycle should also be divisible by T ,
i.e.,

tk[cycle] % T = 0, ∀k ∈ K. (10)

4) FL Traffic Transmission: With the sending time decisions,
the occupied temporal resources for each time slot of the current
scheduling cycle can be calculated, that is,

Cs =
∑
k∈K

∑
x∈tk[pnum]

Ωs(p
x
k) · tk[psize], ∀s ∈ [1, Tnum], (11)

where Ωs(·) is an indicator function, and pxk is the x-th packet of
traffic tk. If Ωs(p

x
k) = 1, the packet pxk is injected into time slot

s, otherwise 0. In particular, each packet can only be injected
into no more than one time slot, i.e.,∑

s∈Tnum

Ωs(p
x
k) ≤ 1, ∀k ∈ K,x ∈ [1, tk[pnum]]. (12)

Note that since all packets stored in the sending buffer need
to be sent before the start of the next time slot, the size of the
total packets within each time slot cannot exceed its maximum
capacity. Hence,

0 ≤ Cs ≤ Cmax
s , ∀s ∈ [1, Tnum], (13)

whereCmax
s is the maximum capacity of time slot s. Note that the

deterministic transmission guarantee in TSN is to reserve band-
width resources for traffic in advance. For FL traffic, the traffic
information can be available in advance and a temporal resource
allocation policy is determined accordingly for transmission.
However, for burst traffic, it is often difficult to determine a
dynamic resource allocation policy to support real-time traffic
due to information uncertainty. To ensure that the reserved
resources are sufficient while avoiding resource wasting, we
consider to reserve bandwidth in a statistical way by considering
the long-term traffic features to accommodate the burst traffic,
and the rest of link bandwidth resources are utilized by FL traffic.
As such, FL traffic can be co-transmitted with burst traffic within
the considered TSN scenario.

5) Multiple Traffic Requirements: Based on the above defi-
nitions, the end-to-end delay T e2e

k , jitter Je2e
k , and packet loss

PLe2e
k for each traffic can be obtained, namely,

T e2e
k = (Hk + 1) · T, ∀k ∈ K,

Je2e
k =

∣∣∣∣∣∣pxk[de2e]−
1

tk[pnum]

∑
x∈tk[pnum]

pxk[de2e]

∣∣∣∣∣∣ , ∀k ∈ K,

PLe2e
k =

∣∣∣∣∣∣tk[pnum]−
∑

x∈tk[pnum]

∑
s∈Tnum

Ωs(p
x
k)

∣∣∣∣∣∣ , ∀k ∈ K,

(14)

whereHk is the number of network nodes that traffic tk traverses.
Note that the jitter of each traffic is the delay variance of all its
packets. Here, pxk[de2e] denotes the end-to-end delay of the x-th
packet of traffic tk, and 1/tk[pnum]

∑
x∈tk[pnum] p

x
k[de2e] is the

average delay of all packets for traffic tk. The jitter of each
traffic requires the gap between both values do not exceed the
required jitter. The definition of packet loss is the same. Only
when the above requirements are satisfied simultaneously, the
FL traffic then can be transmitted with a deterministic service
quality guarantee.

C. Multi-Objective Optimization Problem Formulation

Since the learning accuracy of server-side models and the
scheduling capability of the integrated networks are mutually
reinforcing, both metrics should be jointly considered to maxi-
mize the overall system performance. In particular, the presented
FL framework requires making the best time slot allocation
decisions for deterministic model parameter transmission over
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the wireless and wired integrated TSN. To this end, we formulate
the multi-objective resource scheduling problem as:

P : max
α

ξ |A(θr)|+ (1− ξ) |Sr|

s.t. T e2e
k ≤ tk[de2e], ∀k ∈ K, (15a)

Je2e
k ≤ tk[je2e], ∀k ∈ K, (15b)

PLe2e
k ≤ δ, ∀k ∈ K, (15c)

T ∈ [Tmin, Tmax],

(4), (8), (9), (10), (12), and (13), (15d)

where α = {αi,j,k}∀i∈I,j∈Ji,k∈Kj
denotes the temporal re-

source allocation decision, and αi,j,k ∈ [1, Tnum] is a discrete
value which corresponds to the sending time of each FL traffic
defined in (9). In addition, |A(θr)| ∈ [0, 1], ∀r ∈ R denotes
the learning accuracy of the global model with respect to
the aggregated parameters θr, and |Sr| ∈ [0, 1] denotes the
scheduling success ratio in FL round r which is the ratio of
the number of successfully scheduled traffic to the number of all
traffic. In the proposed DetFed framework, scheduling success
ratio and learning accuracy are both important to accelerate
FL convergence. A high scheduling success ratio is helpful to
aggregate more updated model parameters from the distributed
IoT devices, and a higher learning accuracy indicates a better
collaborative learning performance. This paper aims to jointly
optimize both objective components to efficiently obtain the
optimal FL model parameter θ�. Thus, the weight coefficient
ξ ∈ (0, 1) is to balance the importance between both objective
components. Constraints (15a), (15b), and (15c) guarantee the
traffic requirements can be satisfied to provide FL traffic with
deterministic transmission support. Here, δ is a tiny constant
value. Constraint (15d) ensures the time slot duration T of the
considered integrated network is set within a valid range, and
constraints (4), (8), (9), (10), (12), and (13) guarantee proper
network resource scheduling.

The relationship between the resource allocation decision and
the objective function is as follows. An appropriate decisionα is
helpful to distribute the global FL model from the field servers
or factory server to more IoT devices and to aggregate more
updated FL models from the IoT devices, thereby obtaining a
higher scheduling success ratio |Sr|. Moreover, with decision
α, more dispersed data held by the IoT devices can be utilized
to sufficiently optimize the FL model parameters θ in the local
model training stage, which further improves learning accuracy
|A(θr)|.

Problem P is a multi-objective stochastic optimization prob-
lem. The problem is “multi-objective” because the learning
accuracy and scheduling success ratio are jointly considered to
achieve a faster FL convergence. The problem is “stochastic” due
to the resource scheduling decisions are determined in presence
of temporal dynamics of available time slot resource during
the FL process. In addition, the first term of P (i.e., learning
accuracy) is expressed by an implicit function, and it is difficult
to accurately characterize the mapping relationship between
the decision variables and objective function, which further

complicates decision making process. In particular, the available
time slot capacity constraint is coupled with temporal resource
scheduling decisions in terms of time and the amount of the
scheduled traffic, which however have to be determined without
foreseeing future network dynamics. Furthermore, according
to the definitions of optimization components, the objective
function is non-convex. Since optimizing variable α is integer,
problemP is an integer optimization problem with a non-convex
objective function. As such, the optimal variable α cannot be di-
rectly obtained via existing optimization methods. To approach
the optimal solution, we consider DRL-based approaches to
design a dynamic resource scheduling algorithm, which can
make the optimal temporal resource allocation decisions and
thus solving the formulated problem in an efficient way.

V. DYNAMICSCHED: A DYNAMIC RESOURCE SCHEDULING

ALGORITHM FOR FL TRAFFIC

In this section, we first transform the multi-objective opti-
mization problem into an MDP, and then propose a model-free
DRL-based resource scheduling algorithm, named Dynamic-
Sched, to solve it. The computational complexity analysis of
the DynamicSched is also provided.

A. MDP Transformation

MDP is a temporal decision making process, which is gen-
erally utilized to simulate the stochastic policies and rewards
of learning agents in the environment with Markov property.
Here, Markov property refers to that given the present state
and all the past states of a random process, the conditional
probability distribution of the next state depends only on the
present state. In this paper, the formulated problem P is to
design a dynamic resource scheduling policy to maximize the
learning accuracy of server-side models and the scheduling ca-
pability of the considered networks while satisfying constraints,
which falls into the MDP. To optimize FL performance over
the time-sensitive industrial IoT, we reformulate the resource
scheduling problem P as an MDP. As shown in Fig. 3, we adopt
a fully-centralized architecture proposed by IEEE 802.1Qcc
in the control plane, and the central controller is modeled as
an agent [34]. In each FL round, the agent can observe the
traffic information and network state st, t ∈ [1, |K|], and take
temporal resource allocation decision at, t ∈ [1, |K|] traffic-by-
traffic. Here, |K| =∑i∈I

∑
j∈Ji

Kj is the total number of FL
traffic in each FL round. This means that in the MDP, the time
index t denotes a traffic index from the traffic set that needs
to be scheduled. To learn an optimal policy π�

ω parameterized
by ω, that can accurately map state st, t ∈ [1, |K|] to decision
at, t ∈ [1, |K|], the corresponding reward zt, t ∈ [1, |K|] is fed
back from the network environment, and the state is transformed
into new state st+1, t ∈ [1, |K|] accordingly [35]. In the MDP,
three core elements, i.e., state, action (i.e., decision), and reward,
are defined as follows.
� State: In FL round r, the agent collects traffic information
Φt and the remaining time slot capacities Ψr

i,j,p from the
industrial IoT devices and TSN switches. Then, the state
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Fig. 3. Illustration of the proposed DynamicSched algorithm.

st ∈ S of the considered TSN can be defined as

st = {Φt,Ψt
i,j,p}, ∀k ∈ Kj , j ∈ Ji, i ∈ I, (16)

where Φt � {tk}k∈Kj
denotes the features of traffic tk that

is received at round r, and Ψt
i,j,p denotes the remaining

capacities of each receiving queue on port p ∈ P for each
time slot within a scheduling cycle.

� Action: Based on the observed state and the parameterized
policy, the agent can make the temporal resource allocation
decisions to determine which time slot is scheduled to
transmit tk, thereby supporting deterministic transmission
for FL traffic. Namely,

at =

{
argmax

at
ε∈A

Q(st, atε), if ε ≥ ε0 −N,

atrand, otherwise,
(17)

Each action element is an interger value reshaped into a
range of [0, tk[cycle]/SC − 1]. The action indicates which
time slot the FL traffic should be injected. Note that each
traffic can only be injected into one time slot to be trans-
mitted. Here, ε0 ∈ (0, 1] is an initial probability value, and
N is a decay factor for each learning step.

� Reward: Once the agent takes action at, it will obtain a
reward to evaluate how good the action is under state st.
Aiming at maximizing the learning accuracy and schedul-
ing success ratio simultaneously, the reward function of the
DynamicSched algorithm can be given by

zt=

⎧⎨
⎩
Vsucc + Zfi(θi) · 1{mod(r, rg) �= 0}, if success,
Vsucc + Zfa(θ) · 1{mod(r, rg) = 0}, if success,
Vfail, if failed,

(18)
where

Zfi(θi) = ξ |Afi(θ
r
i )|+ (1− ξ) |Sr| , ∀i ∈ I, (19)

and

Zfa(θ) = ξ |Afa(θ
r)|+ (1− ξ) |Sr| . (20)

There are three cases for the reward. When the current
FL traffic is scheduled successfully, the agent will ob-
tain a positive reward, i.e., Vsucc + Zfi(θi), ∀i ∈ I or
Vsucc + Zfa(θ), which are consistent with the two-level
aggragation scheme in DetFed. Here, Vsucc is a positive
constant value, and Afi(θ

r
i ), ∀i ∈ I and Afa(θ

r) denote
the learning accuracies on the model parameters after field
aggregation (i.e., 1{mod(r, rg) �= 0}) and factory aggrega-
tion (i.e., 1{mod(r, rg) = 0}), which are given by (1) and
(2), respectively. On the contrary, the agent will obtain a
negative constant value Vfail to penalize the inappropriate
decisions. Obviously, the reward is related to the average
learning accuracy and scheduling success ratio in the cur-
rent FL round. With the obtained reward, the parameterized
policy πω can be optimized during the training stage until
algorithm converges.

In the MDP, the goal of the agent is to find the optimal
temporal resource allocation policy π�

ω ∈ Π that can maximize
cumulative discounted reward, namely,

P′ : max
πω∈Π

E

[ ∞∑
ρ=0

γρzt+ρ|(st, at;πω)

]

s.t. (4), (8), (9), (10), (12), (13), and (15a)-(15c), (21a)

where γ ∈ [0, 1] denotes the discount factor. Note that policy
πω specifies the way the central controller adopted to schedule
temporal resources according to the observed states in each
scheduling cycle.

B. D3QN-Based Resource Scheduling Algorithm

The motivation to solve the MDP problem via deep RL algo-
rithms are due to the following two aspects: (1) In the considered
TSN scenario, it is difficult to obtain the complete information
on state transition probabilities which is required to apply MDP
algorithms (e.g., Relative Value Iteration) due to large state and
action spaces; (2) The problem size is large, the convergence of
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conventional value iteration algorithms is time consuming [36].
However, deep RL algorithms can solve the MDP problem by of-
fline training and online implementation with a low latency even
when the problem size is large, which can be more efficiently
applied in practical systems. Compared to traditional DQN-
based algorithms, the D3QN algorithm can significantly reduce
overestimation for resource scheduling decisions. Moreover, the
D3QN algorithm can identify the correct resource scheduling
decision more quickly during policy evaluation and achieve
much better decision performance via a dueling DQN module.
The above designs contribute to better approximation of the
optimal state values via frequent updating of the value stream,
thus improving the stability of resource scheduling optimization
especially when the number of scheduling decisions is large.
Thus, we consider the D3QN algorithm to solve the MDP. As
shown in Fig. 3, we propose a learning-based dynamic resource
scheduling algorithm based on D3QN, named DynamicSched.
In the algorithm, a double DQN and a dueling DQN modules are
adopted to overcome the decision overestimation problem and
achieve much better performance [37], [38]. For the double DQN
module, an online network is to evaluate the ε− greedy policy,
and a target network is to estimate its value. With this design,
the original max operation in the target Q-value estimation of
DQN algorithms can be decomposed into decision selection
and decision evaluation, therefore effectively reducing overes-
timation for decisions. For the dueling DQN module, the lower
layers of online and target networks adopt fully-connected (FC)
structures parameterized by ϕ and ϕ′, respectively, while the
following layers of both networks are endowed with two streams
of FC layers instead of the original single stream. Here, the two
streams represent the value function V (st;ω,ϕ′) and advantage
function A(st, at;ω,ϕ) that sharing a common feature learning
layers, that is, the lower layers of online and target networks. In
the output aggregating layer, the two streams are combined to
produce a single state-decision Q-value function, namely,

Q(st, at;ω,ϕ,ϕ′) = V (st;ω,ϕ′)

+

(
A(st, at;ω,ϕ)− 1

|A|
∑
at

A(st, at;ω,ϕ)

)
,

(22)
where V (·) is an one-dimension scalar, and A(·) is an |A|-
dimension vector. Here, |A| is the dimension of decision at.
With this improvement, the value and advantage functions can
be estimated separately, such that the effect of state st and
decision at on Q-value estimation can be taken into account
simultaneously and the correct decision can be identified more
quickly during policy evaluation. Note that the better decision
at, the greater the advantage. For notation simplicity, we omit
ϕ and ϕ′ in the following context.

In this subsection, we illustrate the D3QN-based dynamic
resource scheduling algorithm as the following steps, which is
presented in Algorithm 2.

1) Algorithm Initialization: Once the training stage is
started, the parameters of the online and target networks of the
centralized learning agent will be initialized and then updated
step-by-step. Note that only one FL traffic is scheduled in each

Algorithm 2: DynamicSched.

learning step, and thus the size of the learning step equals
to the total number of the traffic that needs to be scheduled.
Additionally, an experience replay buffer B is instantiated with
capacity D to store the sampled experiences that can be uti-
lized to update the algorithm parameters. Then, the considered
network environment is reset to generate an initial state s1.

2) Experience Sampling: When the initialization stage is
completed, the learning process of the agent can start by sam-
pling interacted experiences from the network environment
and storing them into replay buffer B, which can be denoted
as a five-element tuple, i.e., {st, at, zt, st+1, done}. Specifi-
cally, the learning agent makes temporal resource allocation
decision at with regard to current state st. Note that decision
at = αi,j,k, ∀i ∈ I, j ∈ Ji, k ∈ Kj is made by alternating two
policies, i.e., ε− greedy policy and random policy. Then, deci-
sion at is executed to allocate time slot resources for current
FL traffic tk, and an immediate reward zt can be obtained
from the network environment via performing Algorithm 1. As
such, the network state will be transformed into new state st+1,
and the information on the available time slot resources of the
considered TSN can be obtained for scheduling the next traffic.
In addition, done ∈ {True, False} label is utilized to indicate
whether the time slot resources are exhausted up to now. The
corresponding experience tuple is stored in replay buffer B for
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algorithm training, and it will replace the oldest tuple when the
replay buffer is full.

3) Neural Network Training: As previously described, the
online and target networks are trained using the sampled ex-
periences. In each algorithm step, the learning agent randomly
selects a minibatch ofDb experiences from the replay buffer and
updates the parameters of both networks.

Firstly, to update the online network, the loss function can be
expressed by

L(ω) = E{sd,ad,zd,sd+1}�B(D)

[
(yd −Q(sd, ad;ω))2

]
, (23)

where

yd = zd + γQ− (sd+1, argmaxaQ(sd+1, ad;ω);ω−) , (24)

is the target Q-value. Here, ifdone = True, thenyd = zd. Then,
parameter ω of the online network can be trained step-by-step
via minimizing the loss function, i.e.,

∇ωL(ω) = E{sd,ad,zd,sd+1}�B(D)[(y
d −Q(sd, ad;ω))·

∇ωQ(sd, ad;ω)]. (25)

Secondly, to guarantee the stability of the training process,
a soft-updating method is adopted, and the parameters ω− of
the target network are slowly updated by tracking the online
network, namely,

ω− = κω + (1− κ)ω−, (26)

where κ ∈ (0, 1] is the update ratio of the target network.
Thirdly, the DynamicSched adopts the ε− greedy policy to

keep balance between exploitation and exploration for making
accurate decision at, in which the possibility factor ε decreases
after each learning step, i.e., ε = ε0 −N.

Remark1: Since the number of input neurons of the agent
is related to the devices’ number, the network topology and
device number cannot change during the training process. If
new devices apply to participate in the DetFed framework,
the number of input neurons of the agent should be adjusted
accordingly, and the proposed DynamicSched algorithm needs
to be retrained according to the new network topology. After a
certain number of iterations, the updated scheduling decisions
are obtained and can be deployed in the central controller to
support DetFed operation.

Computation complexity analysis: As shown in Fig. 3, the
DynamicSched algorithm is composed of an online network and
a target network, and both of them are instantiated by an FC
neural network. The computation complexity of the proposed
resource scheduling algorithm is mainly correlated to the FC
neural networks and the learning process. The computation
complexity of an FC neural network is generally denoted by
O(
∑

l(2Ml−1 − 1)Ml) [41], where l ∈ [1, N ] is the index of
hidden layers and Ml is the corresponding neuron number. No-
tably, taking into account the dueling structure is adopted in the
DynamicSched algorithm, the output layer consists of two parts,
i.e., state value function and state-dependent decision advantage
function, and hence MN = Mstate

N +Mdecision
N . Here, Mstate

N

and Mdecision
N are the dimensions of the above two functions.

Fig. 4. Considered network topology in the experiment.

For the learning process, the computation complexity is corre-
lated to the step number |K| and episode number |Enum|. To
sum up, the total computation complexity of the DynamicSched
can be denoted as |K| × |Enum| × 2O(·).

The relationship between Algorithms 1 and 2 is as follows.
Overall, both algorithms are utilized to support the proposed
DetFed framework, and Algorithm 1 requires the scheduling
decision made by Algorithm 2 in each FL round. Specifically,
Algorithm 1 is to accelerate collaborative DNN model training
process, which is operated round-by-round. Algorithm 2 is
proposed to make network resource allocation decisions, which
is operated episode-by-episode. In each episode, a learning
agent deployed in a central controller acquires network states
and makes decisions to support deterministic model parameter
transmission during the operation of Algorithm 1.

VI. PERFORMANCE EVALUATION

In this section, extensive simulations are carried out to eval-
uate the proposed solutions for accelerating and optimizing FL
over the wireless and wired integrated TSN.

A. Experimental Setup

The network topology is shown as Fig. 4, where 30 devices,
3 field servers, and a factory server are considered to support
DetFed operation which are connected as a tree topology by
10 TSN switches. Thus, there are 66 FL traffic needs to be
scheduled within one scheduling cycle (i.e., one FL round).1 The
link bandwidth for the wireless and wired integrated TSN is set
to 1 Gbit/s unless specified. Note that 90% of the bandwidth is
utilized to support DetFed operation, and 10% of the bandwidth
is reserved to transmit other industrial traffic, such as control-
and/or safety-critical traffic. The propagating delay τprop, pro-
cessing delay τproc, queuing delay τqueue, and synchronizing
delay τsync are set to 10 µs. The traffic period K[periods] is set
to 40 ms, and thus the scheduling cycle SC is 40 ms. The size
of time slots within each scheduling cycle is set to 10 ms. For
the DynamicSched algorithm, the online and target networks are
with [Sdim, 1000, 500, Adim] neurons, respectively. Here, Sdim

is the dimension of the observed environment state, and Adim

is the time slot number of the considered network scenario. The
update factor τ of target network is set to 0.005, which is decided
by the scheduling cycle SC and the time slot size. The reward

1For model parameter distribution, three FL traffic are distributed from the
factory server to the field servers, and thirty FL traffic are distributed from
the field servers to the devices. For model parameter uploading, FL traffic is
uploaded in the opposite direction, and the number of FL traffic is the same.
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TABLE II
SIMULATION PARAMETERS [35], [39]

TABLE III
ACRNN STRUCTURE [40]

factor Vsucc and penalty factor Vfail are set to be 0.1 and -0.1,
respectively. Other important simulation parameters are listed
in Table II.

We consider an attention-enhanced convolutional recurrent
neural network (ACRNN), which contains 10 layers, i.e., two
convolutional (Conv) layers, two Maxpool layers, a flatten layer,
an FC layer, a forward gated recurrent unit (GRU) layer, a
backward GRU layer, an attention layer, and a softmax output
layer. The detailed FL model information is shown in Table III.
The total trainable model parameters are around 15,099. Here,
each parameter is quantized to 4 B, and thus the data size of the
model parameters K[sizes] is around 58.98 KB.

In the simulation, we utilize two vibration-based datasets to
train the ACRNN model: (1) AWE dataset,2 in which each data
sample is a vibration signal segment attached with a label to
represent the health status of an industrial equipment, such as
“Normal” and “Fault-6 mm”; and (2) CWRU dataset,3 in which
each data sample is also a vibration signal segment attached
with a label to indicate the fault location, such as “Inner Race”
and “Outer Race”. In both datasets, the number of data samples
are 23,436 and 479, respectively, and the ratio of training set to
testing set is 9:1. Notably, the considered ACRNN model should
be trained on a non-independent and identical distribution (non-
IID) dataset, which is dispersed at the distributed participating

2Online available. https://github.com/Intelligent-AWE/DeepHealth
3Online available. https://csegroups.case.edu/bearingdatacenter/pages/

download-data-file

devices and each device has only a few classes of data samples.
Specifically, the samples of both datasets are sorted by their data
label, respectively, which are further divided into 60 subsets with
the same sample volume. Then, each device randomly selects 2
subsets as its local training set.

The proposed solutions are compared to the following bench-
mark schemes.
� Centralized Training (CT): This scheme requires upload-

ing all the dispersed data to the factory server to con-
duct model training. Although it can achieve the optimal
learning accuracy, the data privacy cannot be preserved
effectively.

� The DetFed without Field Aggregation (DetFed w.o.): In
this scheme, all the updated model parameters are only
aggregated by the factory server, which occupies more
bandwidth resources of industrial buses.

� Double Deep Q-Network (DDQN): In this scheme, the
decisions are dynamically made via a DDQN algorithm, in
which the Q-network is endowed with two fully-connected
hidden layers and each layer is with 1000 neurons. Other
learning parameters are the same as the DynamicSched.

� Random-based Scheme (RS): This scheme adopts random
policy to allocate temporal resources for each FL traffic,
and all available decisions are made with an equal proba-
bility.

B. Evaluation of DetFed Scheme

1) Learning Performance: Fig. 5(a) shows the convergence
performance of the proposed DetFed scheme with respect to
different learning rates for the ACRNN-based model. When the
learning rate lr = 0.0025, the proposed scheme achieves the
highest testing accuracy and the lowest testing loss, respectively,
although it tends to decline around 60 rounds before converging
to the optimal accuracy. In addition, it can be seen that a larger
learning rate (e.g., lr = 0.005) may incur the training process
because the optimal value of accuracy might be skipped, and
thus leading to an inferior convergence performance. Although
a small learning rate helps stablizing the training process, the
ACRNN-based model may be trapped in a local optimum, and
consequently may need to consume more temporal resources
to support model parameter transmission and achieve model
convergence. A similar simulation is carried out on the CWRU
dataset. As shown in Fig. 5(b), the highest testing accuracy and
the lowest testing loss can be obtained when the learning rate is
0.005.

2) Impact of Factory Aggregation Interval: Fig. 6 shows the
convergence performance of the proposed DetFed scheme with
respect to different factory aggregation intervals. In the DetFed
framework, the factory aggregation is performed every rg FL
rounds, in which the parameters aggregated at the field servers
are further aggregated at a factory server. We can obtain several
important observations from the simulation results. Firstly, when
the factory aggregation interval rg is set to 16, the highest
accuracy on the AWE dataset can be obtained despite an inferior
training performance is exhibited before 40 rounds. Secondly, if
we set the factory aggregation interval rg as an appropriate value,

Authorized licensed use limited to: Memorial University. Downloaded on April 12,2024 at 03:34:26 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/Intelligent-AWE/DeepHealth
https://csegroups.case.edu/bearingdatacenter/pages/download-data-file
https://csegroups.case.edu/bearingdatacenter/pages/download-data-file


5174 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 5. Testing accuracy and loss of DetFed with respect to different learning
rates.

the training process can be effectively accelerated. Specifically,
the proposed scheme with rg = 16 achieves the fastest conver-
gence after 170 training rounds, which decreases convergence
round number by 16 and 50 compared with rg = 8 and rg = 24,
respectively. Thirdly, the proposed DetFed scheme achieves
almost the same testing accuracy at the end of the training
process. This indicates that the TSN-enhanced DetFed scheme
can provide efficient and deterministic transmission services for
model parameter aggregation and distribution among the three
layers.

3) Impact of Aggregation Node: As shown in Fig. 7, we
evaluate the testing accuracy of the proposed DetFed scheme
and benchmarks in terms of different parameter aggregation
locations. The result shows that all the schemes can achieve
model convergence within 300 training rounds. Intuitively, the
CT scheme only takes a few training rounds to converge (around
50 rounds) and can converge to an especially high level (i.e.,
> 99%). This is because a centralized dataset has been stored
at the factory server that were collected from the dispersed
industrial IoT devices before training. Such a scheme indeed can
obtain a satisfactory convergence performance without param-
eter aggregation demand, but it inevitably exists the problems

Fig. 6. Testing accuracy of DetFed with respect to different factory aggregation
frequencies.

Fig. 7. Testing accuracy comparison among the proposed scheme and bench-
marks with respect to different parameter aggregation locations.

of data transmission overhead and data privacy leakage which
are critical issues in industrial IoT scenarios. Although the
distributed learning schemes, namely DetFed and DetFed w.o.,
only converge to a relatively low level (i.e., ≈ 90%), they can
effectively save bandwidth resources of industrial buses and
preserve privacy for industrial raw data. In particular, the DetFed
scheme can reduce the number of training rounds until model
convergence by 29.17% compared with the DetFed w.o. scheme.
The reason is that directly aggregating model parameters at the
factory server may lead to an unstable learning process due
to the non-IID data distribution, which impedes the ACRNN
model to obtain the global optimal parameters and slows down
the convergence speed. On the contrary, the proposed DetFed
scheme stabilizes the learning process by alternately aggregating
model parameters among a factory server and field servers, such
that the global optimal parameters can be efficiently obtained
based on local optimal parameters and thus accelerating model
convergence.

As shown in Figs. 6 and 7, the proposed DetFed framework
can effectively accelerate the collaborative training process
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Fig. 8. Convergence performance comparison among different algorithms.

in the considered network topology. However, this result is
achieved under the assumption that the IoT connections are
stable. In harsh network scenarios, where serious interference
and electrical noises exist, and the network bandwidth resources
utilization is not high, the transmission delay for FL model
parameters may not be satisfied. In particular, when some IoT
devices are disconnected, the updated model parameters will
not be uploaded to the aggregation servers, which further slows
down the convergence rate.

C. Evaluation of DynamicSched Algorithm

1) Convergence Performance: As shown in Fig. 8, the con-
vergence performance of the DynamicSched with respect to
episodes is evaluated. It can be seen that all the learning-based
resource scheduling algorithms have converged. In particular,
the DynamicSched achieves a higher episode reward compared
with other benchmarks, which indicates that the proposed Dy-
namicSched is capable of making judicious allocation decisions
for temporal resources of the considered TSN. This is because
the DynamicSched adopts a D3QN-based architecture, in which
an online-target double module and a value-advantage dueling
module are utilized to improve algorithm performace. Specifi-
cally, the dueling module is helpful to capture which network
states are (or are not) useful without having to learn the effect
of each resource allocation decision for each network state, and
thus identifying the appropriate decision more judiciously.

2) Impact of Bandwidth Resources: Fig. 9 shows average
scheduling success ratio with respect to different bandwidth
resources over 100 simulation runs. The result shows that the
proposed algorithm can effectively improve average scheduling
success ratio compared with the benchmark algorithms, which
indicates that temporal resource allocation is optimized. In
specific, when the amount of bandwidth resource is 1 Gbit/s,
the proposed DynamicSched improves the average scheduling
success ratio by 16.1% and 21.2% compared with the DDQN
and RS benchmarks, respectively. This is because the proposed
learning-based algorithm can allocate temporal resources for

Fig. 9. Average scheduling success ratio comparison among the proposed
scheme and benchmarks with respect to different bandwidth resources.

Fig. 10. Average scheduling success ratio comparison among the proposed
scheme and benchmarks with respect to different bandwidth reservation ratios.

FL traffic more reasonably, which is helpful to satisfy the de-
terministic transmission requirements of FL traffic. In addition,
the performance gain achieved in bandwidth-sufficient scenarios
(e.g., 1 Gbit/s) is larger than that in bandwidth-limited scenarios
(e.g., 0.6 Gbit/s), as compared to the DDQN benchmark. The
result indicates that integrating the dueling module into the
double module can enhance the decision-making capability of
the proposed algorithm for temporal resource allocation, thereby
improving the scheduling success ratio, especially when the
bandwidth resource is sufficient.

3) Impact of Reserved Bandwidth Ratio: Fig. 10 shows the
average scheduling success ratio in terms of different bandwidth
reservation ratios. Taking the value of 0.9 as an example, when
the bandwidth reservation ratio is set to 0.9, 90% of bandwidth
resources are utilized to support DetFed operation and 10% of
bandwidth resources are reserved to support the co-transmission
of burst traffic. As expected, the DynamicSched algorithm can
effectively improve the average scheduling success ratio as
compared with the benchmarks. This is because the proposed
algorithm can better allocate bandwidth resources to support FL
traffic transmission with satisfied deterministic requirements of
delay, jitter, and packet loss. In addition, with the increase of the
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Fig. 11. Average failed scheduling ratio comparison among the proposed
scheme and benchmarks with respect to different bandwidth reservation ratios.

Fig. 12. Average scheduling success ratio comparison among the proposed
scheme and benchmarks with respect to different time slot sizes.

bandwidth reservation ratios, the average scheduling success
ratios achieved by the DynamicSched, DDQN, and RS algo-
rithms increase. In particular, the proposed algorithm improves
the average scheduling success ratio by 15.3% to 16.1%, and by
41.8% to 21.2%, as compared with the DDQN and RS bench-
marks, respectively. The underlying reason is that more available
bandwidth resources can be utilized to determinately transmit
FL traffic over the considered TSN scenario. To demonstrate
the algorithm performance in the case of failed scheduling,
we have presented the average failed scheduling ratio of the
proposed DynamicSched algorithm with respect to bandwidth
reserved ratios. As shown in Fig. 11, the DynamicSched achieves
the lowest average failed scheduling ratio compared to all the
benchmarks. In addition, the failed scheduling ratio decreases
with the amounts of reserved bandwidth resources. The result
indicates that the DynamicSched can achieve good performance
due to effective resource utilization.

4) Impact of Time Slot Sizes: Fig. 12 shows the impact of the
time slot sizes on scheduling performance. The result shows that
the learning-based algorithms, i.e., DynamicSched and DDQN,
can achieve higher average scheduling success ratio than that

of RS benchmark. The reason is that learning-based algorithms
enable the deterministic requirements of FL traffic to be sat-
isfied efficiently via judicious temporal resource scheduling.
Moreover, with the increase of the time slot sizes, the average
scheduling success ratio of the compared algorithms increase.
This is because that more available temporal resources can
be utilized to schedule FL traffic to satisfy their deterministic
delay, jitter, and packet loss requirements. In particular, the pro-
posed DynamicSched algorithm can achieve the highest average
scheduling success ratio than the benchmarks. When the size of
time slot is 10 ms, the DynamicSched can increase the average
scheduling success ratio by 2.2% and 16.9%, as compared with
DDQN and RS benchmarks, respectively.

VII. CONCLUSION

We have presented a new deterministic FL framework (i.e.,
DetFed) for the time-sensitive industrial IoT in combination
with 6G-oriented ultra-reliable and low-latency communication
techniques. We have proposed a DRL-based resource scheduling
algorithm to make the optimal temporal resource allocation
decisions for facilitating efficient DetFed, which aggregates
more device-side models for obtaining an accurate global model.
Experimental results based on real-world non-IID dataset have
demonstrated that the proposed framework can significantly
accelerate FL convergence and improve learning accuracy as
compared with state-of-the-art benchmarks. By adopting the
wireless and wired integrated TSN and the CQF mechanism,
the DetFed can optimize the learning accuracy of FL without
affecting the co-transmission of burst traffic. For the future work,
we will study a mixed and online traffic scheduling scheme
for facilitating efficient FL over a large-scale and distributed
computing power network.
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