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Abstract—This article proposes an innovative approach to
improve over-the-air federated learning (OTA-FL) systems by
integrating fluid antennas (FAs) at the access point. By exploiting
the mobility of FAs, we aim to increase the correlation among
the users’ channels, thereby improving the learning performance.
We analyze the performance of over-the-air computation and the
convergence behavior of the OTA-FL system, highlighting the
benefits of FAs. Since the learning performance improves as more
devices participate in the federated learning (FL) aggregation,
we formulate a nonconvex optimization problem that maximizes
the number of selected users by jointly optimizing FA positions
and the beamforming vector, coupled with a user selection
policy subject to a mean-squared error constraint. To address
environmental dynamics, we describe the problem as a Markov
decision process and develop a long—short-term memory (LSTM)-
based algorithm for efficient decision-making. Simulation results
demonstrate that the proposed FA-assisted OTA-FL framework
significantly outperforms conventional setups, achieving higher
user selection rates and improved learning performance com-
pared to existing benchmarks.

Index Terms—Deep reinforcement learning (DRL), fluid
antenna (FA), optimality gap, over-the-air federated learning
(OTA-FL).

I. INTRODUCTION

EDERATED learning (FL) has emerged as a promising
Fapproach in communication systems due to its decen-
tralized structure and robust privacy preservation [1], [2]. By
leveraging the computational capabilities of edge devices, FL
facilitates collaborative training of a global model without
the need to share local data. This approach is partic-
ularly advantageous for mobile Internet of Things (IoT)
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applications [3], [4], [5]. However, the practical deployment of
FL faces significant challenges, notably high communication
latency and associated costs, which can impede its efficiency
and scalability in real-world implementations.

To mitigate these issues, over-the-air (OTA) computation
has emerged as an effective solution for model aggregation
in FL. By exploiting the inherent superposition property of
wireless channels, OTA computation enables simultaneous
data transmission, thereby significantly reducing aggregation
overhead [6]. However, the performance of model aggregation
in over-the-air FL (OTA-FL) faces challenges due to unfavor-
able wireless conditions, particularly in large-scale mobile IoT
environments.

Recent studies have explored reconfigurable intelligent
surfaces (RISs) as a means to improve OTA-FL reliabil-
ity by manipulating wireless propagation environments [7],
[8], [9], [10]. RIS employ passive reflecting elements with
adjustable reflection coefficients to steer signals toward desired
receivers, enhancing channel conditions and transmission
performance [11], [12]. However, their static deployment and
reliance on environmental factors limit adaptability in highly
dynamic and mobile IoT scenarios, motivating the need for
more flexible solutions. Furthermore, advanced beamforming
techniques have been investigated to exploit spatial degrees of
freedom (DoF) for improved signal reception [13]. However,
these techniques are also constrained by the fixed positions of
the receiver antennas, which limits the adaptability in dynamic
environments.

To address these limitations, fluid antennas (FAs) have
emerged as a promising enhancement for OTA-FL systems.
In contrast to conventional fixed position antennas (FPAs),
FAs possess the distinctive ability to dynamically adjust
their spatial locations, thereby enabling real-time manipu-
lation of wireless channel characteristics [14], [15], [16].
This inherent adaptability is particularly beneficial in mobile
IoT environments, where rapid fluctuations in channel con-
ditions often arise due to user mobility and environmental
dynamics [17]. Existing studies have demonstrated the
superior performance of FAs over FPAs in various wire-
less communication paradigms, including multiuser uplink
transmissions [18], [19], mobile edge computing [20], and
covert communications [21]. By introducing additional DoFs
through position adaptability, FAs unlock new opportunities
to enhance the performance of both OTA computation and
FL systems [22], [23], [24], [25], [26], [27], [28]. For
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example, [22] investigates joint transceiver design and antenna
positioning to minimize mean-squared error (MSE), while [23]
addresses robust resource allocation strategies under chan-
nel uncertainty. In [24], 2-D movable antennas (MAs) are
deployed at the access point (AP) to reduce aggregation errors
during wireless data collection. Similarly, [25] investigates the
minimization of MSE under constrained communication rates
in FA-aided networks considering dynamic operational scenar-
i0s. Reference [26] considers unmanned aerial vehicle-assisted
MAs at the AP to achieve MSE minimization, whereas [27]
focuses on FA-enhanced OTA-FL systems with fixed client
participation to reduce the optimality gap in federated train-
ing. Moreover, [28] proposes a port selection mechanism
for FA-equipped devices to accelerate the convergence of
distributed learning processes. Despite these advancements,
the comprehensive integration of FAs into OTA-FL systems,
particularly for optimizing user selection policies, requires
further investigation.

In this article, we integrate FAs with OTA-FL to modify
channel gains to maximize the number of selected devices
while ensuring that the MSE remains within a predefined
threshold. First, we evaluate the impact of FAs on OTA-
FL through convergence analysis, focusing on the MSE of
model aggregation and optimizing power allocation to min-
imize errors. Our analysis highlights the critical role of the
correlation between the beamforming vector and each device’s
channel gain in reducing the MSE. Then, we formulate a
nonconvex optimization problem to design FA systems in
dynamic environments. The objective is to jointly optimize the
beamforming vector, antenna positioning, and user selection
policy to minimize the optimality gap by maximizing device
participation, while adhering to the MSE constraint. To tackle
the complexity of this problem, we reformulate it as a Markov
decision process (MDP) and employ deep reinforcement
learning (DRL) techniques that are well-suited for dynamic
environments. Specifically, we utilize the long—short-term
memory deep deterministic policy gradient (LSTM-DDPG)
algorithm to capture temporal correlations and enable real-
time decision-making [29]. Finally, we conduct extensive
simulations using both synthetic and real-world datasets to
evaluate the proposed framework. The performance of the
FA-assisted OTA-FL system is benchmarked against FPA
systems, while the LSTM-DDPG algorithm is compared with
other DRL approaches, such as soft actor—critic (SAC) and
DDPG. Simulation results demonstrate that the proposed FA-
assisted OTA-FL system significantly outperforms FPA-based
implementations, and the LSTM-DDPG algorithm achieves
superior performance compared to other DRL algorithms.

Notations: Italicized letters denote scalars, while boldface
letters represent vectors. The transpose and conjugate trans-
pose operations are denoted by )T and (1), respectively. E[-]
represents the expectation operation, |-| denotes the magnitude
of a scalar or the cardinality of a set, and | - | signifies the
Euclidean norm of a vector.

II. SYSTEM MODEL

We consider an OTA-FL framework comprising K
single-antenna user equipment (UE) devices, each labeled

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 20, 15 OCTOBER 2025

as UE;, where k € K £ {1,2,...,K}. These devices are
uniformly distributed within a designated area and dynamically
collect local data samples to collaboratively train a global
model at an AP equipped with FAs.

A. FL Model

FL aims to minimize the global loss function F'(w;), which
is represented as

K
. 1
min F(w,) = min ; Fr(w,), (1)

where w; € R denotes the d-dimensional parameters of the
learnable model. The local loss function associated with the
kth device is expressed as

2

1
Frw) = —— Y f(wi: di ), )
Dl 5 /

where f(-; ) represents the loss function, dj. j indicates the jth
data sample from the local dataset Dy of the kth device, and
|Dk| denotes the number of samples in that dataset.

To solve the minimization problem outlined in (1), we
employ the federated averaging (FedAvg) algorithm, which
efficiently converges to the optimal solution while preserving
device data privacy. The implementation of FedAvg involves
a series of sequential steps as follows.

1) User Selection: The AP initiates the process by selecting

a subset of UEs, denoted as S; C K, and subsequently
broadcasts the current global model w; to these selected
UEs.

2) Local Training: Each selected UE performs local model
updates using stochastic gradient descent (SGD). The
update is expressed as wy; = w; — yVI:"k(w,; Zr),
where y € (0, 1) is the learning rate, and & C Dy
represents a randomly selected minibatch from the UE’s
local dataset. ﬁk(w,; Zr) is an estimate of the local loss
function, which is computed as

ﬁk(wﬂ lk) = L Zf(wt; Dk,j) 3)
|2kl 4
J€&k
where f(w;, di ;) indicates the sample-wise loss function
associated with the data sample Dy ;.

3) Model Aggregation: Upon completing local training,
each selected UE transmits its updated local model back
to the AP. The AP then aggregates the local models by
averaging

1
Wisl = === D Wi @
51
ES[

This process is iterated until the predefined maximum num-
ber of iterations is reached, ensuring continuous improvement
of the global model.

B. Communication Model

We focus on the upload phase of the OTA-FL system,
where each UE concurrently sends its locally trained model
weights to the AP. The AP is equipped with N FAs arranged
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in a linear array, which can dynamically reposition themselves
along a 1-D line segment of length X. The position of each
FA is constrained within the interval [0, X], with a minimum
distance X maintained between adjacent FAs to avoid antenna
coupling. The positions of the N FAs are represented by the
vector X = [x1, X, ..., xy]1, satisfying x| < xp < --- < xy.

While the rayleigh fading model is widely adopted to
characterize environments with rich scattering, it may fall
short in scenarios representative of next-generation wireless
systems, where strong line-of-sight (LoS) components often
coexist with limited scattering [30], [31]. To accurately capture
both deterministic LoS and non-LoS (NLoS) components, we
adopt the rician fading model. Accordingly, the channel vector
between the kth UE and the AP, denoted by hi[x] € CN*!, is
expressed as [30]

T
hy[x] = \/7 Zelzfm cos(¢k, . Ze} 2 xn cos(Br,i)

ALd7K I:e] X1 COS(¢1<) . ejoﬂxN cos(q}k)]T
K +1 ’
And ™ L
h OS hLOS 5

Here, K, denotes the rician factor, and dj is the distance
between the FA system and the kth UE. The parameter
N, represents the number of scattered NLoS paths. The
coefficients Az and Ay indicate the reference path loss for the
LoS and NLoS components, respectively, while o7 and oy
are the corresponding path loss exponents. The wavelength is
denoted by A, and ¢y and ¢y ; represent the angles of arrival
(AoAs) for the specular LoS path and the ith scattered NLoS
path, respectively.

For sufficiently large numbers of scattered paths (i.e., N, —
00), the aggregate NLoS components can be approximated
as zero-mean, circularly symmetric complex Gaussian random
variables due to the central limit theorem, resulting in rayleigh-
distributed channel amplitudes [30]. Moreover, due to the
flexible placement of FA elements in close proximity, spatial
correlation may arise in the NLoS channel components.
This phenomenon, commonly observed in rich 2-D isotropic
scattering environments, can be modeled using established
statistical channel models, such as the Jakes” model [32], [33],
which captures the spatial dependence of received signal
fluctuations. It is further assumed that each UE transmits
its model parameters from a stationary position within a
predefined area [3]. Given the substantial difference between
the signal path length and the movement range of the FAs,
the far-field condition is assumed to hold between the AP
and the UEs. Consequently, ¢y and d are treated as constant
parameters during transmission in each time slot [18], [20].

During the tth training round, the AP receives the local
model parameters transmitted by the selected UEs as

Y = Z Pr, [ Xelwi s + 2, (6)
keS;

where py ; is the transmission power coefficient for the kth UE,
and z, € CV*4 is an additive white Gaussian noise (AWGN)
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matrix with elements that are distributed as CN (0, 02). We
assume that the transmission power allocated to each UEj
remains within the maximum limit pmax, as specified in [13].
That is,

1
L—ZPI%,;]E[HWk,tHZ] <pmax Vk € K. (7)

The aggregated model parameter vector w;y; at the AP is

computed as
N 1 1
w
+1 = | St| \/— m; Yz

1 | mfzt
= E Z ﬁm; Di, i [XeIwi s + N (8)
t t t

kekC

where, m; € C¥*! is the beamforming vector at the AP, and
n; is the amplitude scaling factor.

III. PERFORMANCE ANALYSIS

In this section, we evaluate the impact of FAs on OTA-FL
by analyzing the MSE of model aggregation and the optimality
gap. The primary objective of OTA computation is to minimize
the distortion between the estimated and target received signal
aggregations. This distortion is quantitatively assessed through
the MSE at time step ¢, defined as

MSE; = E{|wt+1 = wm!z}

ISzI2 Z f

Following [11], [13], the transmit scalars in (9) can be
designed using a zero-forcing structure to suppress interclient
interference while approximating the minimum MSE, thereby
reducing aggregated signal distortion at the AP and enabling
efficient OTA model aggregation. Based on the zero-forcing
structure, the transmit scalars are expressed as follows:

S (mPheix1)"
m Ry (x|

2 dmf)?
+ agz. (9)

——mpy hyi[x,] —
e ' nt|8t|2 "

Pkt = (10)

To meet each client’s maximum power constraints, the upper
bound of 1; must satisfy

dpmax ‘m?hk [x] ’2

N = Vk € ;. (11
E[llwk.1I?]
Substituting (11) and (10) into (9), and assuming
]E[||wk,,||2] > I', the MSE at time step ¢ is given by
o2 H)2
MSE, = —— " Im, | (12)

max
|St|2pmax keS; |mHhk[xt]‘

Remark 1: As highlighted in (12), the MSE remains invari-
ant under any nonzero scaling of the aggregation beamforming
vector. Specifically, both the original beamforming vector
m and its scaled counterpart m = cm (where ¢ # 0)
result in identical MSE values. This demonstrates that the
correlation between m and the channel gain hi[x,] is the
primary factor influencing MSE, while the magnitude of m
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does not play a significant role. Furthermore, in the FA
systems, the additional DoF provided by antenna mobility
can facilitate the establishment of varying phases for channel
gain. This flexibility can lead to improved alignment, thereby
augmenting the term |mf{hk[x,]|2. Consequently, FA systems
are well-suited for applications involving OTA computation.
To assess the impact of FAs on learning performance, we
consider the user selection and the model aggregation error
and analyze the convergence of OTA-FL, based on the widely
accepted assumptions for convergence analysis [34].
Assumption 1: The loss function F(w) is £-smooth, mean-
ing there exists a constant £ > 0 such that for all w,v € R4

Fw) —F(v) < w —v)"VF(@) + gnw —vI% 13)

Assumption 2: The loss function satisfies the Polyak—
Lojasiewicz (PL) inequality, characterized by the optimal loss
function F(w*) under the condition u > 0, given by

IVFO0)I? = 2u[Fw) — F(w*)]. (14)

Assumption 3: Each FL client obtains an unbiased estimate

of the stochastic gradient with bounded variance, given by

E[vﬁk(w)] — VE,(w)

7 . %
E[IVFcw) = VEn) ] = -5 (15)
12kl
where ag2 denotes the variance introduced by SGD.
Assumption 4: For any labeled data samples d € R? x R
and model parameter w € R?, the gradient norm is bounded
as
IVf v, * < k. (16)
Theorem 1: Given Assumptions 1-4 and a learning rate 0 <

y < (1/2¢£), the optimality gap after 7 communication rounds
is bounded by

E[Fwr1)] — F(w*) < ¢ (E[F(w1)] — F(w))

T
+Y v’ e, (17)
=1

where ©; = 2y (1= [IS|/KD*+ (y*£/IS/1*) Yses, (04 /18]
+(/2)MSE;, and ¢y =1 — ypu.
Proof: See the Appendix. |
Remark 2: 1Tt is evident that selecting an appropriate learn-
ing rate y such that [¢| < 1 ensures the first term in (17)
diminishes as T — oo, leaving the optimality gap pre-
dominantly influenced by the second term. Since y remains
constant across all time slots, reducing the optimality gap
depends on minimizing ®; in each communication round.
Notably, ®; is inversely proportional to |S;| and directly
proportional to MSE;. Therefore, increasing |S;| while main-
taining MSE, within acceptable limits is crucial for achieving
improved convergence.
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IV. PROBLEM FORMULATION

We design FA systems by jointly optimizing the parameters
m = [my, ...,mN]T, x = [x1, ...,xN]T, and the device set
S; to minimize the total optimality gap by maximizing the
number of selected FL devices (|S;|) while ensuring that MSE,
remains within a predetermined limit, given by

Pi;:  max

|Si]
S,ckCom,x
s.t. C1:MSE,; <+t

Cr:0<x,<X Vnell,...,N}

C3 ix1<xp<---<2XN

Cy:xyp—xyp—1>Xo Vne{2,...,N}.(18)

Here, C; ensures that the MSE remains below a predefined
threshold in each training round, C, defines the allowable
range for FA positions, C3 establishes the ordering of FA
placements, and C4 imposes a minimum distance constraint
between neighboring FAs.

In problem Pj, the set of selected devices participating in
the aggregation process is meticulously designed to ensure that
the MSE does not exceed a specified threshold. This can be

mathematically formulated as
S; = {k € KIMSE, < t}. (19)

Without loss of generality, we impose the constraint m,|? <
1, thereby leveraging (12), we obtain

r 2 mH 2
Jn I ¢ vkes. o)
|St1*Pmax keS: |m7hk[xt]|
Upon simplification, this leads to the condition, given by
Io?
x| = —=—  VkeS,. 1)
7|S¢|*Pmax

Introducing a scaling parameter § = (F0n2/ T|S:> Pmax) the
user selection policy can be equivalently reformulated as

Si= ke K| |mx])” = 3). (22)

As expressed in (22), an increase in the correlation of
channel gains results in a higher number of selected users.
Therefore, FA systems can enhance user selection by dynam-
ically adjusting channel vectors hi[x;], unlike FPA systems,
which optimize only the beamforming vector m. Consequently,
the optimization problem P; can be reformulated as

P> . max |5
m,x

st. Cp : imfTh(x])? > 8
Cs : lm|I* < 1

C2, C3, and C4. (23)

The nonconvex nature of the objective function, coupled
with the stochastic characteristics inherent in large-scale
IoT environments, poses significant challenges to traditional
optimization techniques in solving problem P,. The problem
requires real-time decision-making based on current envi-
ronmental conditions. To overcome these challenges, we
reformulate the problem 7, as an MDP and propose an
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online DRL algorithm, enabling dynamic and efficient adapta-
tion to changing environmental conditions. Unlike traditional
optimization methods that require explicit models of envi-
ronmental dynamics, the DRL-based approach learns directly
from interactions with the environment, making it particularly
suitable for high-dimensional and nonconvex problems, such
as P,. Furthermore, the proposed method embeds the physical
and system-level constraints of PP, within the action space and
reward function, ensuring feasibility and convergence during
training and deployment.

V. PROPOSED DRL-BASED APPROACH

We deploy a DRL agent at the AP to learn an optimal
policy for jointly optimizing the beamforming vector m and
FA locations x in each round, aiming to maximize the number
of selected users |S;|. The details of the MDP framework are
as follows.

1) State Space: The system state includes all possi-

ble values of the distance d; and the AoAs of the
LoS paths ¢ for all k € K, represented as s; =
{ldies - odrids [S1es -, Prel}

2) Action Space: The action space consists of the beam-
forming vectors and the positions of the FAs, represented
as ar = {[miy,....my), X106, XN ]}

3) Reward Function: According to Theorem 1, in order to
maximize the |S;|, the reward function is formulated as

rp, if [mih[x]| = 0

|S;|, otherwise (24)

r(se, ar) = {
where r, is a penalty term that needs to be tuned
during the simulation to achieve optimal convergence
behavior. The reward function (24) provides quantifiable
feedback to guide policy improvement. It ensures that
actions increasing the number of users satisfying the
MSE threshold are positively reinforced.

Given the continuous nature of the action space in our
problem, conventional model-free value-based DRL algo-
rithms, such as deep Q-networks (DQNs), are not suitable to
handle continuous actions. We address this by leveraging pol-
icy gradient-based methods, specifically the DDPG algorithm,
which handles continuous actions effectively [35]. However,
traditional DDPG with fully connected networks struggles
to capture complex temporal patterns in user mobility. To
improve adaptability, we integrate an long—short-term memory
(LSTM) layer into the DDPG framework, to leverage temporal
state patterns and adapt to dynamic environments. It is worth
noting that while the state vector at time ¢ contains current
information on AoAs and distances, it does not explicitly
encode how these features evolve over time. In dynamic wire-
less environments, such temporal information can be critical.
The LSTM layer in our actor network captures this time
evolution, enabling the policy to learn temporal correlations
and anticipate environment changes.

Our LSTM-DDPG implementation comprises four neural
networks. The actor network 7y, with parameters ¢, generates
actions a, from the current state s;, incorporating exploration
noise as a; = 7y (s;) +§. The critic network, parameterized by
0, evaluates state-action pairs to compute Q-values Qg (s, ar),
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Algorithm 1: LSTM-DDPG Algorithm

Initialize: experience replay buffer M, mini-batch size H,
the actor network g, the critic network Qp with random
values, and create the target networks by setting

0’ < 0 and ¢’ < ¢.

Set: Set E and T to be the maximum number of episodes
and episode length, respectively.

for each episode e : E do
Initialize the environment state sg, and the

exploration noise £;
fort=1:Tdo
Receive s; from the environment;
Obtain a, = my(s;) + & from the actor network
and re-shape it;
Compute r; using (25);
Observe the new state s;41;
Store transition (s, a;, ¢, S¢+1) into M
end
Randomly sample a H mini-batch of transitions from
M,
Compute the target function Y; according to (27);
Update the actor and critic networks using the Adam
optimizer.
Perform a soft update of the target actor and critic
networks using the update coefficient ty € [0, 1]:

¢ <o+ (-,

0 «— N0 + (1 — )0’

end

representing expected rewards. The target actor and critic
networks, as delayed versions of the main networks, ensure
stable learning. The framework aims to learn an optimal policy
¥ to maximize cumulative expected rewards, defined as

oo
7" = arg max Ey, 4, |:Z r(s;, az)i|.

=0

(25)

The actor network is updated by the gradient of the objective
function J(¢), given by

Vel (9) = E|:Va,Q91 (51, ar) V¢ﬂ¢(8z)i|- (26)

ar=my(s¢)
Simultaneously, the critic network is updated to minimize
the error between its predictions and the target values Y;, as
specified by the loss function, expressed as

Y, = rt+)/Q9[!(St+1,7T¢>’(Sr+l) +$). 27

The proposed LSTM-DDPG method is
Algorithm 1.

described in

A. Computational Complexity Analysis

The computational complexity of the proposed algorithm
consists of two main components: action selection and train-
ing [29]. The network architecture includes an actor and a
critic network, each with ¢/ hidden layers containing £ neurons
per layer. The action selection complexity, which refers to
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generating the network output for a given input, is determined
by the size of the consecutive layers. For the actor network,
this is expressed as: J X (|S| + |A|) x £ for the input and
first layer, £2 for the successive hidden layers, and £ x |A| for
the output layer, where J represents the previous trajectory
length, |S| denotes the state dimension, and |A| represents the
action dimension.

Similarly, for the critic network, the computation of the
subsequent layers is 7 x (|S| 42 x |A]) x £ for the input and
first layer, L2 for the successive hidden layers, and £ x |A| for
the final connection. Here, |S| and |A| denote the dimensions
of the agent state and action spaces, respectively. Thus, the
computational complexity of action selection for the proposed
method is O(L?).

During the training process, the computational complexity
of LSTM-DDPG is primarily determined by the number of
network edges, calculated as I x C + C? + C x O, where [ is
the input size, C is the number of neurons, and O is the output
size [29]. The complexity for the actor and critic networks can
be further refined as: (H|S|L + HL? + HL|A|) and (H(|S| +
AL + HL? + HL), respectively, where H denotes the batch
size. Hence, the overall training complexity of the LSTM-
DDPG method is O(HL£?). For comparison, the computational
complexity of other DRL algorithms for one episode, such as
SAC and DDPG, is given by O((Zj\v/’zl CnCar—1)H), where
N is the number of layers, and Cns denotes the number of
neurons per layer [27], [36]. To further illustrate the practical
implications of this complexity, Fig. 1 presents the number
of floating-point operations (FLOPs) required by the proposed
algorithm under different mini-batch sizes H and varying
numbers of FAs N. The results indicate that increasing the
number of FA elements leads to higher computational com-
plexity across all batch sizes, which is expected due to the
expanded dimensionality of both state and action spaces. For
instance, when H = 256, doubling the number of FA elements
from N = 10 to N = 20 results in an 8.32% increase in
computational load. This trend highlights the tradeoff between
performance gains enabled by FA diversity and the resulting
computational overhead.

VI. SIMULATION RESULTS

This section presents numerical results to demonstrate
the effectiveness of our approach, which integrates adap-
tive antenna positioning in the FA system with real-time
decision-making using the proposed LSTM-DDPG algorithm
for optimizing OTA-FL convergence. This algorithm is ini-
tialized with the following parameters [15], [23], [37]: the
user-to-AP distance is uniformly distributed within the range
of [20, 100] m, and the AoAs is uniformly distributed
within [—m /2, /2] radians. For the FA configuration, we set
Xo = 0.51 and X = 8A. The simulation involves a total
of 100 devices, with 5 FAs deployed. The simulations are
conducted using TensorFlow 2.6.1 and Torch 1.4.0, along
with the Adam optimizer. The key hyperparameters include
a learning rate of 0.0005, a batch size of 64, a replay buffer
of 10%, a soft update rate of 0.001, and a discount factor
of 0.9. Performance is compared between the FA system
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Fig. 1. Computational complexity of the proposed algorithm in terms of

FLOPs versus batch size H for different numbers of FAs (N).

TABLE 1
SYSTEM PARAMETERS [15], [23], [29], [37]

Par. Description Value
K Total users 10
N Number of FAs 5
o? Noise power density —170 dBm/Hz
— User-to-AP distance range [20,100] m
— AoA range [—7/2,7/2] rad
Xo Minimum FA separation 0.5\
[0, X] FA interval distance [0, 8)]
Prax Max transmit power 36 dBm
hy [x] Channel gain Rician
ayg,,aN Path loss exponent (LOS/NLOS) 3.5
K, Rician factor 8
Ar, AN Path loss at reference distance 30 dBm
T MSE requirement 2 dBm
Ne Episodes 6000
H Batch size 64
™ Target network update period 0.001
u Hidden layers 2
— Actor learning rate 0.0005
— Critic learning rate 0.0001
¥ Discount factor 0.8
M Replay buffer size 600000
— Input/Hidden layer neurons 200
— Output layer neurons 10
— Input/Hidden activation ReLU
— Output activation Softmax
— Communication rounds 100

and the FPA system [23], [38] using a uniform location
vector x = [(X/[N + 1)), ..., (NX/[N + 1])]T. Furthermore,
we assess the LSTM-DDPG algorithm against the SAC algo-
rithm [26], [39], [40] and the standard DDPG algorithm [29]
based on average rewards, calculated at each episode e as
Ravg(e) = (1/100) Zf:e—loo R;, where R; denotes the mean
reward obtained in episode i. Table I provides a summary of
the simulation parameters.

Fig. 2 depicts the convergence behavior of various DRL
algorithms across training episodes. The solid curves represent
the average rewards, while the shaded regions correspond to
the standard deviations, offering insights into the stability of
each algorithm. The results demonstrate that the proposed
LSTM-DDPG approach exhibits higher average rewards and
lower variance compared to standard DRLs, demonstrating
superior performance and improved stability in dynamic
environments. The narrower variance band of LSTM-DDPG
further confirms its enhanced training stability compared to
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conventional DRL methods, making it particularly suitable
for real-world applications requiring reliable convergence.
Furthermore, experimental results demonstrate that the SAC
algorithm achieves superior performance compared to DDPG,
exhibiting both higher average rewards and lower variance
across training episodes.

Fig. 3 illustrates the relationship between the total num-
ber of devices, K, and the selected devices, |S;|, with full
participation (|S;| = K) used as a benchmark. The num-
ber of selected devices increases nearly linearly with K,
aligning with the analysis that random beamforming ensures
proportionality between selected and total devices, resulting
in consistent system performance. Furthermore, the proposed
FA method consistently outperforms both FPA and the random
algorithm across varying total FL client populations. This
demonstrates the efficacy of adaptive antenna positioning and
robust client selection capabilities. These results indicate that
the proposed framework is particularly well-suited for large-
scale FL systems, where dynamic client participation poses
significant challenges.

Fig. 4 shows the performance of the proposed algorithms
with varying antenna numbers. As N increases, the number of
selected devices improves in all scenarios, though the rate of
improvement slows as N continues to grow, attributed to the
fixed length of X. FA systems consistently outperform FPA
systems for all N values, owing to the enhanced DoF provided
by the adjustable antenna configurations. Additionally, to
further validate the generalizability of our approach under
different channel conditions, we examine the impact of the
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rician factor K,, which determines the dominance of the LoS
component relative to scattered multipath components in the
wireless channel. We conducted additional simulations with
K, = 6 and observed that the proposed algorithm maintains
highly robust performance, achieving results comparable to
those at K, = 8 while preserving the same key trends in
device selection and MSE control. These results confirm that
our method exhibits strong consistency across similar LoS
dominant channel conditions.

Fig. 5 illustrates the relationship between the number
of selected devices |S| and the MSE requirement t. As
T increases, more devices are selected due to the lower
selection threshold §, allowing more devices to meet the
MSE constraint. Notably, to assess the robustness of the
proposed method under varying antenna spacing values Xp,
the performance of the LSTM-DDPG approach with FA under
different X values is also evaluated. The results indicate that
the proposed method exhibits slightly improved performance
at higher values of Xy. This marginal variation is primarily
attributed to the presence of a strong LoS component and the
dominant influence of the rician channel gain, which render
the performance relatively insensitive to the changes in Xj.
In addition, the proposed LSTM-DDPG approach with FA
consistently outperforms other methods across different values
of 7. Specifically, when 7 exceeds 4 dBm, the proposed
scheme selects all 100 devices, demonstrating its superior
efficiency in accommodating a larger number of devices under
the higher MSE thresholds.

To further investigate the relationship between OTA-FL
performance, the number of selected devices, and the MSE
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Fig. 6.

threshold, we conducted extensive experiments involving
collaborative training of image classification models using
the MNIST dataset. The experimental setup consisted of
100 users, each assigned a unique data subset, and train-
ing was performed over 100 communication rounds. The
MNIST dataset was divided into 90% training and 10%
testing sets, with the training set further partitioned into
100 nonoverlapping subsets, each assigned to an individual
client. Each client utilized a feedforward neural network for
local model training. The architecture comprised an input
layer with 200 neurons, followed by a hidden layer with
200 neurons, both employing ReLLU activation functions. The
output layer contained a number of neurons equal to the
number of classes in the classification task, utilizing a soft-
max activation function for final predictions. Model updates
from all clients were aggregated using OTA-FL, leveraging
the wireless medium for OTA computation. To establish
a performance baseline, we also considered an ideal FL
scenario, assuming full device participation and a noise-free
communication environment. This benchmark setting serves
as a reference to quantify the impact of communication con-
straints and user selection policies on model convergence and
accuracy.

Fig. 6 depicts the accuracy of OTA-FL over 100 commu-
nication rounds for different values of 7. The results indicate
that, for each 7, the proposed method consistently outper-
forms existing approaches. This performance gain is primarily
attributed to the higher number of selected users under the
same 7, which leads to improved accuracy, reduced fluctua-
tions across communication rounds, and faster convergence.
However, while increasing t directly increases the number
of selected users, its impact on accuracy and convergence
speed is not strictly monotonic. To further investigate this
trend, Table II presents the average accuracy over the last 10
communication rounds for different t values. Specifically, as
T increases from 2 to 4, the average accuracy improves and
convergence accelerates due to the larger set of selected users,
which enhances learning performance. In contrast, when t is
further increased to 6, performance degrades due to the adverse
effects of a higher 7. These results highlight the critical role
of selecting an optimal t to balance user participation and
model convergence, ultimately achieving the best performance
in OTA-FL systems.

Learning performance over different communication rounds with (a) 7 = 2 dBm; (b) t = 4 dBm; and (c) 7 = 6 dBm.

TABLE II
AVERAGE ACCURACY FOR DIFFERENT MSE REQUIREMENTS 7

T Algorithms |[S] | Average Accuracy
2 dBm LSTM-DDPG, FA 100 0.751
LSTM-DDPG, FPA 87 0.717
4 dBm LSTM-DDPG, FA 98 0.804
LSTM-DDPG, FPA 90 0.680
6 dBm LSTM-DDPG, FA 100 0.697
LSTM-DDPG, FPA 93 0.646

VII. CONCLUSION

In this article, we have studied integrating FAs into AP
to enhance OTA-FL systems. Our convergence analysis has
shown that the optimality gap is significantly affected by the
number of selected devices and MSE, both of which are
influenced by the FA positions and beamforming vectors. To
maximize user participation, we have formulated a nonconvex
optimization problem that jointly optimizes FA positions,
beamforming vectors, and user selection policies under MSE
constraints. We have further transformed the problem as an
MDP formulation to capture the environment dynamic nature
and used an LSTM-based algorithm for real-time optimization.
The LSTM-based approach effectively learns long-term cor-
relations in the optimization process, allowing for adaptive
decision-making under varying channel conditions. Simulation
results have shown that the FA-assisted system significantly
outperforms FPA-based systems, achieving higher user selec-
tion rates, and leading to improved performance of OTA-FL
systems.

APPENDIX
PROOF OF THEOREM 1
Let VEsw) = (1/ISi)) Yres, VFxw)) and VF(w)) =

(/1S Y keS, VFr(w;). In the rth communication
round, the global model update is formulated as
follows:

= Do o)
Wil = — W —VY k(W
s\ &Y ’ i

H
m; 7;

= W; — Vﬁ(W)‘l‘—
t =Y VEs(wy |St|m

(28)
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Based on Assumptions 1 and 3, we have

Ay =E[Fwii1)] — E[Fw)] < —y(VE;w)", VE(w,))
VZEE VE 2] 4 “msE 29
+ L-E[IVFy 007 | + SMSE,. 29)

The upper bound of E[||Vf7 s(w,)||2] is derived as

IE[HV[V(wt) 2] - IE[H (Vf’s(w,) —VEw!) + VFS(w[’])) Hz]

(@) . >
2 ﬂEHVFJm)—VFJM%H]—%MVFJWMMZ

wih) [
ISIZZ |;|+2||VF( )l (30)

where a; follows from the inequality |a + b||I> < 2|a|® +
2||b||%. This leads to the conclusion that

A< —y<VF w7, VF(wo + 72| VE, W) |

—g ~MSE;.
|st|22¢ 2

To evaluate the impact of user selection on the optimality gap,
we define VF(w;) = VF(w;) — o;. Substituting this into (31),
we obtain

€2y

A <yl — 1>||VF(w,)||2 — y(zyz - 1)(0?, VF(w)))
_g -
|$,|2 Z ol 2

Then, by setting 0 < y < (1 /26) and applying the Cauchy-
Schwarz inequality, (o], VF(w;)) < 0.5||VF(w)||>+0.5]0.]|?,
we can conclude

+ y2eod* + MSE,. 32)

o2

y 2 2 Og EMSEt
Ar = 5 (o = 1VFIR) + 76 |2 Z PR
According to [11], [13], and Assurnption 4, we obtain
1St
log)? < 4/<(1 - 7f . (34)

Thus, based on Assumption 2, we derive the following
inequality:

E[Fwi1)] = E[F(w*)] < v (ELFw)] — E[F(w")]) + ©

(35)

where v; and ©; are defined in (20) and (21). By recursively
operating on (35), the cumulative optimality gap in Theorem 1
is calculated.
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