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Abstract—In this paper, we consider a multi-UAV enabled
wireless sensor network (WSN) where multiple unmanned aerial
vehicles (UAVs) gather data from multiple randomly moving
sensor nodes (SNs). We aim to minimize the long-term average
energy consumption of all SNs while satisfying their average data
rate requirements and energy constraints of the UAVs. We solve
the problem by jointly optimizing the multi-UAV’s trajectories,
communication scheduling and SN’s association decisions. In
particular, we formulate it as a multi-stage stochastic mixed
integer non-linear programming (MINLP) problem and design
an online algorithm that integrates Lyapunov optimization and
deep reinforcement learning (DRL) methods. Specifically, we first
decouple the original multi-stage stochastic MINLP problem into
a series of per-slot deterministic MINLP subproblems by applying
Lyapunov optimization. For each per-slot problem, we use model-
free DRL to obtain the optimal integer UAV-SN associations
and model-based method to optimize the UAVs’ trajectories and
resource allocation. Simulation results reveal that although the
communication environments change stochastically and rapidly,
our proposed online algorithm can produce real-time solution that
achieves high system performance and satisfies all the constraints.

I. INTRODUCTION

Due to its deployment flexibility, low cost, and formidible
data collection ability, wireless sensor network (WSN) has
been widely applied in battlefield surveillance, environmental
monitoring and target tracking [1]. Generally, a WSN consists
of a lot of sensor nodes (SNs) powered by batteries, which
are inconvenient and costly to replace or recharge. Because
the distance between SNs and the data collection center can
vary significantly in a WSN, the energy consumed on data
transmission may differ greatly, which can result in early energy
depletion for some sensors. The inherent battery constraint
unfairness problem has largely reduced the lifespan of WSNs.
Meanwhile, the maturity of unmanned aerial vehicle (UAV)
technology and the ever-decreasing manufacturing cost have
made the proliferations of UAV in civil and military areas
[2] - [4]. Using UAV as a mobile sink to collect sensing
data in WSNs can effectively mitigate the above mentioned
problems in conventional WSNs. Specifically, the UAVs can
fly closely to the SNs to reduce the energy consumed on data
transmission of SNs and prolong the lifetime of WSN [5].

Beside the consideration of energy consumptions of SNs on
communications, it is also important to design UAV trajectories
to reduce energy consumed on UAV propulsion for sustainable
UAV operations.

The joint optimization of trajectory and communication
resource allocation to achieve optimum energy efficiency has
been extensively studied. Zeng et al. [6] consider dispatching
a single UAV to communicate with multiple fixed SNs and
focus on minimizing the energy consumption of UAV under
the communication throughput constraints through trajectory
optimization. Given the UAV’s energy budget, [7] minimizes the
maximal energy consumption among all SNs. Zhan and Huang
[8] present a performance tradeoff between propulsion energy
of UAV and communication energy of SN. In particular, they
minimize the weighted sum energy consumption of UAV and
SNs by jointly optimizing UAV trajectory, mission time and the
wake-up scheduling. Unlike in [6] - [8] where a single UAV is
used to collect data, in [9], the authors consider using multiple
UAVs to collect data from fixed SNs in a “flying and hovering”
manner. By jointly optimizing the UAV trajectory, wake-up
scheduling and UAV-SN association, the mission completion
time and the energy consumption of the SNs are minimized.

Most of the exiting works assume that users’ locations are
fixed, and adopt offline algorithms to optimize the UAV’s
trajectory and resource allocation. In fact, in many scenarios
such as battlefield and mobile games, the locations of users and
the associated real-time transmission requirements can vary
frequently. Thus, an online real-time algorithm is needed to
optimize both the UAV’s trajectory and resource allocation.
In [10], Yang et al. consider a single-UAV enabled MEC
system to serve users of stochastic movements. They design
online UAV trajectory using a Lyapunov optimization method
to minimize the weighted sum average energy consumption of
ground mobile users under UAV average energy consumption
constraint. The recent work in [11] considers a multi-UAV
assisted downlink wireless network in which the ground
terminals are mobile. It designs 3D trajectories of the multi-
UAVs using a constrained Deep Q-Network to maximize the
real-time downlink capacity while guaranteeing that all ground
terminals are served within a deadline. The energy consumption
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of the UAVs, however, is not the major design concern. To serve
mobile users with multiple energy-constrained UAVs, both the
trajectories and resource allocation should be coordinated to
minimize the energy consumption of both UAVs and SNs while
satisfying the system performance requirements, which requires
fast online algorithms.

In this work, we employ multi-UAVs to undertake data
collection from mobile SNs of unknown mobility pattern. We
aim to design an online algorithm to minimize the weighted sum
transmission energy consumption of the SNs under the average
UAV energy consumption and SN transmission rate constraints.
This requires online decision of the UAV trajectory, UAV-
SN communication association, and communication resource
allocation. We formulate it as a multi-stage stochastic mixed
integer non-linear programming (MINLP) problem. To cope
with it, we adopt an integrated learning and optimization
framework. Firstly, we decouple the original problem into per-
stage deterministic MINLP subproblems by using the Lyapunov
optimization. Then, we solve each per-slot subproblem with a
proposed low-complexity algorithm. Specifically, we use model-
free DRL to tackle the hard combinatorial UAV-SN association
problem and model-based optimization to control the trajectory
and transmission time allocation for each UAV respectively.
Simulation results reveal that, the online algorithm not only
quickly generates high-quality solution, but also satisfies all
the long-term performance requirements.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-UAV enabled WSN consisting of
M UAVs and K mobile ground SNs. We denote M =
{1, 2, ...,M} and K = {1, 2, ...,K} as the sets of UAVs and
SNs, where K ≥M . The UAVs collect data from the ground
users in duration T with limited on-board battery energy. For
ease of illustration, we discretize duration T into a set of N
time slots equally denoted by N = {1, 2, ..., N}. For each
time slot, its length ∆ = T/N is chosen to be sufficiently
small, thus the positions of UAVs and users can be considered
to be unchanged in this slot [12].

We suppose that users follow the Gauss-Markov mobility
model [13]. Specifically, the velocity of user k (sk, k ∈ K)
at time slot n + 1 is vk[n + 1] = αvk[n] + (1 − α)v̄k +
σ̄
√

1− α2wk[n], where the vector wk[n] denotes an indepen-
dent random Gaussian distribution of zero-mean and variance
σ2. α ≤ 1 denotes memory level. v̄k and σ̄ are parameters
denoting the average speed and asymptotic standard deviation
of velocity, respectively. Accordingly, the location of sk at
time slot n+ 1 is pk[n+ 1] = pk[n] + vk[n]∆. We suppose
that UAVs know the locations of the users at current time slot
(e.g., via location report) but are uncertain of the users’ future
traces.

We assume that all UAVs start from their initial locations and
finally reach their predetermined destinations after a mission
period T . Each UAV flies at a fixed height h and gathers data
from ground users constrained by a maximum speed Vmax. The
trajectory of UAV m (um,m ∈ M) at time slot n is qm[n]
with qm[1] = qI,m and qm[N + 1] = qF,m representing the
um’s initial and final position respectively.

In order to avoid the interference among UAVs, we suppose
that all UAVs collect data using orthogonal frequency channels,
where each is allocated with a non-overlapping bandwidth
WHz. Meanwhile, each UAV receives data from its associated
users via time division multiple access (TDMA). Specifically,
for um, time slot n is further partitioned into K sub-slots
{δm,k[n]}Kk=1 with

∑K
k=1 δm,k[n] ≤ ∆, and sub-slot δm,k[n]

is the transmission time assigned to sk. To characterize the
association of sk with um, we define a binary variable xm,k[n],
where xm,k[n] = 1 indicates that sk associates with um at time
slot n and xm,k[n] = 0 otherwise. Furthermore, it’s assumed
that each user is served by at most one UAV at time slot n.

We characterize the UAV-SN links by probabilistic line-of-
sight (LoS) channel model [14]. Specifically, the LoS probabil-
ity of sk at time slot n is approximated to P(LoS, ρm,k[n]) =
1/(1 + ae−b(ρm,k[n]−a)), where a and b are parameters related
to environment, and ρm,k[n] = 180

π arctan( h
‖qm[n]−pk[n]‖ ).

Furthermore, we can obtain the expected channel power gain
as gm,k[n] =

P̂(LoS,ρm,k[n])g0

(h2+‖qm[n]−pk[n]‖2)
ι̃
2

, where P̂(LoS, ρm,k[n]) =

P(LoS, ρm,k[n]) + (1− P(LoS, ρm,k[n]))κ is the regularized
LoS probability, κ < 1 represents the attenuation factor due
to the non-line-of-sight (NLoS) channel propagation, ι̃ is the
path loss exponent, g0 is the channel gain at the reference
distance d0 = 1 m. Accordingly, the achievable uplink rate
from sk to um can be expressed as Rm,k = W log2(1 +

γm,k[n]

(h2+‖qm[n]−pk[n]‖2)ι
), where γm,k[n] =

PkP̂(LoS,ρm,k[n])g0
N0

,
ι = ι̃

2 , Pk is the fixed transmission power of sk and N0 is the
noise power. Therefore, we derive the expected transmission
data rate of sk from Rk[n] =

∑M
m=1 xm,k[n]Rm,k[n]δm,k[n].

Accordingly, the energy consumption at interval n of user sk
is Ek[n] =

∑M
m=1 xm,k[n]Pkδm,k[n].

In this paper, we ignore the communication energy and
adopt the existing mathematical model [6] to characterize the
propulsion energy of rotary-wing aircraft as Pm(vm[n])[n] =

C1(1 + 3
v2m[n]

v2tip
) + C2

√√
C3 +

v4m[n]
4 − v2m[n]

2 + C4v
3
m[n],

where vm[n] is the velocity of um during interval n, vtip
represents the tip speed of the rotor, and C1, C2, C3, C4 are
constants depending on the UAV’s weight and its aerodynamic
parameters [15]. During the time slot n, propulsion energy of
um is Em[n] = Pm[n]∆. And vm[n] = ‖qm[n+1]−qm[n]‖

∆ .
In our work, we aim to design an online algorithm to

minimize the long-term sum energy consumption of all SNs
under average energy constraints of UAVs, and average data
requirements of SNs. Specifically, we jointly optimize the
UAV trajectories and the communication resource allocation
by solving the following multi-stage stochastic optimization
problem.

(P1) : min
q[n],x[n],δ[n]

lim
N→∞

1/N
∑N
n=1

∑K
k=1wkEk[n], (1a)

s.t. lim
N→∞

1/N
∑N
n=1Rk[n] ≥ βk, ∀k, (1b)

lim
N→∞

1/N
∑N
n=1E {Em[n]} ≤ em, ∀m, (1c)∑M

m=1xm,k[n] ≤ 1,∀k, n, (1d)
xm,k[n] ∈ {0, 1}, ∀m, k, n, (1e)∑K
k=1δm,k[n] ≤ ∆, δm,k[n] ≥ 0, ∀m, k, n, (1f)

δm,k[n] ≤ xm,k[n]∆, ∀m, k, n, (1g)
‖qm[n+ 1]− qm[n]‖ ≤ Vmax∆, ∀m,n, (1h)
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‖qF,m − qm[n+ 1]‖ ≤ Vmax(N − n)∆,∀m,n, (1i)

where wk represents the fix weight of sk. The variable q[n]
denotes the location vector of UAVs at time slot n, i.e.,
q[n] = {qm[n]}. x[n] consists of UAV-SN associations, that is,
x[n] = {xm,k[n]}. δ[n] represents transmission time allocation
between SN and UAVs, i.e., {δm,k[n]}. (1b) represents the data
requirements of SNs. (1c) is the propulsion energy constraints
of UAVs. (1d) and (1e) are the association constraints. (1f)
and (1g) are the constraints on data transmission time. (1h) -
(1i) are the trajectory and speed constraints of the UAVs. Due
to randomness of the mobile users and uncertainty of channel
conditions, it is hard to satisfy the long-term constraints (1b)
and (1c) when making online decision without knowing the
SNs’ future locations. In the following, we adopt an integrated
learning and optimization method to solve (P1).

III. LYAPUNOV-BASED DECOUPLING OF (P1)

In this section, we transform the multi-stage stochastic
problem (P1) to per-slot deterministic problems for on-
line implementation. To cope with the long-term average
constraints (1b) and (1c), we introduce K virtual data
queues Y[n](i.e., {Yk[n]}Kk=1) and M virtual energy queues
Q[n](i.e., {Qm[n]}Mm=1). By setting Yk[1] = 0 and Qm[1] = 0,
the virtual queues are updated as

Yk[n+ 1] = max{Yk[n] + βk −Rk[n], 0},∀n ∈ N , (2)

Qm[n+ 1] = max{Qm[n] + Em[n]− em, 0},∀n ∈ N . (3)

Here, we denote Z[n] = {Q[n],Y[n]} as the system queue
backlogs. Then, the Lyapunov function L(Z[n]) and Lyapunov
drift [16] are given by

L(Z[n]) = 1/2(
∑K
k=1Y

2
k [n] +

∑M
m=1Q

2
m[n]), (4)

∆L(Z[n]) = E{L(Z[n+ 1])− L(Z[n])}. (5)
The corresponding drift-plus-penalty function is [17]:

D(Z[n]) = ∆L(Z[n]) + V E{Es[n]|Z[n]}, (6)

where Es[n] =
∑K
k=1 wkEk[n] denotes the weighted sum

energy consumption. The parameter V is for balancing the
system energy consumption and queue stability. To minimize
Es[n] while achieving stability of queue Z[n], we minimize
the D(Z[n]) in per slot.

Proposition 1: For queue backlog Z[n] at any time slot n,
the drift-plus-penalty D(Z[n]) is upper bounded by

D(Z[n]) ≤ C +
∑K
k=1Yk[n]E{βk −Rk[n]|Z[n]}+∑M

m=1Qm[n]E{Em[n]− em|Z[n]}+ V E{Es[n]|Z[n]},
(7)

here C is a finite constant determined by the maximum second
order moment of Rk[n] and Em[n].

Proof : The proof is omitted here due to the page limit. �
Next, we minimize the upper bound of D(Z[n]) opportunis-

tically given Z[n]. After removing the constant term in the
right-hand-side (RHS) of (7), we solve in each time slot n
to obtain the updated UAV location q[n+ 1], communication
time allocation δ[n] and the UVA-SN association x[n]. For
simplicity of exposition, we drop the index n, and replace
q[n+ 1] with q′. Then, the per-slot problem is formulated as

(P2) :min
q′,x,δ

∑M
m=1QmEm −

∑K
k=1YkRk + V Es, (8a)

s.t.
∑M
m=1xm,k ≤ 1,∀k, (8b)

xm,k ∈ {0, 1},∀m, k, (8c)∑K
k=1δm,k ≤ ∆,∀m, δm,k ≥ 0,∀m, k, (8d)

δm,k ≤ xm,k∆,∀m, k, (8e)
‖q′m − qm‖ ≤ Vmax∆,∀m, (8f)
‖qm[N + 1]− q′m‖ ≤ Vmax(N − n)∆,∀m. (8g)

Although the multi-stage stochastic problem (P1) is reduced
to per-slot deterministic problem (P2), it is still challenging
to solve the combinatorial MINLP in each short time slot. In
section IV, we will propose an algorithm based on DRL to
solve (P2) efficiently.

IV. ONLINE JOINT OPTIMIZATION OF RESOURCE
ALLOCATION AND UAV TRAJECTORY

At the beginning of the nth time slot, we make an observation
of ηn = {{gnm,k}

M,K
m=1,k=1, {Qnm}

M
m=1 , {Y nk }

K
k=1} and take an

action {xn,yn}, where yn = {qn, δn}. Furthermore, we find
that given the discrete variable xn in (P2), it can be transformed
into a convex problem by applying the successive convex
approximation (SCA) technique. We will present the method
to optimize yn when xn is given in Algorithm 2. For now, we
use G(xn, ηn) to represent the objective value of (P2) after
optimizing yn given xn. Thus, (P2) is converted to seeking
the optimal UAV-SN association (xn)∗ as shown below:

(P3) :(xn)∗ = arg min
xn∈{0,1}M×K

G(xn, ηn), (9)

To solve (P3) optimally, it in general requires searching
over all the combinations of xn, which is computationally
prohibitive in practice. To achieve real-time control, we apply
an integrated DRL and optimization method to solve (P3). As
shown in Fig.1, the frame can be divided into four modules
introduced as follows.

1) Actor Module: The actor module is based on a deep
neural network parameterized by the coefficient θn in the nth
time slot. In each time slot, we input ηn into DNN’s input layer
and obtain a set of relaxed UAV-SN association options x̂n at
the output layer of DNN. Here, we use a sigmoid function to
activate the output layer. The relationship between input and
output layers is defined as:

Πθn : ηn 7→ x̂n =
{
x̂nm,k ∈ [0, 1],m ∈M, k ∈ K

}
, (10)

We denote x̂nk =
[
x̂n1,k, ..., x̂

n
m,k, ..., x̂

n
M,k

]
as the relaxed

association of sk. Then, we quantize x̂n into A candidate
integer associations denoted as

ΥA : x̂n 7→ Ωn =
{
xnj | j = 1, ..., A

}
, (11)

where xnj = {xnj,m,k | xnj,m,k ∈ {0, 1}} denotes the jth
candidate. We denote xnj,k =

[
xnj,1,k, ..., x

n
j,m,k, ..., x

n
j,M,k

]
as

the jth candidate association of sk, such that xnj = {xnj,k}.
Compared with quantizing x̂n to its nearest binary vector,
the diversity in the candidate set prevents the DNN from
converging to a sub-optimal result prematurely during training.
Specifically, we obtain xn1 by quantizing each x̂nk into xn1,k
with the following rule:

xn1,m,k =

{
1 if x̂nm,k is the maxmium among x̂nk
0 othervise.

(12)
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Fig. 1: The schematics of the proposed algorithm.

for m = 1, · · · ,M and k = 1, · · · ,K. To obtain the
remaining actions, we first add independent identically dis-
tributed noise nj to x̂n for A − 1 times to obtain a set of
relaxed continuous associations {x̃nj , j = 2, ..., A}, where
n ∼ N (0, IN ) with IN being an identity matrix. Then, we
normalize {x̃nj } by using the sigmoid function to bound the
values within [0, 1], denoted by x̃nj = sigmoid(x̂n +nj). Let
x̃nj,k =

[
xnj,1,k, ..., x

n
j,m,k, ..., x

n
j,M,k

]
. We obtain the remaining

actions {xn2 , ...,xnA} by quantizing each x̃nj as

xnj,m,k =

{
1 if x̃nj,m,k is the maxmium among x̃nj,k
0 othervise.

(13)

Now, we obtain all the A candidate quantization associations.
2) Critic Module: Given the quantized candidate set Ωn in

(11), the critic module uses the model information to evaluate
the candidates by solving a joint optimization of multi-UAV
trajectory and resource allocation. In particular, the selected
optimal association xn is denoted by

xn = arg min
xnj ∈Ωn

G(xnj , η
n). (14)

The method to calculate G(xnj , η
n) is given in Algorithm 2.

The best association decision xn, along with the corresponding
transmission time allocation δ and the UAV location update q′,
will be executed to control the UAVs and SNs in the current
time slot, i.e., the solution to (P2).

3) Policy Update Module: After obtaining the best action in
(14), we store the state-action pair (ηn,xn) as labeled sample
in a finite memory. Here, we only store the latest z data and
DNN training begins after gathering z/2 samples. Afterwards,
we train the DNN every τ time slots to prevent model from
over-fitting. In every training session, we first pick a batch of
labeled samples from the memory randomly, and update θn

by minimizing the average cross-entropy loss function over
the data samples. When the training is finished, we update the
DNN parameter in next slot to θn+1.

4) Queue Update Module: In the critic module, and we can
derive the propulsion energy consumption {Em[n]}Mm=1 and
the data gathered from their connected SNs {Rk[n]}Kk=1. We
then update the energy and data queues as {Qm[n]}Mm=1 and
{Yk[n]}Kk=1 using (2) and (3) at the beginning of (n + 1)th

slot, respectively. This also updates ηn+1 as the input to the
actor module in a new iteration.

Within such a loop, the DNN learns continually from the
latest d labeled samples to improve its policy that achieves a
better performance by solving (P3). We summarize the pseudo-
code in Algorithm 1. The computation complexity is on solving
G(xnj , η

n) for A times in (14).

Algorithm 1: The proposed learning-aided online
algorithm for solving (P1).

input :M , K, {em}Mm=1, {βk}Kk=1, {wk}Kk=1, V , A, training periods
Γ, training interval δT ;

output : Control Actions {xn,yn}Nn=1;
1 Initialize θ1 randomly and memory, A← K, training time t← 0, Vmax;
2 for τ = 1, ...,Γ do
3 Initialize {Yk[1] = 0,pk[1]}Kk=1, {Qm[1] = 0,qI,m,qF,m}Mm=1;
4 for n = 1, ..., N do
5 Observe the DNN input ηn;
6 Generate a relaxed association x̂n = Πθn (ηn);
7 Quantize x̂n into A binary associations;
8 Compute G(xnj , η

n) with xnj using algorithm 2;
9 Select the optimal xn and execute the joint action (xn,yn);

10 Update the memory by adding (ηn,xn);
11 if mod(t, δT )=0 then
12 Randomly pick a batch of data set Snfrom the memory;
13 Train the DNN with Sn and update θn using the Adam

algorithm;
14 end
15 n← n+ 1;
16 Update {Qm[n]}Mm=1 and {Yk[n]}Kk=1 based on (2) and (3).
17 t← t+ 1;
18 end
19 τ ← τ + 1;
20 end

Next, we present how to compute G(xnj , η
n) efficiently.

Given x, we solve a joint optimization of multi-UAV trajectory
and resource allocation in (P2). It can be observed that for
each UAV, the optimization problem to obtain the trajectory
and time allocation is independent. Thus, we decompose the
problem into M sub-problems one for each UAV. Then, for
UAV um, we solve the following problem.

(P4) :min
q′,δ

V
∑K
k=1wkPkxm,kδm,k +QmEm −

∑K
k=1

W log2(1 +
γm,k

(h2 + ‖qm − pk‖2)ι
)xm,kδm,k,

(15a)

s.t.
∑K
k=1δm,k ≤ ∆, (15b)

δm,k ≥ 0, ∀k, (15c)
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δm,k ≤ xm,k∆, ∀k, (15d)∥∥q′
m − qm

∥∥ ≤ Vmax∆, (15e)∥∥qm[N + 1]− q′
m

∥∥ ≤ Vmax(N − n)∆. (15f)

Although the problem is non-convex, it can be efficiently
tackled by SCA technique. By introducing auxiliary
slack variables to deal with the non-convexity of the
UAV’s propulsion energy function and the rate of
sk in the objective, we solve the following convex
approximation of (P4) in the l-th iteration as below:
(P5) : min

q′,δ,ym,ϕm,k,φm,k
V
∑K
k=1wkPkxm,kδm,k −

∑K
k=1

Ykφm,k +Qm(C1(1 + 3v2
m/v

2
tip + C2ym + C4v

3
m)∆,

s.t. ϕ2
m,k/(δm,kxm,k) ≤ R(l)

m,k {q
′
m} , ∀k,

C3/y
2
m ≤ Y (l)

m {q′m, ym} ,
φm,k ≤ Φ(l) {ϕm,k} , ∀k,
(15b)− (15f),

where ym is an auxiliary slack variable to deal with the
non-convexity of the UAV’s propulsion energy function as

y2
m ≥

√
C3 +

v4m
4 −

v2m
2 . According to the first-order Taylor

expansion, we have y2
m + v2

m ≥ (y
(l)
m )2 + 2y

(l)
m (ym − y(l)

m )−
‖q′(l)m −qm‖2

∆2 + 2
∆2 (q′

(l)
m −qm)T (q′m−qm)

.
= Y

(l)
m {q′m, ym}.

Therefore, y(l)
m is defined as

y(l)m
.
=

√√√√√
C3 +

∥∥q′(l)
m − qm

∥∥4
4∆2

−
∥∥q′(l)

m − qm
∥∥2

2∆2
.

(16)

Both ϕm,k and φm,k are auxiliary slack variables to deal with
the non-convexity of sk. Firstly, we set ξm,k ≤ W log2(1 +

γm,k
(h2+‖q′m−pk‖2)ι

) and we have a concave lower bound of

the RHS, which is denoted as R(l)
m,k {q′m}

.
= W log2(1 +

γm,k

(h2+
∥∥∥q′(l)m −pk∥∥∥2

)ι
) − λm,k(‖q′m − pk‖2 −

∥∥∥q′(l)m − pk

∥∥∥2

),

where λm,k =
W (log2 e)γk,mι

[γm,k+(h2+
∥∥∥q′(l)m −pk∥∥∥2

)ι](h2+
∥∥∥q′(l)m −pk∥∥∥2

)
. Next,

we introduce ϕm,k to represent the transmission data bits
of sk as ϕ2

m,k ≤ Wlog2(1 +
γm,k

(h2+‖q′m−pk‖2)ι
)xm,kδm,k. To

cope with non-convexity with respect to ϕm,k, we introduce
φm,k ≤ ϕ2

m,k, and use the first-order Taylor expansion. Thus,
we have the concave lower bound as ϕ2

m,k ≥ (ϕ
(l)
m,k)2 +

2ϕ
(l)
m,k(ϕm,k − ϕ

(l)
m,k)

.
= Φ(l){ϕm,k}, where ϕ

(l)
m,k is given

by

ϕ
(l)
m,k =

√
Wlog2(1 +

γm,k

(h2 + ‖q′
m

(l) − pk‖2)ι
)xm,kδ

(l)
m,k. (17)

For each UAV um, we obtain the trajectory and transmission
time allocation by iteratively solving (P5), where in each
iteration, we can solve (P5) efficiently with off-the-shelf
optimization solver such as CVX [18]. Meanwhile, we take
the solution obtained in the l-th iteration as the new local point
in (l + 1)-th iteration. The iteration stops when improvement
of objective value is less than threshold ε. We summarize the
joint optimization of (P4) in Algorithm 2.

V. SIMULATION RESULT

In this section, we evaluate the performance of the proposed
algorithms by simulations. We consider a scenario in which

Algorithm 2: SCA-based joint optimization for solving
(P4).

input : UAVs’ association with SNs x, a feasible solution{q′(0), δ(0)};
output : UAVs’ positions in the next time slot q′(opt) and transmission time

allocation δ(opt);
1 Initialization: ε← 0.01;
2 for m = 1, ...,M do
3 l← 0;
4 repeat
5 Obtain y(l)m and ϕ(l)

m,k by (16) and (17), respectively;
6 Solve (P5), record the optimal values as {q′m

(opt), δ(opt)m } and
use o(l) to represent the objective value;

7 Update the local vales q′m
(l+1) ← q′m

(opt), δ(l+1)
m ← δ(opt)m ;

8 l← l + 1;
9 until o(i) − o(i−1) < ε;

10 m← m+ 1;
11 end

three UAVs gather data from nine SNs scattering in a 900m ×
800m rectangular area. The UAVs start from their own initial
locations and fly to the final locations with Vmax = 25m/s and
propulsion energy budget of em = 170J. Their initial and final
locations are qI,1 = [0, 0], qI,2 = [600, 0], qI,3 = [300, 520],
qF,1 = [600, 0], qF,2 = [300, 520], qF,3 = [0, 0], respectively.
All users start at p1 = [150, 75], p2 = [250, 120], p3 =
[250, 150], p4 = [350, 200], p5 = [370, 220], p6 = [700, 50],
p7 = [100, 500], p8 = [180, 300], p9 = [230, 250] respectively.
Each user has the same initial and average speed. Speed for s1−
s9 are [1.8, 0], [0.2, 0.6], [0.1, 0], [0, 0.1], [0.6, 0.1], [1.2, 2.2],
[0.6, 2.2], [0, 0.4], [0.1, 0.5] separately. And we set the Memory
level α = 0.5 and standard deviation σ = 2. We set each
mission period as 200s and each time slot ∆ as 1s. And
communication related parameters are stated as B=1MHz, g0=-
50dB, Pk=0.1W, N0 = 10−12W, ι̃=2.1, κ=0.2, a=15 and b=0.5.
We Suppose that the sk’s data threshold is 0.8 Mbits. The
UAV related parameters C1, C2, C3, C4 are 80, 22, 263.4,
0.0092 respectively. Lyapunov factor is set to V =1200 and
each sk’s weight is 1/K. The DNN actor module adopts a fully-
connected multilayer perception, which includes a input layer,
two hidden layers and a output layer. The first and the second
hidden layers have 256 and 128 neurons respectively. The
memory size is 1024 and batch size is 64. We set the training
interval δT = 5 and the number of candidate association A =
5. For ease of illustration, we refer to our learning-aided joint
optimization method as LJO. Moreover, we use the following
two algorithms as benchmarks.

Closest Connection + Joint Optimization of Multi-UAV
Trajectory and Resource Allocation(CJO): Each SN connects
with the closest UAV. Both UAV trajectory and transmission
time allocation are controlled by Algorithm 2.

Closest Connection + Geometric Center Tracking + Equal
Resource Allocation (CGE): In this benchmark, the SN-UAV
association control is the same as CJO. But it is different in
UAV trajectory and transmission time allocation. Specifically,
each UAV follows the geometric center of its own connected
SNs. If a UAV cannot reach the center at the end of current
slot, it will fly in the direction towards the center with Vmax.
The SNs connecting to a UAV will be allocated with equal
transmission time.

The simulation results are presented in the Fig.2. In Fig.2(a),
we present the trajectories obtained from the three methods, and
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Fig. 2: Convergence performance comparisons of different schemes.

we can see that the UAVs in CGE keep following the geometric
centers. However, the UAVs in another two algorithms oscillate
around their own connected SNs and are inclined to fly closely
to the SNs thus to meet the data collection requirements and
reduce the energy consumed in data transmission.

The average data, weighted sum energy consumption and
propulsion energy consumption at time slot n are denoted
as 1

n

∑n
µ=1Rk[µ], 1

n

∑n
µ=1

∑K
k=1wkEk[µ], 1

n

∑n
µ=1Em[µ], re-

spectively. In Fig.2(b) and Fig.2(d), it is observed that not
all the algorithms satisfy the rate and energy constraints. In
particular, in Fig.2(b), we see that CJO fails to meet the rate
requirement with user1 transmitting 0.774 Mbits per-slot till
the end of the mission, which is less than the requirement
of 0.8 Mbits. Besides, we can see from Fig.2(d) that, in
CGE, the average propulsion energy consumption of UAV2 is
172.0 J, which exceeds the budget of 170 J. In comparison,
LJO satisfies both the data rate requirements of SNs and the
energy constraints of UAVs, meanwhile reducing the energy
consumption as shown in Fig2.(c). Specifically, the LJO can
save 43.7% of energy, compared with the CGE, thanks to the
joint optimization of UAV trajectories and transmission time
allocation. Notice that the major difference between CJO and
LJO is the policy of UAV-SN association. This shows that
the simple distance-based UAV-SN allocation method cannot
guarantee the long-term performance of the SNs, especially
under the highly mobile patterns and dynamic user data rate
fluctuations. The proposed method not only quickly generates
a high-quality solution, but also guarantees to satisfy the long-
term performance requirements.

VI. CONCLUSION

In this paper, we have proposed a learning-aided online
method to optimize the trajectories and resource allocation
for WSNs with stochastic mobile SNs. We formulated the
problem with long-term objective and performance require-
ments as a multi-stage stochastic MINLP. The proposed online
algorithm integrated Lyapunov optimization and DRL methods
to decouple the original multi-stage stochastic MINLP into a
series of per-slot deterministic MINLP subproblems and solved
each sub-problem with an efficient model-free DRL scheme.
Simulation results revealed that the online algorithm could
satisfy real-time communication requirements and effectively
reduce the energy consumption of SNs.
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