
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 1

Augmenting Backpressure Scheduling and Routing
for Wireless Computing Networks

KM Mahfujul, Student Member, IEEE, Kaige Qu, Member, IEEE, Qiang (John) Ye, Senior Member, IEEE, and
Ning Lu, Member, IEEE

Abstract—Driven by the ever-increasing computing capabil-
ities of mobile devices, the next-generation wireless networks
are evolving towards distributed networking and computing
platforms, which enable in-network computing and unified re-
source/service provisioning. The evolution leads to a growing re-
search interest in wireless computing networks that operate under
the high dynamics of the wireless environment, the complexity
of heterogeneous resource allocation, scheduling, and overall
optimization. In this paper, we propose a low-complexity efficient
solution to jointly allocate both networking resources (e.g., links
to forward packets between connected computing nodes) and
computing resources (e.g., computing power at each node for
packet processing) for wireless computing networks. Specifically,
we propose a novel network utility maximization problem under
computing and networking resource constraints and develop an
enhanced backpressure-based dynamic scheduling and routing
algorithm. We verify the network stability and near-optimal
performance of the algorithm via both theoretical analysis and
extensive simulations.

Index Terms—Wireless computing networks, network utility
maximization, cross-layer design, Lyapunov optimization.

I. INTRODUCTION

IN evolving towards the fifth generation (5G) and beyond,
wireless networks have been experiencing a paradigm

shift from a pure communication network to a distributed
computing platform, representing a convergence of wireless
networking and computing. This is mainly due to the ever-
increasing computing power of clients and devices, the emer-
gence of machine-learning-centric applications, and the wide
utilization of virtualization and service-oriented principles in
various emerging edge/cloud technologies [1], [2]. Such a
convergence leads to growing research interests in wireless
computing networks, which allow in-network computation and
integrated resource/function management to realize a unified
provisioning of network and computing services. Wireless
computing networks are envisaged as the key enablers for
emerging applications such as event detection, real-time con-
trol and decision-making, streaming data analysis, and many

Manuscript received 12 December 2023; revised 10 May 2024 and 9 August
2024; accepted 06 September 2024. date of current version 11 September
2024. Part of this paper was presented in IEEE ICC 2023.
KM Mahfujul (Corresponding author) and Ning Lu are with the Department
of Electrical and Computer Engineering, Queen’s University, ON, Canada
(email:{m.kadir, ning.lu}@queensu.ca). Kaige Qu is with the Department
of Electrical and Computer Engineering University of Waterloo, Waterloo,
ON, Canada (email: kaige.qu@uwaterloo.ca). Qiang (John) Ye is with the
Department of Electrical and Software Engineering, University of Calgary,
Calgary, AB T2N 1N4, Canada (e-mail: qiang.ye@ucalgary.ca).

𝑓1

𝑓2

𝑓3
𝑓4

𝜆(𝑟)
src dst

Node 1
Node 5

Node 3

Node 2

Node 4

Node 6

𝜆
(𝑟) AgI Flow RateCurrent route

Alternative
route

𝑓𝑖 Service Function

𝑓2

Fig. 1: Example of a wireless computing network with computing
nodes and communication links serving an AgI flow r from a source
node to a destination node with a flow (packet arrival) rate λ(r).
The computing network places functions fi at different computing
nodes. Based on the function placement choice at wireless computing
nodes, the flow r packets take alternative routing paths towards the
destination node.

machine-learning-centric applications that require both fast
local processing/storage and low-latency networking. A wire-
less computing network can be abstracted as an undirected
graph with a set of computing nodes being vertices and a
set of links being edges, where each computing node with
certain storage and computing capacities hosts a number
of service functions for data processing (such as network
diminishers for compressing traffic [3] and machine learning
models to process inference requests [4], [5]) and each link
with certain communication capacity delivers data traffic over
a wireless channel. The wireless computing network is to
serve a set of augmented information (AgI) flows [6]. For
each AgI flow, the destination node is provided with aug-
mented information generated during the real-time processing
of source data packets through a chain of multiple service
functions. The service functions are hosted by computing
nodes on a respective routing path, for the AgI flow (e.g.,
Fig. 1). For the rest of the paper, we use the terms service
functions and functions interchangeably. Existing works have
investigated how to jointly schedule the communication and
computation resources, i.e., how to determine where to execute
each function and how to optimally route the flows to meet
service demands. The control policies for function placements
and flow routing has been investigated in either a static or
dynamic setting. For example, some studies [7]–[10] consider
the static function placement at computing nodes according to
the computing/communication requirements and flow routing
among the computing nodes. Since the function placement

0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 2

and flow routing are static and computing nodes are resource-
limited, the packet arrival rates for the flows should be throttled
(e.g, by packet dropping) in resource shortage. On the other
hand, dynamic placement of functions and flow rerouting
strategies are investigated in [6], [11], [12] in the presence
of resource shortage. Although the flow rerouting process can
redistribute the computing loads across the network, it incurs
a non-negligible overhead, (e.g., delay/cost of link creation
and packet re-transmission [12], [13]). The reconfiguration
overhead also affects the scheduling and routing of other flow
packets. Therefore, we need a proper trade-off between the
computing-communication resource allocation among all the
flows, for example, through the network utility maximization
(NUM) formulation.

However, unlike traditional wireless networks that route
and forward the packets from source to destination, wireless
computing networks combine packet processing/computing
and routing/forwarding for various service demands. Further-
more, to meet severe changes in service demands, it also
necessitates studying control policies that can reconfigure the
service flows in resource shortage, for example, by exploring
multi-path routing [14], [15]. Due to such unique character-
istics of wireless computing networks, formulating an NUM
unifying computing and networking is challenging; thus still
underexplored in existing research.

In this paper, we consider an NUM problem in a wire-
less computing network for delivering multiple AgI flows.
We consider a wireless computing network with a set of
generic computing nodes to compute service functions via
virtualization and wireless communication links to route the
AgI flows among computing nodes. We assume, the packets
from an AgI flow require computing by a pre-defined se-
quence of computing functions before being delivered to the
destination and a computing node hosts all such functions.
Each function in a computing node computes the payload
of a packet and promotes the packet to the next function in
the sequence. Specifically, a function promotes/updates the
packet state defined as follows. After a function completes
computing, the function revises the packet header/payload.
Furthermore, the computing node forwards the packet to
the subsequent function in the same computing node. We
denote this whole process (promoting the packet state and
forwarding to subsequent function in the same node) as
internal packet forwarding. Alternatively, a computing node
decides to forward the packet to a neighboring computing
node using a wireless communication link for computation.
We denote this process as external packet forwarding. Note
that, the internal packet forwarding involves packet promotion
and computing resource consumption while external packet
forwarding involves communication resource consumption. In
this paper, we study joint internal-external forwarding of AgI
flow packets that result in augmented scheduling and routing
in wireless computing networks.

The computing nodes backlog the packets based on their
current state and operate these packet-forwarding strategies
independently across the network with limited information
exchange among neighboring computing nodes. The joint
packet forwarding uses the resource scheduling in medium-

access control (MAC)-layer in conjunction with queue backlog
information of neighboring computing nodes in network-layer
for packet routing (i.e., cross-layer control) to offer a low-
complexity distributed control policy for a joint computing-
communication resource allocation problem. Moreover, the
state-dependent internal/external packet forwarding scheme
explores multi-path routing of flow packets. We formulate the
network utility as a function of the flow packet admission
rate in the source node to control the network congestion and
jointly utilize the state-dependent packet forwarding schemes
for resource allocation. By utilizing duality, we develop
an augmented backpressure-based distributed scheduling and
routing algorithm. We summarize the main contributions of
this paper in the following.

• We introduce an NUM formulation for AgI flow delivery
in wireless computing networks as a convex optimization
problem. Different from existing NUM formulations in
wireless networks, AgI flows require different computing
and communication resource allocations in an end-to-
end manner. Due to the additional computing resource
constraint, an NUM formulation for AgI flow delivery in
wireless computing networks is a unique challenge. To
the best of our knowledge, investigating an NUM problem
for wireless computing networks is still underexplored in
the existing research.

• We address the packet specific resource requirements
by augmenting packet state-based internal-forwarding
(packet computing and promoting) and external-
forwarding strategy (packet routing). Our formulation
considers communication/computing resource trade-off
and enables resource allocation in the computing network
to steer the flow packets towards the destination via differ-
ent routes. The proposed algorithm develops a Lagrange
dual-based cross-layer control policy that utilizes queue
backlog information to jointly provide congestion control,
computing, and packet routing decisions.

• We theoretically verify the proposed algorithm in terms
of network stability and near-optimal network utility. Fur-
ther, we carried out extensive simulations to demonstrate
the performance of the proposed algorithm from various
aspects including resource fairness, network stability,
and utility. The simulation results also cross-verify our
theoretical analysis and the effectiveness of the proposed
algorithm for wireless computing networks.

The rest of this paper is organized as follows. In Section
II, we discuss the background and related works. In Section
III, we introduce the network model and the NUM problem
formulation. In Section IV, we elaborate on the design of the
dynamic backpressure-based scheduling and routing algorithm
by decoupling the problem into solvable sub-problems with
solutions. We verify the performance of the proposed algo-
rithm by theoretical analysis in Section V, followed by the
simulations in Section VI, and we conclude our paper and
discuss the future works in Section VII.

II. BACKGROUND AND RELATED WORKS

Consider a wireless network by a collection of nodes
and communication links that deliver network flows. In this

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 3

particular setting, we consider a set of network flows that
are simply described by some source-destination node pairs
(e.g., wireless sensor networks). The source node generates
packets and the packets are collaboratively forwarded by some
intermediate nodes acting as routers to deliver the packets
to the destination node. The intermediate nodes forward the
packets by maintaining some data queues for each specific flow
packet. Most importantly, these network flows do not establish
a-priory routes, meaning that a flow packet is cooperatively
forwarded by any arbitrary intermediate computing nodes
towards the destination.

Assuming that the rate of incoming flow packets at the
source nodes is inelastic, network flow delivery while achiev-
ing a fair transmission rate allocation among the flows and
maintaining overall network stability is developed by cross-
layer control algorithms. Specifically, a decentralized con-
gestion controller situated at the transport-layer works in
conjunction with a queue backlog-based scheduler at the
MAC-layer. Further, the flow packets are routed towards the
destination nodes via the intermediate network nodes using the
communication links at the network-layer. The joint mecha-
nism is established by performing a loose coupling among
the layers to achieve buffer stability, optimal routing, and fair
resource allocation [16], [17].

However, due to the unpredictability of wireless chan-
nels, the joint decision-making of flow scheduling, routing,
and resource allocations becomes very challenging, therefore
complicating the overall network design. In the context of
traditional networks, Lyapunov-drift-plus-penalty (LDP) is a
promising approach to tackle such intricate decision-making
problem [18], [19]. For example, [19] extends the LDP
approach for a multi-hop, multi-commodity wireless ad-hoc
network leading to a backpressure algorithm. The proposed al-
gorithm exploits the broadcasting nature of wireless networks
and is shown to be throughput optimal.

A key difference from wireless computing networks from
the traditional wireless networking design can be seen in the
following. Existing wireless networking mainly focuses on
efficient information delivery from an information source to
the destination (e.g., using cross-layer control algorithms).
In contrast, wireless computing networks require to deliver
the information flows from source to destination while per-
forming some computing on the flow packets by following
a service flow delivery model (e.g., AgI flows). Therefore,
the intermediate network nodes or so-called computing nodes
are powered with computing and communication resources to
satisfy that requirement. Being an essential part of wireless
computing networks, the distribution of computing resources
to execute the service functions at different computing nodes
and communication resources to route the flow packets through
the appropriate sequence of service functions are our focus.

Given a fixed flow rate (e.g., packet admission rate), linear
programming and heuristic procedures for joint computing-
communication resource allocations are studied in [9], [10],
[12], [20], [21]. The research works [7], [22] generalize the
service delivery problem in cloud networks via joint comput-
ing/communication resource allocation. However, in response
to the unknown changes in the network environment, such

as resource shortage/disruption in cloud computing nodes,
some readjustments in computing/communication resources
are necessary. The study of dynamic network control policies
that can reconfigure the computing/communication resource
allocations in response to unpredictable demands is studied
by [23], [24]. These works provide a characterization of the
cloud network capacity region and design throughput-optimal
control policies to jointly allocate computing/communication
resources while minimizing the overall network costs.

Compared to the traditional centralized cloud networks,
distributed wireless computing networks provide extended
flexibility in computing/communication resource allocations
leading to a clear advantage in meeting stringent service
requirements both in latency and cost, handling mobility,
and real-time location awareness [11]. By introducing cloud
service models to wireless networks, the work in [6] extends
the works in [7], [8], [23] for AgI flow delivery in wireless
networks and develops a distributed algorithm that utilizes
the queue backlog information. The resultant algorithm makes
a joint transmission, computing, and resource allocation de-
cision with minimum average network resource utilization
cost. While the proposed algorithms in [6], [23] study the
minimum cost resource management and dynamically adjust
the scheduling decisions, they overlook the fact that recon-
figuring the compute and communication resources results in
a non-negligible amount of delay leading to additional costs
[13]. Recent works in [25], [26] propose joint computing,
communication, and caching in cloud networks. In order to
process the flow packets that require storage resources, they
pre-store static data objects at different network locations that
are to be routed via an augmented layered graph (ALG) to
model multi-pipeline-based flow control.

The existing literature reviewed earlier in this section covers
a wide range of research works that focus on forwarding
the network flow packets in wireless networks by either
considering single-path/multi-path packet routing ([14]–[19],
[27], [28] and [29]–[31]). While the cross-layer control tech-
niques are effective and well-known for multi-hop wireless
network flow control, wireless computing networks demand
flow packet processing/computing by a set of functions where
each packet requires a different combination of comput-
ing/communications resources based on the processing steps.
In such a service delivery context, AgI service delivery prob-
lems are also well studied in cloud networks by considering a
predefined set of resource allocation decisions [7]–[10], [22]
or taking a resource reconfiguration strategy [11], [12], [20],
[23], [24], [32] in either a centralized service function chaining
(SFC) (e.g., [32]) or a distributed general cloud network
setting. For example, [33] studies the AgI flow packet routing
problem under end-end deadline constraints. Specifically, they
consider that each flow packet has its own delivery deadline.
However, the proposed cloud network accommodates one type
of network flow and does not consider flow packet computing.
The distributed cloud network designs are further extended by
[6] that develops a service delivery mechanism for wireless
computing networks. A number of recent studies investigated
joint AgI flow chaining and routing with the objective of
maximizing the accepted service requests in wireless networks

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 4

TABLE I: The key notations

Notation Definition

N ,R,K Set of computing nodes, AgI flows, and current state of packets.

V Utility scaling parameter.

λ(r)(t) Source rate (Admitted flow rate) of AgI flow r ∈ R.

Q
(r,k)
n (t) Data queue backlog in computing node n ∈ N , belongs to AgI flow r ∈ R, currently at state k ∈ K.

s
(r,k)
n,j (t) External forwarding rate (forwarding rate of the packet from queue Q

(r,k)
n (t) to Q

(r,k)
j (t) between neighboring computing nodes n → j.

a
(r,k)
n (t) Internal forwarding rate (packet promotion rate of from queue Q

(r,k)
n (t) to Q

(r,k+1)
n (t).

σ(r,k) Packet size of AgI flow r ∈ R.

ρ(r,k) Computing requirement of data packets (in CPU cycles/bit) of AgI flow r currently at state k.

z
(r,k)
n,j (t) ∈ {0, 1} Indicator variable denoting that node n is communicating via wireless link with node j at slot t.

x
(r,k)
n (t) ∈ {0, 1} Indicator variable denoting packets of AgI flow r currently at state k are scheduled for computing at node n, at slot t.

[34]–[38]. The aforementioned solutions consider static func-
tion placement/packet routing in wireless networks.

Different from the literature, our work distinguishes itself
by enhancing the flexibility of joint computing/communication
resource allocation to flow packets in multi-hop wireless
computing networks while taking into account their packet-
specific resource requirements. Specifically, we augment state-
based internal/external packet forwarding to minimize the
complicacy in joint resource allocation and also isolate the
packet forwarding in the computing nodes without impacting
the resource allocations on other flow packets in upstream
nodes. Furthermore, we introduce NUM formulation to trans-
form AgI flow delivery problem into a convex optimization
problem and present a Lagrange dual-based backpressure
algorithm to address this. In essence, our contribution lies in
the integration of dynamic resource allocation given by state-
based internal/external packet forwarding and NUM formu-
lation for AgI flow delivery to apply the convex optimiza-
tion techniques. This not only streamlines cross-layer control
in wireless computing networks but also addresses specific
challenges that arise when jointly allocating computing and
communication resources to flow packets.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a time-slotted wireless computing network
with time slots indexed by t ∈ {1, 2, 3,}. The wireless
computing network consists of computing nodes in set N
that are equipped with wireless communication links in set
L to process AgI flows. For each AgI flow r ∈ R, packets
are admitted/generated at a fixed source node src(r) ∈ N
and packets leave the network at a fixed destination node
dst(r) ∈ N after being processed by a set of functions that
are hosted in the computing nodes. A computing node n ∈ N
both processes and forwards the packets from AgI flow r ∈ R.
Computing node n hosts computing functions in set K to
process the flow packets from AgI flow r. We assume the AgI
flow packets are processed by a set of functions K(r) ⊆ K in
an ordered sequence that is specific to AgI flow r.

To address the joint computing/communication resource
allocation in wireless computing networks, we assume that the
computing functions k ∈ K do not require storage resources.
As a result, the computing functions do not have location
dependence, i.e., a computing function k ∈ K(r) ⊆ K can
be hosted at any computing node n. Therefore, without loss
of generality, it is safe to assume that each computing node
n hosts all computing functions K(r) ⊆ K,∀r ∈ R. For
simplicity, we assume the computing network is loop-free.
The rest of the paper uses the terms AgI flow and flow
interchangeably by abusing the notation r.

B. Packet States

Packets from an AgI flow r require processing by a se-
quence of computing functions k ∈ K(r) ⊆ K at computing
node n before being delivered to the destination dst(r). In
our work, we relate packet state to the packet processing
by a computing function k. The detail is given as follows.
Each function k processing the packets from flow r updates
the packets by revising the packet header/payload. When a
packet finishes processing by a function k, meaning the packet
completes a specific type of processing (e.g., encryption), the
packet state is updated (packet header/payload is revised), and
scheduled to be processed by the downstream functions in
sequence. Since there are K(r) such functions for each r,
we associate K(r) functions with |K(r)| packet states, where
|K(r)| denotes cardinality of set K(r). For simplicity, we index
the functions and packet states analogously by k. The rest of
the paper uses the tuple (r, k) to refer to a packet of flow r
at state k.

C. Internal/External Forwarding of Packets

We consider that a computing node n hosts all the functions,
{k : k ∈ K(r) ⊆ K,∀r ∈ R}. To support such processing,
node n maintains K(r) data queues that backlog packets of
each flow r, indexed by tuple (r, k) representing function k
of flow r. To ease the presentation, we abuse the notation to
refer data queue using the tuple (r, k) that backlogs all (r, k)
packets. The queue dynamics are detailed in sub-section III-D.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 5

A computing node n hosting K(r) functions either internally
forwards a packet from queue (r, k) to queue (r, k + 1) in
the same node or externally forwards from queue (r, k) to
queue (r, k) at a neighboring node j ∈ N . Internal packet
forwarding is analogous to computing/processing by a func-
tion k, promotion/update of packet state, and forwarding the
packets to the queue (r, k + 1) involving computing resource
consumption at node n. 1 On the other hand, the external
packet forwarding does not involve a packet promotion since
the node n does not compute but forwards the packet to a node
j using an active wireless communication link (n, j) ∈ L.

It is worth mentioning that, the source node of a flow
src(r) generates the flow packets and a queue (r, k) at node
src(r) performs both internal/external packet forwarding. On
the other hand, destination dst(r) cannot externally forward
packets. Data queues in set {(r, k) : k<|K(r)|, n = dst(r)}
at the destination of a flow only internally forward the packets
since the dst(r) must finish required computing (if not already
computed by upstream computing nodes) and delivers packets
to users. Queues in node n (including the src(r)) in set
{(r, k) : k = K(r) = |K(r)|,∀n ∈ N \ {dst(r)} } only
externally forward the packets since k = |K(r)| denotes the
last function in the sequence specified by flow r. Therefore,
a packet that finishes all the required computing steps is
externally forwarded to downstream nodes until it reaches the
destination. The data queues in set {(r, k) : k = |K(r)|, n =
dst(r)} process and deliver the packets (e.g., to end users).
The details are given later (sub-section III-D). To simplify, we
let K(r) = |K|, ∀r ∈ R. There are in total |R × K| queues
at node n in considering all the flows r ∈ R. We provide an
illustrative example of the system model in Fig. 2.

D. Flow Model

Packets from AgI flow r ∈ R are admitted into the net-
work through source node src(r). The data packets generated
by some users/applications are not admitted directly to the
network layer. The packets are primarily backlogged at a
transport layer reservoir and the src(r) node allows packets
admission to the network layer at a rate λ(r)(t)1(k=1,n=src(r)),
denoting that the source rate of flow r at the source node
n = src(r) and the packet is at its earliest state k = 1. 2 The
source node src(r) maintains a network layer queue Q(r,k=1)

n=src(r)
that backlogs the packets that are allowed from the transport
layer at rate λ(r)(t)1(k=1,n=src(r)) with the packets that are
already backlogged during the previous slots. To simplify the
presentation, we abuse the notation to denote queue backlogs
by Q

(r,k=1)
n=src(r)(t) at each time slot. To emphasize the funda-

mental issues of flow control, routing, and resource allocation,

1The internal packet forwarding does not involve packet routing using
communication links to other computing nodes (i.e., n to j) as in the case
of external packet forwarding. Rather, the internal forwarding is operated via
an internal link/virtual link from a queue (r, k) to queue (r, k + 1) that is
internal to a computing node n.

2Here, 1 is representing an indicator function defined as

1(k=1,n=src(r)) =

{
1 if (k = 1 and n = src(r)),

0 otherwise.

n=1

(r,k)=(1,2)

(r,k)=(2,1)

(r,k)=(2,2)

(r,k)=(1,1)(r,k)=(1,2
)

(r,k)=(2,1)

(r,k)=(2,2)

(r,k)=(1,1)

(r,k)=(1,2)

(r,k)=(2,1)

(r,k)=(2,2)

(r,k)=(1,1)

(r,k)=(1,2)

(r,k)=(2,1)

(r,k)=(2,2)

(r,k)=(1,1)

n=2

n=3

n=4

Src

Dst

External Forwarding.

Internal Forwarding.

Flow 1 Packet (r=1).

Flow 2 Packet (r=2).
(r,k)

Computing
node hosting a
function (r,k).

Fig. 2: Wireless Computing Network: A wireless computing network
with four nodes, |R| = 2 AgI flows with |K| = 2 states is shown.
Node n = 1 is the source node (Src), and n = 4 is the destination
(Dst) of the computing network. Internal forwarding is shown by
curved green arrows and external forwarding is shown by straight
red arrows. Note that the forwarding arrows do not correspond to
a complete flow path but represent some forwarding choices. For
example, from n = 3 to n = 4, there are four candidate queues to
externally forward their packets, the algorithm may choose (r, k) =
(1, 2) to forward its packets at the current slot.

we assume that the transport layer reservoirs have infinite
backlogs. Such a model with an infinite backlog case is often
studied in communication research to evaluate the maximum
achievable performance of protocols [16], [29], [39].

Consider source rate is upper-bounded by
λ(r)(t)1(k=1,n=src(r)) ≤ λmax<∞. A computing node
n processes packets from queue Q

(r,k−1)
n (t) (i.e., packets

of flow r currently on state k − 1, in a queue indexed by
(r, k − 1)) at time slot t with a processing rate a

(r,k−1)
n

and promotes to queue Q
(r,k)
n (t) at the same node by the

end of slot t. We denote this process as internal packet
forwarding. Alternatively, the computing node decides to
forward some (r, k) packets to a neighboring node j ∈ N
at rate s

(r,k)
n,j , denoted as external packet forwarding. The

externally forwarded packets are either stored in the queue
Q

(r,k)
j (t), for processing or further externally forwarded to

another computing node in future time slots. Considering all
the variables, we present a flow conservation constraint for
each (r, k) at slot t by,

λ(r)(t)1(k=1,n=src(r)) +
∑
i∈N

s
(r,k)
i,n (t) + a(r,k−1)

n (t) ≤∑
j∈N

s
(r,k)
n,j (t) + a(r,k)n (t), ∀n ∈ N ,∀r ∈ R,∀k ∈ K, (1)

where on the left-hand side, a source node (if only n = src(r))
admits packets with state k = 1, a node n receives internal
packet forwarding from (r, k − 1) in the same node at rate

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 6

a
(r,k−1)
n , and node n ∈ N \ {src(r)} receives external packet

forwarding from the upstream (e.g., from source node) at rate
s
(r,k)
i,n . Note that with k = 1, we consider internal forwarding
a
(r,k−1)
n (t) = 0 on the left-hand side. This is a special case

where the function (r, k− 1) is a dummy function. Similarly,
on the right-hand side, the node promotes the packets to
the next state (e.g., from k − 1 to k) at rate a

(r,k)
n and

internally forwards to the queue Q
(r,k+1)
n (t), by the end of

slot t. Alternatively, the node externally forwards some packets
downstream (e.g., towards the destination) at rate s

(r,k)
n,j . The

inequality sign in Eq. (1) is because the total arrival rates
should be no more than the total departure rates. We represent
the flow conservation constraint via an associated data queue
for every (r, k) tuple

Q(r,k)
n (t+ 1) ≤

[
Q(r,k)

n (t)−
∑
j∈N

s
(r,k)
n,j (t)− a(r,k)n (t)

]+
+

∑
i∈N

s
(r,k)
i,n (t) + a(r,k−1)

n (t) + λ(r)
1(k=1,n=src(r))(t), (2)

where the data queues will maintain finite queue backlogs
in the network while implementing the resulting algorithm.
The computing nodes schedule the internal/external packet
forwarding by scheduling the computing/communication re-
sources. The details are given in the following.

1) Computing Resource: Each node has limited CPU pro-
cessing power (in CPU cycles allocated per time slot) denoted
by Cn. Scheduling the queues (indexed by (r, k)) is analogous
to performing different types of computing functions. The
computing functions require different CPU cycles to process
a single bit of flow packets, denoted by ρ(r,k) for flow r at
state k. Additionally, we denote the flow packet size by σ(r,k)

in MB, which are different for all flows r ∈ R. Computing
node n schedules queue Q

(r,k)
n (representing a tuple (r, k)) to

compute the packets at every time slot, i.e.,

x(r,k)
n (t) · a(r,k)n (t) · σ(r,k)ρ(r,k) ≤ Cn, ∀(r, k) ∈ (R,K), (3)

where x
(r,k)
n (t) ∈ {0, 1} represents scheduling of a particular

(r, k) tuple. Eq. (3) represents computing resource constraints
at node n. We assume, node n schedules one (r, k) tuple at a
time slot (e.g., hardware limitation) i.e.,∑

(r,k)∈(R,K)

x(r,k)
n (t) ≤ 1,∀n ∈ N . (4)

2) Communication Resource: The computing nodes exter-
nally forward the flow packets downstream via the communi-
cation links {(n, j) ∈ L, and n, j ∈ N} between nodes using
the orthogonal frequency bands. We consider a link routing
constraint by which a node n forwards packets to at most one
downstream node j at a time slot i.e.,∑

j∈N

∑
(r,k)∈(R,K)

z
(r,k)
n,j (t) ≤ 1, ∀n ∈ N , (5)

where z
(r,k)
n,j (t) ∈ {0, 1} represents scheduling of a (r, k)

tuple by using an active wireless communication link (n, j).
If there is an active link (n, j) between the nodes n and j,
the computing node n is able to send packets using that link.

We denote, the allowable link-transmission rate by a vector
µn(t) = {µn,j(t), ..}, where, (n, j) ∈ L, with a finite upper-
bound on the rate as µmax

n,j <∞. As a reasonable assumption,
we define Υ̃ ∈ R|L|

+ , as a bounded region, representing
the achievable rate µn under the link constraint (5) at a
time slot. Without loss of generality, the network allows a
discrete set of achievable rates, thus the set is non-convex. The
achievable link rates are the result of the power assignment on
the corresponding links. The network manages a timesharing
procedure among the different available rates Υ̃ by simply
defining a convex hull, i.e., Υ := CO{Υ̃}, that provides a
closed and bounded capacity region.

Definition 1. (Link-rate Capacity Region): The capacity re-
gion, Λ is a set so that we can capture a set of po-
tentially achievable rates (the maximum allowable rate fa-
cilitated by the link) satisfying the following constraint,
[
∑

(r,k){µ
(r,k)
n,j (t)}] ∈ Υ, where µ

(r,k)
n,j (t) ≥ 0,∀(n, j) ∈

L, r ∈ R. Further, due to the constraint (5), we choose one
(r, k) tuple to send over the link. Thus, we revise the capacity
constraint [

∑
r,k{µ

(r,k)
n,j (t)}] ∈ Υ from above to a new simpler

constraint as, [{µn,j(t)}] ∈ Υ,∀(n, j) ∈ L.

Remark 1. Due to the shared nature of wireless commu-
nication media, the data rate on link (n, j) does not only
depend on the power assignment on the link (n, j) but also
the interference resulting from the power assignment on the
other interfering links. Thus the link scheduling problem is
assumed to be centralized. We discuss an alternative approach
in Appendix G.

The packets are externally forwarded over the link (n, j), to
the downstream at a rate s

(r,k)
n,j (t), denoting the actual packet

forwarding rate. We provide the relationship with potential
packet forwarding rate (the maximum allowable rate facilitated
by the link) µn,j(t) by,

s
(r,k)
n,j (t) · σ(r,k) ≤ z

(r,k)
n,j (t) · µn,j(t), ∀(r, k) ∈ (R,K). (6)

Suppose the wireless computing network operations can be
described by the Eq. (1)-(6) for all flows r ∈ R, all computing
nodes n ∈ N , and the available wireless communication links
between two neighboring computing nodes (n, j) ∈ L. We
also assume that under such a wireless computing network, a
dynamic algorithm yields λ(r)(t), a

(r,k)
n (t), and s

(r,k)
n,j (t) rates

at each time slot t, and all queues are initially empty (i.e.,
Q

(r,k)
n (0) = 0).

E. Problem Formulation

Assumption 1. We established an instantaneous source rate
λ(r)(t) for each AgI flow r. We assume that this source rate
has a well-defined time average rate given by,

λ
(r)

(T) =
1

T

T−1∑
t=0

E{λ(r)(t)}.

To maximize the total source rates of all flows r ∈ R, we
use a network utility function for each flow r as a concave
increasing function of time average source rate denoted by

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 7

Ur(λ
(r)

(T)). We define Ur(·) as a concave 3, non-decreasing
function of flow rate which is continuously differentiable with
respect to λ(r) over a bounded domain. Such a utility function
is often advocated in the context of communication networks
[16], [39], [40]. Considering all the network constraints, we
formally present the NUM problem:

(P1) max
λ(r)(t),a(r,k)

n (t),s(r,k)
m,n (t),

z
(r,k)
n,j (t),x(r,k)

n (t)

R∑
r=1

Ur(λ
(r)

(T)) (7)

subject to (1), (3), (4), (5), (6),
∀n ∈ N , ∀r ∈ R, ∀k ∈ K, ∀t.

Here, it is important to note that the objective of problem
(P1) is network utility maximization in terms of source rate
subject to the underlying computing/communication resource
allocation of flow packets at each computing node n. The joint
computing/communication resource allocation is managed by
augmenting an internal/external packet forwarding mechanism
that allocates computing/communication resources to queues
indexed by (r, k) representing backlog at a computing func-
tion. We assume, the packet admission of each flow r at
src(r), computing resource allocation (e.g., which (r, k) queue
internally forwards packets), communication resource (e.g.,
which (r, k) queue externally forwards packets to downstream
node) is yielded by the dynamic algorithm at each time slot
(see Section IV). One important aspect of this approach
is, rather than a pre-determined resource allocation to AgI
flow packets, the algorithm dynamically allocates computing
resources to internally forward or communication resources to
externally forward the packets.

IV. DYNAMIC BACKPRESSURE-BASED FRAMEWORK

First, we define a vector to capture all the decision variables
of the optimization problem (P1),

y(r,k)n (t) =



[λ(r)(t)1(k=1,n=src(r)), s
(r,k)
n,j (t), a

(r,k)
n (t)],

n = src(r), j ∈ N , k = [1,K],

and
[s

(r,k)
n,j (t), a

(r,k)
n (t)],

n ̸= src(r), j ∈ N , k = [1,K].

The first case summarizes all the decision variables when the
computing node n is the source node, therefore we include
source rate λ(r)(t) and also the queue can externally forward
packets to some other neighborhood node j with rate s

(r,k)
n,j (t).

Alternatively can process the data packets to promote them to
the next state with rate a

(r,k)
n (t). When n ̸= src(r), we do not

consider source packet admission (i.e., λ(r)(t) = 0).
The utility optimization problem (P1) is a convex opti-

mization problem subject to linear constraints. For simplicity,

3In our paper, we use non-negative utility function log(1+λ(r)(t)), leading

to a proportionally fair allocation
∑R

r=1
λ∗(r)−λ(r)

λ∗(r)
+1

≥ 0. where λ∗(r) is

a proportionally fair operating point and λ(r) is any other feasible operating
point. This also ensures that the utility function is well-defined with λ(r) ≥ 0
[39].

we introduce a function h(·) of y
(r,k)
n (t) to capture the flow

conservation constraint in Eq. (1), given by,

h(y(r,k)n (t)) = λ(r)(t)1(k=1,n=src(r)) +
∑
i∈N

s
(r,k)
i,n (t)

+ a(r,k−1)
n (t)−

∑
j∈N

s
(r,k)
n,j (t)− a(r,k)n (t). (8)

Therefore, constraint (1) can be rewritten as

h(y(r,k)n (t)) ≤ 0. (9)

Using Eq. (9), we rewrite the queue update Eq. (2) as

Q(r,k)
n (t+ 1) = Q(r,k)

n (t) + h(y(r,k)n (t)). (10)

Further, we simplify the sum of the utility function in Eq. (7)
as

∑R
r=1 Ur(·) and rewrite utility maximization problem

max
h(yn(t))

R∑
r=1

V · Ur(t) (11)

s.t. h(y(r,k)n (t)) ≤ 0, ∀n ∈ N , (12)
(3), (4), (5), (6).

In this formulation, we introduced a positive term V ≥ 0,
which can be seen as a scaling parameter that controls the
trade-off between the achievable utility and queue backlogs.
The details are given in the performance analysis section. In
order to solve this non-linear convex problem, we introduce
the Lagrange multiplier θ(r,k)n (t) ∈ RR×K. The Lagrange dual
problem is written as

maxLg(·) =
R∑

r=1

V · Ur(t)−
∑

(r,k)∈(R,K),
n∈N

θ(r,k)n (t) · h(y(r,k)n (t))

(13)
s.t. yn ∈ A,

where we simplify the constraints by letting (3), (4), (5), (6) =
A, (i.e., network capacity region). The Lagrange dual problem
can be decoupled into sub-problems based on the decision
variables.

(SP1) max
∑

(r,k)∈(R,K),
n=src(r)

[
V · Ur(t)− θ(r,k)n (t) · h(y(r,k)n (t))

]
(14)

In (SP1), we consider that the computing network admits pack-
ets at src(r) node and with a packet state being k = 1, which
is a special case. Therefore, we decouple the flow admission
problem in (SP1), where we consider n = src(r), k = 1, and
the source rate given by λ(r)(t) at each slot. In other cases,
where we do not consider the flow packet admission, the La-
grange dual in Eq. (13) includes the internal forwarding (i.e.,
a
(r,k)
n (t)) and external forwarding (i.e., s(r,k)n,j (t)) of packets.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 8

(r,k)=(1,1)

(r,k)=(1,2)

(r,k)=(1,1) (r,k)=(1,2)

(r,k)=(1,2)

(r,k)=(1,2)

(r,k)=(1,3)

(r,k)=(1,3)

(r,k)=(1,3)

(r,k)=(1,3)n=1

n=2 n=3

n=5

t=1 t=2 t=3 t=4 t=5Time slot:

Packet taking
alternate route.

Src
Dst

t=6 t=7

n=6

External forwarding.

Internal forwarding.

External forwarding
via alternate route.

Internal forwarding
via alternate route.

Packet.

Fig. 3: We demonstrate internal/external forwarding of a
packet along two alternate routes at each time slots. (a) A
packet (e.g., (r,k): flow r and in state k) is externally forwarded
to node n=1 (solid red arrow) at slot t = 1, internally
forwarded by n=2 (solid green curved arrow) at slot t = 2.
Then the packet is externally forwarded to n=3 and further
internally forwarded in n=3 at slot t = 4. (b) Alternatively, the
same packet (dashed) follows a different route. For example,
the packet is internally forwarded in node n=1 (dashed curved
green arrow) at t = 1, externally forwarded to n=5 (dashed
red arrow) at t = 5, and delivered to the destination.

The internal/external forwarding couples a joint scheduling
and routing problem which is given by,

(SP2) max −
∑

(r,k)∈(R,K),
n∈N

θ(r,k)n (t) · h(y(r,k)n (t))

= max
∑
(r,k),
n

a(r,k)n (t)

[
θ(r,k)n (t)− θ(r,k+1)

n (t)

]

+
∑
(r,k),
n

s
(r,k)
n,j (t)

∑
j∈N

[
θ(r,k)n (t)− θ

(r,k)
j (t)

]
. (15)

Proof. Appendix A.

We simplify the summation
∑

(r,k)∈(R,K),
n∈N

(·) =
∑

(r,k),
n

(·).
We can solve the resource allocation problem in (SP2) if we
can estimate the value of Lagrange multiplier (i.e., θ(r,k)n (t))
from Eq. (15). Updating θ

(r,k)
n according to a queue dynamics

(i.e., as θ(r,k)n (t) = Q
(r,k)
n (t)) from Eq. (2), provides us an esti-

mation. (The details can be found in Appendix D.) According
to our analysis presented by Eq. (14), and Eq. (15), we provide
the deterministic solutions to problem (P1) by decoupling it
into sub-problems with readily available solutions. The sub-
problems are solved sequentially and together they provide the
joint algorithm to solve the initial problem (P1) as follows.

1) (SP1): Flow Control: (SP1) isolates data packet admis-
sion problem in the source node src(r) for each flow r.

max
λ(r)(t)

∑
(r,k=1),
n=src(r)

[
V · Ur(λ

(r)(t))−Q(r,k)
n (t) · λ(r)(t)

]

s.t. λ(r)(t) ∈ domain(Ur) (16)

Remark 2. Since AgI flows are independent, max
∑

(·) =∑
max(·) in SP1.

The solution to (SP1) is given by,

λ(r∗)(t) =

[
U

′−1(
Q

(r,k)
n (t)

V
)

]λmax
r

0

(17)

The complexity of the step is O(|R|), where |R| is the number
of AgI flows in the network. We decouple the problem (SP2)
into two sub-problems.

2) (SP2A): Internal Forwarding: (SP2A) isolates the
scheduling of computing resources at each computing node.
Specifically, at slot t a particular (r, k) queue is scheduled to
compute a

(r,k)
n (t) amount of packets and promote the packets

to queue (r, k + 1) at the same computing node, i.e.,

max
a

(r,k)
n (t)

∑
(r,k)∈(R,K),

n∈N

a(r,k)n (t)

[
Q(r,k)

n (t)−Q(r,k+1)
n (t)

]
(18)

s.t. (3), (4), and a(r,k)n (t) ≥ 0.

The solution to this sub-problem is given by the following,

a(r∗,k∗)n (t)

= argmax
(r,k)

[
Q(r,k)

n (t)−Q(r,k+1)
n (t)

]
· Cn
σ(r,k)ρ(r,k)

(19)

Note that, with k = K, the computing function (r, k + 1)

represents a dummy function and Q
(r,k+1)
n is a dummy queue.

This is a special case since the packets in (r, k = K)-th queue
require no internal forwarding. The complexity of this step is
O(|R×K|), for eachnode n ∈ N , where |R| is the number of
AgI flows in the network and |K| is the number of required
computing functions for each flow.

3) (SP2B): External Forwarding: (SP2B) refers to the ex-
ternal packet forwarding between two neighboring computing
nodes (i, j) by allocating communication resources. Here, a
communication link is scheduled for routing the packets from
data queue (r, k) residual to node n to a data queue (r, k) at
downstream node j.

max
s
(r,k)
n,j (t)

∑
(r,k)∈(R,K)

s
(r,k)
n,j (t)

∑
j∈N

[
Q(r,k)

n (t)−Q
(r,k)
j (t)

]
(20)

s.t. (5), (6) and s
(r,k)
n,j (t) ≥ 0.

we incorporate a maximum backpressure-based scheduling
between the queues (in between the nodes to downstream)
and available transmission rates at each time slot.

s
(r∗,k∗)
n,j = argmax

µn,j

∑
n,j∈L

µn,j

σ(r,k)
· w(r∗,k∗)

n,j (t),∀(n, j). (21)

where,

w
(r∗,k∗)
n,j (t) ≜ argmax

(r,k)

[Q(r,k)
n (t)−Q

(r,k)
j (t)],

∀(n, j),∀(r, k), (22)

where (n, j) denotes that computing node j (downstream)
is in the communication range of computing node n and

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 9

there exists an active communication link (n, j). The po-
tential packet forwarding rate µn,j is given by the matrix
µ = [µn, ..] at each slot, where µn = {µn,j} represents a
vector of potential packet forwarding rate at link (n, j) ∈
L. It is important to note that, the actual rate is given
by, s

(r∗,k∗)
n,j = min[

µn,j

σ(r,k) , Q
(r,k)
n (t) − Q

(r,k)
j (t)], and when

[Q
(r,k∗)
n (t)−Q

(r,k∗)
j (t)] ≤ 0, we set µn,j = 0.

The complexity of this step is O(|R × K||J |), where |J |
is the number of computing nodes that are in the neighbor-
hood of node n. Different from the fixed-resource allocation-
based counterparts, the proposed algorithm explores dynamic
resource allocation via multi-path forwarding of AgI flow
packets by augmenting the internal/external forwarding. An
illustrative example is shown in Fig. 3 where computing
nodes route a flow packet via alternative paths while exter-
nally/internally forwarding the packets.

V. PERFORMANCE ANALYSIS

To analyze the algorithm performance, we use the
Lyapunov-drift equation which is defined as the quadratic of
the queue backlog that measures the network congestion.

Definition 2. (Lyapunov function) We define the Lyapunov
function as a function of queue dynamics in the following

L(t) =
1

2

∑
(r,k)

[Q(r,k)
n (t)]2, (23)

and the Lyapunov-drift equation by,

(∆Q(t)) = L(t+ 1)− L(t). (24)

If we can measure the upper bound of the drift (∆Q(t)),
then we can establish an upper bound of the queue backlog.
Using the definition of Lyapunov-drift equation (Eq. 24) and
Eq. (10), we derive the following lemma that gives us the
upper-bound of drift.

Lemma 1. At each time slot t, the Lyapunov-drift equation
can be finitely upper-bounded by,

(∆Q(t)) ≤ G− ϵ ·Q(r,k)
n (t)

We define two positive constant terms G and ϵ as

G ≜ [
∑
j∈N

smax
n,j + amax

n]2 + [λmax
r +

∑
i∈N

smax
i,n + amax

n]2,

ϵ ≜ [
∑
j∈N

s
(r,k)
n,j + a(r,k)n]− [λ(r) +

∑
i∈N

s
(r,k)
i,n + a(r,k−1)

n].

(25)

Proof. Appendix E.

Using the Lyapunov drift bound given by Lemma 1, we will
prove the data queue stability and near-optimal utility of the
proposed algorithm. We state the following assumptions that
are critical to the analysis.

Assumption 2 (Infinite reservoir and real-value assumptions).

1) The transport layer queues are infinitely backlogged (in-
finite application demand). Therefore, there are always

flow packets to admit in the network leading to λ(r)(t)
being a non-zero quantity.

2) Moreover, we assume that λ(r)(t) can be a real value
(not necessarily integer/integer multipliers of a given
packet length). Let λ(r) ∈ [0, λmax] and λ(r)(t) be
an infinite sequence of non-negative real numbered
values in the set. Thus, 1

T

∑T−1
t=0 λ(r)(t) ∈ [0, λmax].

Specifically, we assume that there exists a continuous
byte stream at the transport layer and src(r) scales the
size of the admitted data as a real-numbered value, e.g.,
1.2 MBps. To summarize, the source rate is assumed to
be a continuous real-numbered value at each time slot
rather than a discrete integer value.

Using the Lemma 1 and Assumption 2, we establish that
our proposed algorithm maintains a finite time-average queue
backlog and near-optimal network utility. First, we set up the
necessary variables before stating the theorem.

• Conditional Drift: Let us represent a queue backlog
process by Q(t) = [Q

(r,k)
n (t)] that evolves according to

some probability law and represents the current queue
backlogs. Here, we slightly abuse the notation of queue
backlog at a slot t to represent the queue backlog
process. Recall, we defined the Lyapunov function by
L(Q

(r,k)
n (t)) = [Q

(r,k)
n (t)]2 as a quadratic function. For

the given queue backlog vector Q(t), we define the
conditional Lyapunov drift ∆(Q(t)) as

∆(Q(t)) ≜ E{L(Q(t+ 1))− L(Q(t)) | Q(t)}. (26)

• Target Utility: We denoted the network utility at
each time slot by Ur(λ

(r)(t)) and assume, the achiev-
able utility is upper-bounded by a finite value as∑R

r=1 Ur(λ
(r)(t)) ≤ Umax for all t, where the utility

function is a non-negative concave function. We assume
that there exists a stationary randomized policy which
gives the decision vector ŷn[t] ≜ {ŷ(r,k)n (t)} that deter-
ministically satisfies λ̂n[t] = λ∗ and produces a utility
value U(λ∗).

Theorem 1. Suppose there exist positive constants V acting
as a utility control parameter and the constants ϵ,G as it is
defined in Eq. (25) for all time slots t, and queue backlog
process Q(t). Further, by using the result of Lemma 1, if
Lyapunov-drift satisfies the following drift-minus-utility bound,

∆(Q(t))− V

R∑
r=1

E{Ur(λ
(r)(t)) | Q(t)}

≤ G− ϵ
∑
(r,k),
n

Q(r,k)
n (t)− V U(λ∗), (27)

then the queue backlogs are upper-bounded by

lim sup
T→∞

T−1∑
t=0

∑
(r,k),
n

E{Q(r,k)
n (t)} ≤ G+ V Umax

ϵ
. (28)

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 10

Further, assuming the data queues are initially empty, using
both Assumption 2 and Assumption 1, the achievable utility of
the proposed algorithm satisfies

lim inf
T→∞

R∑
r=1

Ur(λ
(r)

(T)) ≥ ν∗ − G

V
, (29)

where we denote the optimal utility by ν∗ which will be
defined later in the proof.

Proof. The proof is given in Appendix F.

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed algorithm
by performing extensive simulations. First, we briefly discuss
the simulation settings and then we present our experimental
results. We perform our experiments considering a wireless
computing network with |N | = 6 computing nodes. The
network is connected via directed wireless links between the
computing nodes. In particular, we focused our experiments
on a cell-partitioned network topology where we assume
each cell contains a single node. The communication occurs
among the nodes residing in adjacent cells that use orthogonal
frequency bands. We also assume that the cell structure is
rectilinear. It is important to mention that, the cell structure is
not critical to our analysis. However, the assumption simplifies
the exposition and decouples the routing decisions cell-by-cell.
We assume the communication link capacities vary between
10 − 19packets/slot. We use log(1 + λ(r)) as our system
utility metric. (See Table II). The experimental results are
given below.

TABLE II: Simulation Setup

Parameter Numerical argument
Number of Computing Nodes |N | = 6

Number of flows |R| = 3
Number of compute functions |K| = 3

Maximum source rates λmax
r = [9, 8, 7]MBps

CPU Scaling Factor f = [1, 1.3, 1.7, 2]
Utility scaling parameter V = [0, 250, 500, ..., 30000, 45000, 50000]

Computing capacity C(n=1→6) = [145, 175, 160, 130, 175, 140] (CPU cycles/slot)
Communication Capacity µ = [10− 19]MBps

Flow 1
Required CPU cycles (with f=2) ρ(r=1,k=1→3) = [3.5, 7, 14] (Cycles/MB)

Packet size σ(r=1,k) = 3 (MB)
Flow 2

Required CPU cycles (with f=2) ρ(r=2,k=1→3) = [3, 6, 12] (Cycles/MB)
Packet size σ(r=2,k) = 3.5 (MB)

Flow 3
Required CPU cycles (with f=2) ρ(r=3,k=1→3) = [5, 10, 20] (Cycles/MB)

Packet size σ(r=3,k) = 3 (MB)

A. Comparison with state-of-art

We compare with the existing works to show the persuasive-
ness of our proposed algorithm. The baselines are introduced
in the following.

1) Optimal Policy: The optimal policy assumes the opti-
mal utility.

2) Proposed algorithm: Our proposed algorithm inves-
tigates the internal/external forwarding of AgI flow
packets via augmenting the backpressure scheduling and
routing.

0
1
0

2
5

5
0

7
5

1
5
0

1
.2

e
5

1
.6

e
5

2
.0

e
5

2
.5

e
5

3
.0

e
5

4
.e

5

4
.5

e
5

5
e
5

5
.5

e
5

V

0

1

2

3

4

5

6

7

8

N
et

w
o
rk

 U
ti

li
ty

Optimal Policy

Proposed Algorithm

NUM-Online

R-Dynamic Migration

R-ADCNC

Fig. 4: Network utility under different V parameters.

3) NUM-Online [10]: Proposes a fairness-based flow con-
trol and resource allocation an NFV-based scenario.
The work assumes a fixed computing/communication re-
source allocation configuration to flows in the computing
nodes and devises a flow control mechanism.

4) R-Dynamic Migration [12]: This method is a reduced
variant of the algorithm proposed by [12] that assumes a
known source rate, involves computing/communication
resource allocation, and computing function migration
by halting the processing. We measure their utility by
injecting a time-varying source rate.

5) R-ADCNC [13]: Considers a cost/delay associated with
the computing function reconfiguration process. To com-
pare, we consider the delay by halting the source admis-
sion during function reconfiguration. We measure their
utility by injecting a time-varying source rate.

1) Network utility: We compare the network utility
achieved by our proposed algorithm with respect to the
baseline algorithms in Fig. 4. Compared to the existing
works, internal/external forwarding does not affect the flow
admission and scheduling/routing of any other flow packets.
The proposed algorithm provides a joint algorithm for flow
control, scheduling, and routing by streamlining cross-layer
control and convex duality and guarantees superior perfor-
mance in terms of network utility. Our experiment cross-
verifies the analysis in Theorem 1 and achieves close-to-
optimal network utility with a vanishing utility gap of G

V .
When the value of V increases from 150 to 1.2e5, the
network utility of the NUM-Online, R-Dynamic Migration,
and R-ADCNC algorithms shows significant improvements.
However, the proposed algorithm increases steadily for small
V values, e.g., V = [10, 25, 50, 150] and quickly converges. It
is also important to note that, unlike the baselines our proposed
algorithm maintains a trade-off between data queue stability
and utility optimality.

2) Queue backlog and internal/external forwarding trade-
off: Since the NUM-Online [10] is the second best performer,
we compare NUM-online in terms of data queue conges-
tion and joint resource allocation. In Fig. 5, we show the
comparison between NUM-Online and our Proposed algo-
rithm in terms of data queue backlogs and internal/external

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 11

100 200 300 400 500 600 700 800 900 1000 1100

T

100

200

300

400

500

Q
u

eu
e

B
ac

k
lo

g

1 2 3 4 5 6

Node n

0

2

4

6

8

10

E
x

te
rn

al
 F

o
rw

ar
d

in
g

1 2 3 4 5 6

Node n

0

2

4

6

In
te

rn
al

 F
o

rw
ar

d
in

g

NUM-Online

Proposed Algorithm

(a) Flow 1

100 200 300 400 500 600 700 800 900 1000 1100

T

0

200

400

600

800

Q
u

eu
e

B
ac

k
lo

g

1 2 3 4 5 6

Node n

0

1

2

3

E
x

te
rn

al
 F

o
rw

ar
d

in
g

1 2 3 4 5 6

Node n

0

2

4

6

In
te

rn
al

 F
o

rw
ar

d
in

g

NUM-Online

Proposed Algorithm

(b) Flow 2

100 200 300 400 500 600 700 800 900 1000 1100

T

0

100

200

300

400

500

Q
u

eu
e

B
ac

k
lo

g

1 2 3 4 5 6

Node n

0

1

2

3

4

5

E
x

te
rn

al
 F

o
rw

ar
d

in
g

1 2 3 4 5 6

Node n

0

1

2

3

In
te

rn
al

 F
o

rw
ar

d
in

g

NUM-Online

Proposed Algorithm

(c) Flow 3

Fig. 5: Queue backlogs and internal/external forwarding at each computing node.

forwarding rates at each computing node. To perform this
experiment, we fix V = 1000 and iterate the algorithm
over T = 1100 time slots. NUM-Online [10] proposes a
fixed deployment of computing/communication resources at
particular computing nodes. On the other hand, our proposed
algorithm augments internal/external forwarding to allocate
computing/communication resources and steer the flow pack-
ets via different routes toward the destination. Therefore, our
proposed algorithm experiences lower data queue backlogs for
each flow (see the top graph).

Additionally, our algorithm derives internal forwarding rate
a
(r,k)
n (t) and external forwarding rate s

(r,k)
n (t) by solving

the SP2. Therefore, the algorithm maintains a proper trade-
off between the computing/communication resources in the
network. The bar chart (red color) in Fig. 5a shows that the
average internal/external forwarding rates of flow 1 packets
given by the proposed algorithm where the flow 1 packets
are collaboratively computed and forwarded by all computing
nodes.

It is important to mention that NUM-Online [10] does
not provide an internal/external packet forwarding strat-
egy. Rather, NUM-Online offers predetermined comput-
ing/processing of a flow at specific computing nodes and
fixed path routing. We compare the computing/communication
resource allocation rates by NUM-Online at each computing
node(shown in blue bars) with our proposed backpressure
algorithm. Both our analysis and experimental evaluation show
that NUM-Online provides an uneven resource allocation (see
blue color) to the packets at different computing nodes.

B. Experiment with varying parameters

We test our proposed algorithm by varying different param-
eters, e.g., utility scaling V and maximum source rate λmax

requirements of each flow, packet size σr,k, and CPU scaling
factor denoted as ρ(r,k). The results are given below.

1) Varying maximum source rate: We show that our pro-
posed algorithm maintains resource fairness among different
AgI flows in Fig. 6. Specifically, we performed the experiment
with different λmax = [12, 6, 3] (i.e., flow1 with λmax = 12)
for each flow instead of a fixed λmax. We show the achievable
utilities of flow1-flow3 in the network under different values
of the scaling parameters V . The utility of each individual

0 500 1000 1500 2000 2500

V

0

0.5

1

1.5

2

N
et

w
or

k
U

ti
li

ty

Flow 1

Flow 2

Flow 3

Fig. 6: Network utility of different flows.

flow sharply increases with the increment of V value and with
larger values, the utilities converge as the source rates converge
while maintaining fairness among different network flows.

2) Varying packet size: We show the effect of change in
packet sizes in Figs. 7a-7c. For this particular experiment, we
consider that the packet length changes after being processed
by a function (r, k). For example, the packet size may increase
when a function adds extra payload information to the packet.
In this experiment, we set the revised packet lengths of flow 1
as σ(r=1,k=1→3) = [5.5, 4, 6.5]MB after being processed by
k-th computing function. Similarly, we set σ(r=2,k=1→3) =
[5.5, 6.5, 6]MB and σ(r=2,k=1→3) = [2, 2, 1.5]MB. The
change in packet lengths at different packet states implies
that the packet requires different computing/communication
resources at each state. This change affects the overall in-
ternal/external forwarding rates of a particular flow packet
at different computing nodes. For example, due to the larger
packet length and higher computing demand of flow 2 packets,
computing nodes can internally/externally forward the packets
of flow 2 at a lower rate compared to flow 3 and flow 1.
Especially, flow 3 packets have shorter packet lengths, and
therefore packets are processed by computing node n = 1
at a higher rate than flow 1 and flow 2. Flow 1 packets are
mostly externally forwarded and then processed by node n = 6
which shows that our proposed algorithm maintains a trade-off
by distributing compute/communication resources allocations

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 12

1 2 3 4 5 6

Node n

0

1

2

3

4

5

In
te

rn
al

/E
x

te
rn

al
 F

o
rw

ar
d

in
g

Internal Forwarding a
(r=1,k)

External Forwarding s
(r=1,k)

(a) Flow 1

1 2 3 4 5 6

Node n

0

1

2

3

4

5

In
te

rn
al

/E
x

te
rn

al
 F

o
rw

ar
d

in
g

Internal Forwarding a
(r=2,k)

External Forwarding s
(r=2,k)

(b) Flow 2

1 2 3 4 5 6

Node n

0

1

2

3

4

5

In
te

rn
al

/E
x

te
rn

al
 F

o
rw

ar
d

in
g

Internal Forwarding a
(r=3,k)

External Forwarding s
(r=3,k)

(c) Flow 3

Fig. 7: Internal/external forwarding at computing nodes under packet size changing case.

1 1.3 1.7 2

CPU Scaling Factors

0

1

2

3

4

5

6

7

8

9

S
o

u
rc

e
R

at
es

V=250

V=8000

V=45000

(a) Source rate of flow 1.

1 1.3 1.7 2

CPU Scaling Factors

0

1

2

3

4

5

6

S
o

u
rc

e
R

at
es

V=250

V=8000

V=45000

(b) Source rate of flow 2.

1 1.3 1.7 2

CPU Scaling Factors

0

1

2

3

4

5

6

S
o

u
rc

e
R

at
es

V=250

V=8000

V=45000

(c) Source rate of flow 3.

Fig. 8: Comparison of source rates under different CPU scaling factors and V.

across the computing network. Note that, we do not consider
any flow scaling (e.g., change in the number of packets after
computation) therefore the total number of packets remains
the same before being delivered.

3) Varying CPU scaling factor: We show the effect of
computation resource requirements (required CPU cycles)
variation to process the packets (i.e., ρ(r,k)), on achievable
source rate λ(r). We incorporate a parameter of the CPU scal-
ing factor (denoted by f) [10], that is the variation of required
CPU cycles in the sequence of functions of an AgI flow r. In
practice, the resource requirements are different from specific
functions. Assume, the flow r requires processing by the
system firewall and then by an encryptor which requires more
CPU cycles than a network firewall. To simplify our study on
the effects of computing resource requirements on λ(r), we
assume the subsequent functions require more computation
resources than their previous functions, e.g., ρ(r,k)<ρ(r,k+1).
It is important to note that, this setting is to mimic the
workload variation of the functions of an AgI flow. In practice,
we replace this particular setting with a random process. To
illustrate the variations, we use a finite scaling factor, e.g.,
ρ(r,k) ∗ f = ρ(r,k+1), meaning that processing of (r, k + 1)
requires f times the CPU cycles than (r, k).

In Fig. 8, we present the effects of the scaling factor for each
flow. Specifically, we set the computing resource requirement

of k = 1-st function of the flow 1 as ρ(r=1,k=1) = 3.5 with
a set of different scaling factors f. For example, with scaling
factor f = 2.0 and ρ(r=1,k=1) = 3.5, the required CPU cycles
to process each bit of a flow 1 packet is given by a vector
ρ(r=1,k) = [3.5, 7, 14] for each functions k ∈ K. We set the
initial ρ(r=3,k) = [5, 8, 7] for this particular experiment. It
is evident from the experimental result that incremental CPU
scaling factors tend to lower the source rate of flow3. To
focus on the effect of the CPU-scaling factor on source rates,
we assume that the processing of a packet in (r, k) does not
change the packet size in this particular experiment. Rather,
our goal is to show only the effects on the source rates. We set
packet lengths vector as σ(r) = [3, 3.5, 3] for the three flows.

Among all the admissible flows into the network, flow
1 and flow 2 require lower computing resources to process
a packet, and the packet sizes are similar. Therefore, they
offer similar source rates. In particular, with large V , such
as V = 45000, the source rates of both of these flows are
the same. However, with a smaller value of this parameter
V = 250, flow 2 achieves a better source rate. This is due
to the different internal/external forwarding rates of flow r in
the computing nodes. When required computing resources to
perform function-specific processing of a packet increase by
a factor, (e.g., f = 1.5), the packets have to wait longer in
a queue, and the backlog increases. When the backlog at the

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 13

2000 4000 6000 8000 10000 12000
Time (In every 1200 slots)

5.95

6

6.05

6.1

6.15

6.2

6.25

6.3
So

ur
ce

 r
at

e
Flow 1

9200 9400 9600 9800

6.02

6.03

6.04

6.05

6.06

6.07

6.08

(a) Source rate of Flow1.

2000 4000 6000 8000 10000 12000
Time (In every 1200 slots)

6

6.05

6.1

6.15

6.2

6.25

6.3

So
ur

ce
 r

at
e

Flow 2

9200 9400 9600 9800

6.02

6.04

6.06

6.08

6.1

(b) Source rate of Flow2.

2000 4000 6000 8000 10000 12000
Time (In every 1200 slots)

5.95

6

6.05

6.1

6.15

6.2

6.25

6.3

So
ur

ce
 r

at
e

Flow 3

9200 9400 9600 9800
6

6.02

6.04

6.06

6.08

(c) Source rate of Flow3.

Fig. 9: Convergence of flow packet admissions.

1 2 3 4 5 6
Nodes n

0

1

2

3

4

5

6

7

In
te

rn
al

 a
nd

 E
xt

er
na

l F
or

w
ar

di
ng

 F
lo

w
 1

Internal Forwarding a (r=1,k)

External Forwarding s (r=1,k)

(a) Internal-external forwarding rates of
Flow 1.

1 2 3 4 5 6
Nodes n

0

1

2

3

4

5

6

7

In
te

rn
al

 a
nd

 E
xt

er
na

l F
or

w
ar

di
ng

 F
lo

w
 2

Internal Forwarding a (r=2,k)

External Forwarding s (r=2,k)

(b) Internal-external forwarding rates of
Flow 2.

1 2 3 4 5 6
Nodes n

0

1

2

3

4

5

6

7

In
te

rn
al

 a
nd

 E
xt

er
na

l F
or

w
ar

di
ng

 F
lo

w
 3

Internal Forwarding a (r=3,k)

External Forwarding s (r=3,k)

(c) Internal-external forwarding rates of
Flow 3.

Fig. 10: The comparison between internal forwarding and external forwarding rates in each computing node of the network.

computing nodes is large, the proposed algorithm lowers the
source rates of the specific flow at src(r). On the other hand,
the parameter V also regulates the source rate λ(r). Overall,
there is a trade-off between the queue backlog, achievable
source rates, and V . When V becomes larger, the source rates
λ(r) increase. With an increment of the computing resource
requirements to process each packet, the source rates decrease.
The effects of these parameters are illustrated in Fig. 8.

C. Long-term performance

We test the performance of our proposed algorithm in
the long term. Specifically, we take the running average of
source rates of each flow and internal/external forwarding
rates at each node in a predefined time window and show the
convergence of source rates and the overall internal/external
forwarding trade-off over time.

1) Source rate: Our proposed algorithm stabilizes the net-
work utility to a level while maintaining fairness among
the different flows. We experiment on the convergence of
network utilities over T = 12000 time slots with a fixed
V = 20000. For better understanding and presentation, we

calculate the time-average flow rates in small time-windows
(during every t = 600 time slots), to show the change in
achievable utility over time. Since at the beginning of the
iteration, the source queues of the networks are empty (i.e.,
Q

(r,k=1)
n=1 (0) = 0), therefore the queues can accept more

packets from the transport-layer reservoirs. The parameter
V regulates how many packets a particular source queue can
accept. When the V is very large, the queue (i.e., Q(r,k=1)

n=1 (t))
can allow more source packets and add them to the backlogs.
Therefore, with sufficiently large enough V , a source queue
can accept the number of packets to its maximum limit, i.e.,
λmax
r . With time, the queue backlogs become large since

the computing nodes can accommodate a limited number
of internal/external packet forwarding. Therefore, to avoid
congestion and instability, the source nodes src(r) regulate the
flow of the packets over time. As a result, the source rate in the
network decreases over time until the rate converges to a stable
point. The simulations presented in Fig. 9a-9c, demonstrate the
aforementioned trends in source rates. Along with the time-
average rate, we present a detailed speculation of the source
rate dynamics over each time slot (e.g., [9200 → 9800]). The

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 14

dynamics in the region show that source rates do not fluctuate
significantly, varying at most a range of 0.10.

2) Trade-off in internal/external forwarding rates: Specifi-
cally, the internal/external forwarding rates evolve depending
on a metric that is based on the computing demands, com-
puting resources in a computing node, and queue backlogs
at each time slot. Since provided communication resources
to communication links are different (e.g., due to the power
assignment on a link), the achievable external forwarding rates
are different across the computing network. Similarly, the
processing requirements of packets are different for each (r, k)
tuple in the vector ρ(r,k). Considering all the facts, the pro-
posed algorithm determines the external/internal forwarding
rates at each time slot. Moreover, there is an interplay between
the internal forwarding and external forwarding rates. Com-
puting nodes perform both internal and external forwarding
according to available resources and backpressure differences.
We perform a comparative experiment on internal/external
packet forwarding rates (shown in Fig. 10) at each computing
node to illustrate this interplay. In our experiment, we set node
n = 3 with the highest communication resources (e.g., the
outgoing communication links from n = 3 accommodate high
data rate µn,j) among all the computing nodes. Therefore, to
best use its resources, node n = 3 chooses to perform external
packet forwarding rather than internal forwarding.

We performed the simulation with ρ(r,k) =
[2, 3, 4, 3, 3, 3, 5, 8, 7](inCPUcycle/bit), V = 450000,
and C(n=1→6) = [145, 175, 160, 130, 175, 140] in CPU
cycle). The computing nodes perform the external forwarding
according to the solution in Eq. (21). The potential link
rates µn,j are given by the matrix µ at a time slot. In this
particular case, we fix some arbitrary rate for µn,j varying
from 12 → 19 packets/slot, based on whether a directed
wireless link exits between nodes (n, j), and 0 otherwise, and
µn,n = 0. We inspect that node n = 3 performs more external
forwarding of packets than compared to internal forwarding
due to its higher communication resources. Each of the
flows takes the advantages of computing and communication
resources from the nodes n ∈ N differently according
to the proposed algorithm, which proves the correctness
and applicability of the proposed algorithm in a wireless
computing network.

VII. CONCLUDING REMARKS

We studied a dynamic scheduling and routing problem
in the wireless computing network via packet forwarding
strategies under an NUM framework. The strategies involve
efficient resource allocation decisions with minimum informa-
tion exchange that develops an augmented backpressure-based
algorithm. In the future, we will consider studying the storage
resource allocation with scheduling and routing in AgI flows
under mobility constraints.

REFERENCES

[1] Q. Duan, S. Wang, and N. Ansari, “Convergence of networking and
cloud/edge computing: Status, challenges, and opportunities,” IEEE
Network, vol. 34, no. 6, pp. 148–155, 2020.

[2] C. Sun, X. Wu, X. Li, Q. Fan, J. Wen, and V. C. Leung, “Cooperative
computation offloading for multi-access edge computing in 6G mobile
networks via soft actor critic,” IEEE Transactions on Network Science
and Engineering, pp. 1–1, 2021.

[3] Y. Chen, J. Wu, and B. Ji, “Optimizing flow bandwidth consumption
with traffic-diminishing middlebox placement,” in Proc. of 49th Inter-
national Conference on Parallel Processing-ICPP, virtual event, 2020.

[4] M. Shi, X. Lin, and L. Jiao, “Power-of-2-arms for bandit learning with
switching costs,” in Proc. of ACM MobiHoc, Seoul, South Korea, 2022.

[5] X. Zhou, Y. Gao, C. Li, and Z. Huang, “A multiple gradient descent
design for multi-task learning on edge computing: Multi-objective
machine learning approach,” IEEE Transactions on Network Science
and Engineering, vol. 9, no. 1, pp. 121–133, 2022.

[6] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal con-
trol of wireless computing networks,” IEEE Transactions on Wireless
Communications, vol. 17, no. 12, pp. 8283–8298, 2018.

[7] M. Barcelo, J. Llorca, A. M. Tulino, and N. Raman, “The cloud
service distribution problem in distributed cloud networks,” in 2015
IEEE International Conference on Communications (ICC), 2015, pp.
344–350.

[8] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approx-
imation algorithms for the NFV service distribution problem,” in Proc.
of IEEE INFOCOM, Atlanta, GA, USA, 2017.

[9] J. Li, W. Shi, Q. Ye, S. Zhang, W. Zhuang, and X. Shen, “Joint virtual
network topology design and embedding for cybertwin-enabled 6G core
networks,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16 313–
16 325, 2021.

[10] L. Gu, D. Zeng, S. Tao, S. Guo, H. Jin, A. Y. Zomaya, and W. Zhuang,
“Fairness-aware dynamic rate control and flow scheduling for network
utility maximization in network service chain,” IEEE Journal on Se-
lected Areas in Communications, vol. 37, no. 5, pp. 1059–1071, 2019.

[11] J. Zhang, A. Sinha, J. Llorca, A. M. Tulino, and E. Modiano, “Optimal
control of distributed computing networks with mixed-cast traffic flows,”
IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp. 1760–1773,
2021.

[12] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao, “Dynamic
flow migration for embedded services in SDN/NFV-enabled 5G core
networks,” IEEE Transactions on Communications, vol. 68, no. 4, pp.
2394–2408, 2020.

[13] C.-H. Wang, J. Llorca, A. M. Tulino, and T. Javidi, “Dynamic cloud
network control under reconfiguration delay and cost,” IEEE/ACM
Transactions on Networking, vol. 27, no. 2, pp. 491–504, 2019.

[14] Q. Liu, H. Zeng, and M. Chen, “Network utility maximization under
maximum delay constraints and throughput requirements,” IEEE/ACM
Transactions on Networking, vol. 28, no. 5, pp. 2132–2145, 2020.

[15] X. Lin and N. B. Shroff, “Utility maximization for communication
networks with multipath routing,” IEEE Transactions on Automatic
Control, vol. 51, no. 5, pp. 766–781, 2006.

[16] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer op-
timization in wireless networks,” IEEE Journal on Selected areas in
Communications, vol. 24, no. 8, pp. 1452–1463, 2006.

[17] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and MAC
for stability and fairness in wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 8, pp. 1514–1524, 2006.

[18] M. Neely, Stochastic network optimization with application to commu-
nication and queueing systems. Morgan & Claypool Publishers, 2010.

[19] M. J. Neely and R. Urgaonkar, “Optimal backpressure routing for
wireless networks with multi-receiver diversity,” Ad Hoc Networks,
vol. 7, no. 5, pp. 862–881, 2009.

[20] J. Li, W. Shi, H. Wu, S. Zhang, and X. Shen, “Cost-aware dynamic
SFC mapping and scheduling in SDN/NFV-enabled space–air–ground-
integrated networks for internet of vehicles,” IEEE Internet of Things
Journal, vol. 9, no. 8, pp. 5824–5838, 2022.

[21] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for
embedded vnf chains in 5g core networks,” IEEE Internet of Things
Journal, vol. 6, no. 1, pp. 692–704, 2018.

[22] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in 2015 11th International Conference
on Network and Service Management (CNSM), 2015, pp. 50–56.

[23] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal dynamic
cloud network control,” IEEE/ACM Transactions on Networking, vol. 26,
no. 5, pp. 2118–2131, 2018.

[24] ——, “Dynamic network service optimization in distributed cloud
networks,” in 2016 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2016, pp. 300–305.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 15

[25] K. Kamran, E. Yeh, and Q. Ma, “Deco: Joint computation scheduling,
caching, and communication in data-intensive computing networks,”
IEEE/ACM Transactions on Networking, vol. 30, no. 3, pp. 1058–1072,
2021.

[26] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Joint compute-
caching-communication control for online data-intensive service deliv-
ery,” IEEE Transactions on Mobile Computing, 2023.

[27] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in 2004 43rd IEEE Conference on Decision and
Control (CDC) (IEEE Cat. No.04CH37601), vol. 2, 2004, pp. 1484–
1489 Vol.2.

[28] I.-H. Hou, “Packet scheduling for real-time surveillance in multihop
wireless sensor networks with lossy channels,” IEEE Transactions on
Wireless Communications, vol. 14, no. 2, pp. 1071–1079, 2014.

[29] L. Georgiadis, M. J. Neely, L. Tassiulas et al., “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends® in
Networking, vol. 1, no. 1, pp. 1–144, 2006.

[30] I.-H. Hou and P. Kumar, “Utility maximization for delay constrained
QoS in wireless,” in Proc. of IEEE INFOCOM, 2010, pp. 1–9.

[31] A. Sinha and E. Modiano, “Optimal control for generalized network-
flow problems,” IEEE/ACM Transactions on Networking, vol. 26, no. 1,
pp. 506–519, 2017.

[32] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Decentralized
control of distributed cloud networks with generalized network flows,”
IEEE Transactions on Communications, vol. 71, no. 1, pp. 256–268,
2022.

[33] ——, “Ultra-reliable distributed cloud network control with end-to-end
latency constraints,” IEEE/ACM Transactions on Networking, vol. 30,
no. 6, pp. 2505–2520, 2022.

[34] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in MEC networks with storage,
computation, and communication constraints,” IEEE/ACM Transactions
on Networking, vol. 28, no. 3, pp. 1047–1060, 2020.

[35] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Mobile edge comput-
ing network control: Tradeoff between delay and cost,” in GLOBECOM
2020-2020 IEEE Global Communications Conference. IEEE, 2020, pp.
1–6.

[36] M. Huang, W. Liang, Y. Ma, and S. Guo, “Maximizing throughput of
delay-sensitive NFV-enabled request admissions via virtualized network
function placement,” IEEE Transactions on Cloud Computing, vol. 9,
no. 4, pp. 1535–1548, 2019.

[37] Z. Xu, Z. Zhang, W. Liang, Q. Xia, O. Rana, and G. Wu, “QoS-aware
VNF placement and service chaining for IoT applications in multi-tier
mobile edge networks,” ACM Transactions on Sensor Networks (TOSN),
vol. 16, no. 3, pp. 1–27, 2020.

[38] Y. Yue, B. Cheng, M. Wang, B. Li, X. Liu, and J. Chen, “Throughput
optimization and delay guarantee VNF placement for mapping SFC
requests in NFV-enabled networks,” IEEE Transactions on Network and
Service Management, vol. 18, no. 4, pp. 4247–4262, 2021.

[39] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochas-
tic control for heterogeneous networks,” IEEE/ACM Transactions On
Networking, vol. 16, no. 2, pp. 396–409, 2008.

[40] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, vol. 49, pp. 237–252, 1998.

[41] R. Srikant and L. Ying, Communication networks: an optimization,
control, and stochastic networks perspective. Cambridge University
Press, 2013.

[42] M. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.
[Online]. Available: https://ieeexplore.ieee.org/document/6813406

[43] S. Sarkar and L. Tassiulas, “End-to-end bandwidth guarantees through
fair local spectrum share in wireless ad-hoc networks,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 9, pp. 1246–1259, 2005.

APPENDIX A
PROOF OF EQ. (15)

Proof. Since Sub-problem SP2 considers the internal/external
forwarding of packets, we omit the term related to the source
rate λ(r) in the proof. Eq. (15) states the following.

max −
∑

(r,k)∈(R,K),
n∈N

θ(r,k)n (t) · h(y(r,k)n)(t)

Using the definition of h(y(r,k)n)(t) from Eq. (8) and get∑
(r,k),
n

θ(r,k)n (t)

[∑
j∈N

s
(r,k)
n,j (t) + a(r,k)n (t)

−
∑
i∈N

s
(r,k)
i,n (t)− a(r,k−1)

n (t)

]
.

Further, we distribute θ
(r,k)
n (t) and decouple the terms related

to internal and external forwarding.∑
(r,k),
n

θ(r,k)n (t)

[
a(r,k)n (t)− a(r,k−1)

n (t)

]

+
∑
(r,k),
n

θ(r,k)n (t)

[∑
j∈N

s
(r,k)
n,j (t)−

∑
i∈N

s
(r,k)
i,n (t)

]
(31)
=

∑
(r,k),
n

a(r,k)n (t)

[
θ(r,k)n (t)− θ(r,k+1)

n (t)

]

+
∑
(r,k),
n

θ(r,k)n (t)

[∑
j∈N

s
(r,k)
n,j (t)−

∑
i∈N

s
(r,k)
i,n (t)

]
. (30)

Here, the first part of Eq. (30) follows due to Eq. (31) given
by the result of Lemma 2. Further, we distribute θ

(r,k)
n (t) in

the second term to yield,∑
(r,k),
n

a(r,k)n (t)

[
θ(r,k)n (t)− θ(r,k+1)

n (t)

]

+

[∑
(r,k),
n

θ(r,k)n (t)
∑
j∈N

s
(r,k)
n,j (t)−

∑
(r,k),
n

θ(r,k)n (t)
∑
i∈N

s
(r,k)
i,n (t)

]
(33)
=

∑
(r,k),
n

a(r,k)n (t)

[
θ(r,k)n (t)− θ(r,k+1)

n (t)

]

+
∑
(r,k),
n

∑
j∈N

s
(r,k)
n,j (t)

[
θ(r,k)n (t)− θ

(r,k)
j (t)

]
.

Here, where the final result follows due to Eq. (33) given by
Lemma 3 and concludes the proof.

APPENDIX B
PROOF OF EQ. (31)

Lemma 2. (Internal Forwarding)∑
(r,k),
n

θ(r,k)n (t)

[
a(r,k)n (t)− a(r,k−1)

n (t)

]

=
∑
(r,k),
n

a(r,k)n (t)

[
θ(r,k)n (t)− θ(r,k+1)

n (t)

]
,∀n ∈ N ,∀r ∈ R.

(31)

Proof. Fix a node n, and a flow r. Assume there exists a
dummy computing function, (r, k = 0), at the beginning of the
sequence (r, k) that does not compute packets and internally
forward the packets at rate a

(r,k=0)
n (t) to queue (r, k = 1).

The product of internal forwarding rate and the Lagrange mul-
tiplier associated with this function is θ

(r,k=0)
n (t) a

(r,k=0)
n (t).

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 16

Similarly consider another dummy function (r, |K| + 1) that
is receiving packets at rate a

(r,|K|)
n (t) from queue (r, |K|).

The product of associated Lagrange multiplier and rate of this
dummy function is given by θ

(r,|K|+1)
n (t) a

(r,|K|)
n (t). Adding

θ
(r,k=0)
n (t) a

(r,k=0)
n (t) and subtracting θ

(r,|K|+1)
n (t) a

(r,|K|)
n (t)

in the left-hand of Eq. (31) yields,∑
k∈{0,..K}

θ(r,k)n (t)a(r,k)n (t)−
∑

k∈{1,..K+1}

θ(r,k)n (t)a(r,k−1)
n (t)

Expanding the summations we have the following.[
θ(r,k=0)
n (t)a(r,k=0)

n (t) + θ(r,k=1)
n (t)a(r,k=1)

n (t)

+ ...+ θ(r,k=|K|)
n (t)a(r,k=|K|)

n (t)
]

−
[
θ(r,k=1)
n (t)a(r,k=0)

n (t) + θ(r,k=2)
n (t)a(r,k=1)

n (t)

+ ...+ θ(r,k=|K|+1)
n (t)a(r,k=|K|)

n (t)
]

Since k ∈ {0, ..K} and k ∈ {1, ..K+1} have equal cardinality,
we take element-wise difference,[
θ(r,k=0)
n (t)a(r,k=0)

n (t)− θ(r,k=1)
n (t)a(r,k=0)

n (t)
]

+
[
θ(r,k=1)
n (t)a(r,k=1)

n (t)− θ(r,k=2)
n (t)a(r,k=1)

n (t)
]

.....

+
[
θ(r,k=|K|)
n (t)a(r,k=|K|)

n (t)− θ(r,k=|K|+1)
n (t)a(r,k=|K|)

n (t)
]
.

Summarizing this, we have∑
k

a(r,k)n (t)
[
θ(r,k)n (t)− θ(r,k+1)

n (t)
]
. (32)

Since Eq. (32) holds for all r at node n, it completes the
proof.

APPENDIX C
PROOF OF EQ. (33)

Lemma 3. (External Forwarding)[∑
(r,k),
n

θ(r,k)n (t)
∑
j∈N

s
(r,k)
n,j (t)−

∑
(r,k),
n

θ(r,k)n (t)
∑
i∈N

s
(r,k)
i,n (t)

]

=
∑
(r,k),
n

∑
j∈N

s
(r,k)
n,j (t)θ(r,k)n (t)−

∑
(r,k),
n

∑
j∈N

s
(r,k)
n,j (t)θ

(r,k)
j (t)

=
∑
(r,k),
n

∑
j∈N

s
(r,k)
n,j (t)

[
θ(r,k)n (t)− θ

(r,k)
j (t)

]
,

∀n ∈ N ,∀(r, k) ∈ (R,K). (33)

Proof. The proof is followed by algebraic manipulations as
shown in [41].

APPENDIX D
RELATION BETWEEN QUEUE LENGTH AND Lagrange

multiplier

Recall, SP1 describes the flow control problem, i.e., λ(r)(t)
and SP2 describes the joint internal/external forwarding. If
the associated Lagrange multiplier vector is known, solutions
to the sub-problems are readily available. Therefore, the al-
gorithm is fully specified if we can estimate the Lagrange
multiplier vector. A natural way of estimating the Lagrange

multiplier is similar to the dual algorithm for the internet given
in the following,

θ(r,k)n (t+ 1) =

[
θ(r,k)n (t) + ϵ ·

[
λ(r)(t) +

∑
i∈N

s
(r,k)
i,n (t)

+ a(r,k−1)
n (t)−

∑
j∈N

s
(r,k)
n,j (t)− a(r,k)n (t)

]]+
, (34)

where λ(r)(t) is the solution of SP1 and solution to SP2 is
given by a

(r,k)
n (t) and s

(r,k)
n,j (t) from Eq. (15). Note that, Eq.

(34) is the wireless counterpart of the differential equation in
the dual algorithm for the Internet with a constant step size ϵ.
In our algorithm, we assume ϵ = 1. The behavior of θ(r,k)n (t) is
similar to the queue length update for each data queue indexed
by (r, k) at node n. Therefore, we estimate the Lagrange mul-
tiplier by considering θ

(r,k)
n (t) = Q

(r,k)
n (t). By our analysis

of how we collect the difference between the Lagrange multi-
plier in Lemma (2) we consider θ(r,k+1)

n (t) = Q
(r,k+1)
n (t) and

similarly by Lemma (3), we consider θ
(r,k)
n (t) = Q

(r,k)
n (t).

The only difference from the queue dynamics is that it may
not be always possible to transfer packets between queues due
to packet availability. Therefore, we replace equality with an
inequality,

Qn
(r,k)(t+ 1) ≤

[
Q(r,k)

n (t) +

[
λ(r)(t) +

∑
i∈N

s
(r,k)
i,n (t)

+ a(r,k−1)
n (t)−

∑
j∈N

s
(r,k)
n,j (t)− a(r,k)n (t)

]]+
. (35)

To summarize, we formulate the computing and communi-
cation resource allocation problem as a Lagrangian dual
problem and utilize the techniques of estimating the La-
grange multiplier using the queue dynamics, leading to a
backpressure-based scheduling and routing algorithm.

APPENDIX E
PROOF OF LEMMA 1

Proof. Fixing a (r, k) ∈ (R,K) for each n ∈ N in Eq. (24)
yields,

(∆Q(t)) =
1

2
[Q(r,k)

n (t+ 1)]2 − 1

2
[Q(r,k)

n (t)]2

=
1

2

(
[Q(r,k)

n (t)]2 + 2Q(r,k)
n (t) · h(y(r,k)n) + [h(y(r,k)n)]2

)
− 1

2
[Q(r,k)

n (t)]2 = Q(r,k)
n (t) · h(y(r,k)n) +

1

2
[h(y(r,k)n)]2.

We replace the value of h(y(r,k)n) from Eq. (8) and with some
rearrangements of the terms we get

−Q(r,k)
n (t)

(
[
∑
j∈N

s
(r,k)
n,j + a(r,k)n]

− [λ(r) +
∑
i∈N

s
(r,k)
i,n + a(r,k−1)

n]

)
+

1

2

(
[
∑
j∈N

s
(r,k)
n,j + a(r,k)n]2 + [λ(r) +

∑
i∈N

s
(r,k)
i,n + a(r,k−1)

n]2

− 2[
∑
j∈N

s
(r,k)
n,j + a(r,k)n][λ(r) +

∑
i∈N

s
(r,k)
i,n + a(r,k−1)

n]

)
(36)

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 17

Using this definition of G and ϵ, and using the fact that all
the variables are non-negative, we simplify Eq.(36) as

(∆Q(t)) ≤ G− ϵ ·Q(r,k)
n (t),

which establishes a finite-drift bound and concludes the proof.

APPENDIX F
PROOF OF NETWORK STABILITY AND NEAR-OPTIMAL

UTILITY.

Proof. Assuming that (27) holds, and using the conditional
Lyapunov drift in (26) we get

E{L(Q(t+ 1))− L(Q(t)) | Q(t)}

− V

R∑
r=1

E{Ur(λ
(r)(t)) | Q(t)} ≤ G− ϵ

∑
(r,k),
n

Q(r,k)
n (t)

− V U(λ∗). (37)

Taking the expectation over the distribution of the queue
backlog process Q(t) and using the result of the law of total
expectation, i.e., E(X) = E(E(X | Y)) yields,

E{L(Q(t+ 1))− L(Q(t))} − V

R∑
r=1

E{Ur(λ
(r)(t))}

≤ G− ϵ
∑
(r,k),
n

E{Q(r,k)
n (t)} − V U(λ∗). (38)

Since the above Lyapunov bound holds for all t, summing
over t ∈ {0, 1, ...T − 1} gives

E{L(Q(T))− L(Q(0))} − V

T−1∑
t=0

R∑
r=1

E{Ur(λ
(r)(t))}

≤ GT − ϵ

T−1∑
t=0

∑
(r,k),
n

E{Q(r,k)
n (t)} − V T · U(λ∗). (39)

Further, using the non-negativity of the Lyapunov function as
well as the finite utility bounds, and dividing (39) by T · ϵ, we
reach the following result after rearranging the terms.

1

T

T−1∑
t=0

∑
(r,k),
n

E{Q(r,k)
n (t)} − E{L(Q(0))}

T · ϵ
≤ V

T · ϵ

T−1∑
t=0

Umax

+
G

ϵ
− V · U(λ∗)

ϵ
− E{L(Q(T))}

T · ϵ
.

Since the right-hand side is the upper bound, we remove the
negative terms and complete the sum of maximum utilities,
i.e., Umax, which is a constant term.

1

T

T−1∑
t=0

∑
(r,k),
n

E{Q(r,k)
n (t)}−E{L(Q(0))}

T · ϵ
≤ V Umax +G

ϵ
.

Finally, we take lim sup as T → ∞ and conclude that,

lim sup
T→∞

1

T

T−1∑
t=0

∑
(r,k),
n

E{Q(r,k)
n (t)} ≤ V Umax

r +G

ϵ
.

The above result shows the stability of queue backlogs which
justifies finite queue backlog.

To prove the utility optimality of the proposed algorithm,
we first define the optimal utility value ν∗. Assume that, there
exists a randomized stationary policy (Ω-only policy) with
the control decision λ∗ that are deterministically achievable
by λ̂n(t). Therefore, this Ω-only policy with λ∗ satisfies the
following for any δ > 0.

E{U(λ∗)}+ δ ≥ ν∗. (40)

Intuitively, satisfying all the constraints λ∗ produces a utility
value at least as good as ν∗. For convenience, assume δ = 0
and replace the inequality with equality (the same result can
be achieved by taking lim δ → 0) [42]. Finally, rearranging
the terms after dividing (39) by T · V and plugging in Eq.
(40) yield the following.
R∑

r=1

1

T

T−1∑
τ=0

E{Ur(λ
(r)(t))} ≥ ν∗ +

E{L(Q(T))}
T · V

− G

V

− E{L(Q(0))}
T · V

+
ϵ
∑T−1

t=0

∑
(r,k),
n

E{Q(r,k)
n (t)}

T · V

≥ ν∗ − G

V
− E{L(Q(0))}

T · V
. (41)

Due to Assumption 2 (Infinite reservoir and real-value assump-
tions) and concavity of the utility function, Jensen inequality
holds. Therefore, we get

R∑
r=1

Ur(
1

T

T−1∑
t=0

E{λ(r)(t)}) ≥ ν∗ − G

V
− E{L(Q(0))}

T · V
.

(42)

By taking the lim inf as T → ∞ and the result from
Assumption 1, we conclude

lim inf
T→∞

R∑
r=1

Ur(λ
(r)

(T)) ≥ ν∗ − G

V
.

APPENDIX G
DISTRIBUTED IMPLEMENTATION

Here, it must be stressed that even though the flow rate
controller in (SP1) and internal forwarding in (SP2A) are
solved in a fully distributed manner, due to the interference in
the wireless access media the external forwarding in (SP2B)
is assumed to be centralized. The max-weight solution for the
external forwarding problem uses the local queue length in-
formation in the neighboring nodes. However, the max weight
matching is difficult to compute in a distributed manner since
matching constraints

∑
n,j∈L µn,j · wn,j couple the network-

wide decision. The result of our work can be implemented
using a simpler interference model. For example, in [43] a
general interference model is considered where a node has the
full knowledge of contenders of link (n, j) denoted by Ψn,j

that cannot be activated when link (n, j) transmits. Define
Ψmax ≜ maxn,j Ψn,j . Assume a simple random access
scheme that uses this collision model. The model requires
only one contention round to find non-interfering links in

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, SEPTEMBER-OCTOBER 2024 18

the following manner. Each link independently attempts the
activation with probability 1

Ψmax
. If there is no collision,

the link is activated and remains idle otherwise. The random
access scheme is similar to the distributed approach [39]. In
our work, we do not manage the random access but assume a
computing node is given a set of collision-free communication
links to communicate with the neighboring computing nodes.
Under such an assumption, the computing nodes distributedly
schedule the external packet forwarding.

KM Mahfujul is currently working toward his Ph.D.
degree in Electrical and Computer Engineering at
Queen’s University, ON, Canada. He received his
M.Sc. degree in computer science and technology
from Central South University, Hunan, China, in
2020 and his B.Sc. degree in computer science
and engineering from Khulna University, Khulna,
Bangladesh in 2016. His current research interests
include real-time scheduling and distributed algo-
rithm design for converged wireless/cloud commu-
nication networks.

Kaige Qu (S’19−M’21) received the Ph.D. degree
in electrical and computer engineering from the Uni-
versity of Waterloo, Waterloo, ON, Canada, in 2021.
She received the B.Sc. degree in communication
engineering from Shandong University, Jinan, China,
in 2013, and M.Sc. degrees in integrated circuits en-
gineering and electrical engineering from Tsinghua
University, Beijing, China, and KU Leuven, Leuven,
Belgium, respectively, in 2016. From February 2021
to December 2023, she was a Post-doctoral Fellow
and then a Research Associate with the Department

of Electrical and Computer Engineering, University of Waterloo. Her research
interests include connected and autonomous vehicles, network intelligence,
network virtualization, and digital twin assisted network automation.

Dr. Qiang (John) Ye received the PhD degree
in Electrical and Computer Engineering from the
University of Waterloo, ON, Canada, in 2016. Since
Sept. 2023, he has been an Assistant Professor with
the Department of Electrical and Software Engi-
neering, Schulich School of Engineering, University
of Calgary, AB, Canada. Before joining UCalgary,
he worked as an Assistant Professor with the De-
partment of Computer Science, Memorial University
of Newfoundland, NL, Canada from Sept. 2021 to
Aug. 2023 and with the Department of Electrical

and Computer Engineering and Technology, Minnesota State University,
Mankato, USA, from Sept. 2019 to Aug. 2021, respectively. He was with the
Department of Electrical and Computer Engineering, University of Waterloo
as a Postdoctoral Fellow and then a Research Associate from Dec. 2016 to
Sept. 2019.

He has published over 70 research articles on top-ranked journals and
conference proceedings. He is/was the General, Publication, Program Co-
chairs for different reputable international conferences and workshops, and
serves/served as Associate Editors of prestigious international journals, e.g.,
IEEE Transactions on Vehicular Technology and IEEE Transactions on
Cognitive Communications and Networking. He also serves/served as the
IEEE Vehicular Technology Society (VTS) Region 7 Chapter Coordinator
(2024) and the Regions 1-7 Chapters Coordinator(2022-2023). Dr. Ye received
the Best Paper Award in the IEEE/CIC International Conference on Commu-
nications in China (ICCC) in 2024 and the IEEE Transactions on Cognitive
Communications and Networking Exemplary Editor Award in 2023. He is a
Senior Member of IEEE

Ning Lu (Member, IEEE) received the B.Eng. and
M.Eng. degrees in electrical engineering from Tongji
University, Shanghai, China, in 2007 and 2010,
respectively, and the Ph.D. degree in electrical engi-
neering from the University of Waterloo, Waterloo,
ON, Canada, in 2015. He is currently an Assis-
tant Professor with the Department of Electrical
and Computer Engineering with Queen’s University,
Kingston, ON, Canada. Prior to joining Queen’s Uni-
versity, he was an Assistant Professor with the De-
partment of Computing Science, Thompson Rivers

University, Kamloops, BC, Canada. From 2015 to 2016, he was a Postdoctoral
Fellow with the Coordinated Science Laboratory, University of Illinois at
Urbana–Champaign, Champaign, IL, USA. He was as an Intern with the
National Institute of Informatics, Tokyo, Japan, in Summer 2009.

He has published more than 70 papers in top IEEE journals and conferences,
including IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE JOUR-
NAL ON SELECTED AREAS IN COMMUNICATIONS, ACM MobiHoc,
and IEEE INFOCOM. His current research interests include scheduling,
distributed algorithms, and reinforcement learning for wireless communication
networks. Dr. Lu is currently an Editor of the IEEE Transactions on Wire-
less Communications and chairing the Special Interest Group (SIG) on AI
Empowered Internet of Vehicles (IoV), IEEE Cognitive Networks Technical
Committee.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3460479

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Calgary. Downloaded on September 22,2024 at 22:40:13 UTC from IEEE Xplore. Restrictions apply.

